1
|
Monteiro RP, Calhau IB, Gomes AC, Lopes AD, Da Silva JP, Gonçalves IS, Pillinger M. β-Cyclodextrin and cucurbit[7]uril as protective encapsulation agents of the CO-releasing molecule [CpMo(CO) 3Me]. Dalton Trans 2024; 54:166-180. [PMID: 39526807 DOI: 10.1039/d4dt01863j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The CO releasing ability of the complex [CpMo(CO)3Me] (1) (Cp = η5-C5H5) has been assessed using a deoxymyoglobin-carbonmonoxymyoglobin assay. In the dark, CO release was shown to be promoted by the reducing agent sodium dithionite in a concentration-dependent manner. At lower dithionite concentrations, where dithionite-induced CO release was minimised, irradiation at 365 nm with a low-power UV lamp resulted in a strongly enhanced release of CO (half-life (t1/2) = 6.3 min), thus establishing complex 1 as a photochemically activated CO-releasing molecule. To modify the CO release behaviour of the tricarbonyl complex, the possibility of obtaining inclusion complexes between 1 and β-cyclodextrin (βCD) or cucurbit[7]uril (CB7) by liquid-liquid interfacial precipitation (1@βCD(IP)), liquid antisolvent precipitation (1@CB7), and mechanochemical ball-milling (1@βCD(BM)) was evaluated. All these methods led to the isolation of a true inclusion compound (albeit mixed with nonincluded 1 for 1@βCD(BM)), as evidenced by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} magic angle spinning (MAS) NMR. PXRD showed that 1@βCD(IP) was microcrystalline with a channel-type crystal packing structure. High resolution mass spectrometry studies revealed the formation of aqueous phase 1 : 1 complexes between 1 and CB7. For 1@βCD(IP) and 1@CB7, the protective effects of the hosts led to a decrease in the CO release rates with respect to nonincluded 1. βCD had the strongest effect, with a ca. 10-fold increase in t1/4 for dithionite-induced CO release, and a ca. 2-fold increase in t1/2 for photoinduced CO release.
Collapse
Affiliation(s)
- Rodrigo P Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - André D Lopes
- Centre of Marine Sciences (CCMAR/CIMAR LA), and Department of Chemistry and Pharmacy, FCT, University of the Algarve, 8005-039 Faro, Portugal
| | - José P Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), and Department of Chemistry and Pharmacy, FCT, University of the Algarve, 8005-039 Faro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Hidese R, Ohira T, Sakakibara S, Suzuki T, Shigi N, Fujiwara S. Functional redundancy of ubiquitin-like sulfur-carrier proteins facilitates flexible, efficient sulfur utilization in the primordial archaeon Thermococcus kodakarensis. mBio 2024; 15:e0053424. [PMID: 38975783 PMCID: PMC11323500 DOI: 10.1128/mbio.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Ubiquitin-like proteins (Ubls) in eukaryotes and bacteria mediate sulfur transfer for the biosynthesis of sulfur-containing biomolecules and form conjugates with specific protein targets to regulate their functions. Here, we investigated the functions and physiological importance of Ubls in a hyperthermophilic archaeon by constructing a series of deletion mutants. We found that the Ubls (TK1065, TK1093, and TK2118) in Thermococcus kodakarensis are conjugated to their specific target proteins, and all three are involved in varying degrees in the biosynthesis of sulfur-containing biomolecules such as tungsten cofactor (Wco) and tRNA thiouridines. TK2118 (named UblB) is involved in the biosynthesis of Wco in a glyceraldehyde 3-phosphate:ferredoxin oxidoreductase, which is required for glycolytic growth, whereas TK1093 (named UblA) plays a key role in the efficient thiolation of tRNAs, which contributes to cellular thermotolerance. Intriguingly, in the presence of elemental sulfur (S0) in the culture medium, defective synthesis of these sulfur-containing molecules in Ubl mutants was restored, indicating that T. kodakarensis can use S0 as an alternative sulfur source without Ubls. Our analysis indicates that the Ubl-mediated sulfur-transfer system in T. kodakarensis is important for efficient sulfur assimilation, especially under low S0 conditions, which may allow this organism to survive in a low sulfur environment.IMPORTANCESulfur is a crucial element in living organisms, occurring in various sulfur-containing biomolecules including iron-sulfur clusters, vitamins, and RNA thionucleosides, as well as the amino acids cysteine and methionine. In archaea, the biosynthesis routes and sulfur donors of sulfur-containing biomolecules are largely unknown. Here, we explored the functions of Ubls in the deep-blanched hyperthermophilic archaeon, Thermococcus kodakarensis. We demonstrated functional redundancy of these proteins in the biosynthesis of tungsten cofactor and tRNA thiouridines and the significance of these sulfur-carrier functions, especially in low sulfur environments. We propose that acquisition of a Ubl sulfur-transfer system, in addition to an ancient inorganic sulfur assimilation pathway, enabled the primordial archaeon to advance into lower-sulfur environments and expand their habitable zone.
Collapse
Affiliation(s)
- Ryota Hidese
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satsuki Sakakibara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoki Shigi
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
3
|
Vilela-Alves G, Rebelo Manuel R, Pedrosa N, Cardoso Pereira IA, Romão MJ, Mota C. Structural and biochemical characterization of the M405S variant of Desulfovibrio vulgaris formate dehydrogenase. Acta Crystallogr F Struct Biol Commun 2024; 80:98-106. [PMID: 38699971 PMCID: PMC11134731 DOI: 10.1107/s2053230x24003911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.
Collapse
Affiliation(s)
- Guilherme Vilela-Alves
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Rita Rebelo Manuel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Neide Pedrosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Inês A. Cardoso Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Maria João Romão
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiano Mota
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Magalon A. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Molecules 2023; 28:7195. [PMID: 37894674 PMCID: PMC10609526 DOI: 10.3390/molecules28207195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In prokaryotes, the role of Mo/W enzymes in physiology and bioenergetics is widely recognized. It is worth noting that the most diverse family of Mo/W enzymes is exclusive to prokaryotes, with the probable existence of several of them from the earliest forms of life on Earth. The structural organization of these enzymes, which often include additional redox centers, is as diverse as ever, as is their cellular localization. The most notable observation is the involvement of dedicated chaperones assisting with the assembly and acquisition of the metal centers, including Mo/W-bisPGD, one of the largest organic cofactors in nature. This review seeks to provide a new understanding and a unified model of Mo/W enzyme maturation.
Collapse
Affiliation(s)
- Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| |
Collapse
|
5
|
Engrola F, Correia MAS, Watson C, Romão CC, Veiros LF, Romão MJ, Santos-Silva T, Santini JM. Arsenite oxidase in complex with antimonite and arsenite oxyanions: Insights into the catalytic mechanism. J Biol Chem 2023; 299:105036. [PMID: 37442232 PMCID: PMC10448176 DOI: 10.1016/j.jbc.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism. These structural data were complemented with density-functional theory calculations providing a unique view of the molybdenum active site at different time points that, together with mutagenesis data, enabled to clarify the enzymatic mechanism and the molecular determinants for the oxidation of As(III) to the less toxic As(V) species.
Collapse
Affiliation(s)
- Filipa Engrola
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Márcia A S Correia
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Cameron Watson
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Romão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Teresa Santos-Silva
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Joanne M Santini
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Kirk ML, Lepluart J, Yang J. Resonance Raman spectroscopy of pyranopterin molybdenum enzymes. J Inorg Biochem 2022; 235:111907. [PMID: 35932756 PMCID: PMC10575615 DOI: 10.1016/j.jinorgbio.2022.111907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Resonance Raman spectroscopy (rR) is a powerful spectroscopic probe that is widely used for studying the geometric and electronic structure of metalloproteins. In this focused review, we detail how resonance Raman spectroscopy has contributed to a greater understanding of electronic structure, geometric structure, and the reaction mechanisms of pyranopterin molybdenum enzymes. The review focuses on the enzymes sulfite oxidase (SO), dimethyl sulfoxide reductase (DMSOR), xanthine oxidase (XO), and carbon monoxide dehydrogenase. Specifically, we highlight how Mo-Ooxo, Mo-Ssulfido, Mo-Sdithiolene, and dithiolene CC vibrational modes, isotope and heavy atom perturbations, resonance enhancement, and associated Raman studies of small molecule analogs have provided detailed insight into the nature of these metalloenzyme active sites.
Collapse
Affiliation(s)
- Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States.
| | - Jesse Lepluart
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| |
Collapse
|
7
|
Formate Dehydrogenase Mimics as Catalysts for Carbon Dioxide Reduction. Molecules 2022; 27:molecules27185989. [PMID: 36144724 PMCID: PMC9506188 DOI: 10.3390/molecules27185989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Formate dehydrogenases (FDH) reversibly catalyze the interconversion of CO2 to formate. They belong to the family of molybdenum and tungsten-dependent oxidoreductases. For several decades, scientists have been synthesizing structural and functional model complexes inspired by these enzymes. These studies not only allow for finding certain efficient catalysts but also in some cases to better understand the functioning of the enzymes. However, FDH models for catalytic CO2 reduction are less studied compared to the oxygen atom transfer (OAT) reaction. Herein, we present recent results of structural and functional models of FDH.
Collapse
|
8
|
Bio-inspired CO2 reduction reaction catalysis using soft-oxometalates. J Inorg Biochem 2022; 234:111903. [DOI: 10.1016/j.jinorgbio.2022.111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
|
9
|
Oliveira AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC. Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis. ACS Chem Biol 2022; 17:1901-1909. [PMID: 35766974 PMCID: PMC9774666 DOI: 10.1021/acschembio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S]1+ clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S]1+ centers range between -250 and -530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cristiano Mota
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Kateryna Klymanska
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Frédéric Biaso
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France
| | - Maria João Romão
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,
| | - Bruno Guigliarelli
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France,
| | - Inês Cardoso Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,
| |
Collapse
|
10
|
Pätsch S, Correia JV, Elvers BJ, Steuer M, Schulzke C. Inspired by Nature-Functional Analogues of Molybdenum and Tungsten-Dependent Oxidoreductases. Molecules 2022; 27:molecules27123695. [PMID: 35744820 PMCID: PMC9227248 DOI: 10.3390/molecules27123695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Throughout the previous ten years many scientists took inspiration from natural molybdenum and tungsten-dependent oxidoreductases to build functional active site analogues. These studies not only led to an ever more detailed mechanistic understanding of the biological template, but also paved the way to atypical selectivity and activity, such as catalytic hydrogen evolution. This review is aimed at representing the last decade’s progress in the research of and with molybdenum and tungsten functional model compounds. The portrayed systems, organized according to their ability to facilitate typical and artificial enzyme reactions, comprise complexes with non-innocent dithiolene ligands, resembling molybdopterin, as well as entirely non-natural nitrogen, oxygen, and/or sulfur bearing chelating donor ligands. All model compounds receive individual attention, highlighting the specific novelty that each provides for our understanding of the enzymatic mechanisms, such as oxygen atom transfer and proton-coupled electron transfer, or that each presents for exploiting new and useful catalytic capability. Overall, a shift in the application of these model compounds towards uncommon reactions is noted, the latter are comprehensively discussed.
Collapse
|
11
|
Oxygen atom transfer catalysis by dioxidomolybdenum(VI) complexes of pyridyl aminophenolate ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Lee SX, Tan CH, Mah WL, Wong RCS, Cheow YL, Sim KS, Tan KW. Synthesis of group 6 (chromium, molybdenum, and tungsten) photoCORMs as potential antimicrobial and anticancer agents. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Roy M, Biswal D, Pramanik NR, Drew MG, Paul S, Kachhap P, Haldar C, Chakrabarti S. Structural elucidation, DFT calculations and catalytic activity of dioxomolybdenum(VI) complexes with N N donor ligand: Role of halogen atom coordinated to the molybdenum centre. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Rahman I, Mujahid A, Palombo EA, Müller M. A functional gene-array analysis of microbial communities settling on microplastics in a peat-draining environment. MARINE POLLUTION BULLETIN 2021; 166:112226. [PMID: 33711605 DOI: 10.1016/j.marpolbul.2021.112226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Concerns about microplastic (MP) pollution arise from the rafting potential of these durable particles which potentially propagate harmful chemicals and bacteria across wide spatial gradients. While many studies have been conducted in the marine environment, knowledge of MPs in coastal and freshwater systems is limited. For this study, we exposed two MPs (polyethylene terephthalate and polylactic acid) to the undisturbed peat-draining Maludam River in Malaysia, for 6 months. The microbial communities on these MPs and the surrounding water were sequenced by MiSeq, while the genetic responses of these communities were assessed by GeoChip 5.0S. Microbial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria. Metabolic processes involved with carbon, nitrogen, sulfur, metal homeostasis, organic remediation and virulence had significantly different gene expression among the communities on MPs and in the surrounding water. Our study is the first to look at changes in gene expression of whole plastisphere communities.
Collapse
Affiliation(s)
- Ishraq Rahman
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia; International University of Business, Agriculture and Technology (IUBAT), Uttara, Dhaka 1230, Bangladesh
| | - Aazani Mujahid
- Faculty of Resource Science & Technology, University Malaysia Sarawak, 94300, Sarawak, Malaysia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia.
| |
Collapse
|
15
|
Bouzari N, Bezaatpour A, Babaei B, Amiri M, Boukherroub R, Szunerits S. Modification of MnFe2O4 surface by Mo (VI) pyridylimine complex as an efficient nanocatalyst for (ep)oxidation of alkenes and sulfides. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Dille SA, Colston KJ, Mogesa B, Cassell J, Perera E, Zeller M, Basu P. The Impact of Ligand Oxidation State and Fold Angle on the Charge Transfer Processes of Mo
IV
O‐Dithione Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sara A. Dille
- School Science Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 402 N. Blackford St. Indianapolis IN 462020 USA
| | - Kyle J. Colston
- School Science Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 402 N. Blackford St. Indianapolis IN 462020 USA
| | - Benjamin Mogesa
- Bayer School of Natural Science Department of Chemistry and Biochemistry Duquesne University 600 Forbes Ave. Pittsburgh PA 15282 USA
| | - Joseph Cassell
- School Science Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 402 N. Blackford St. Indianapolis IN 462020 USA
| | - Eranda Perera
- Bayer School of Natural Science Department of Chemistry and Biochemistry Duquesne University 600 Forbes Ave. Pittsburgh PA 15282 USA
| | - Matthias Zeller
- College of Science Department of Chemistry Purdue University 560 Oval Dr. West Lafayette In 47907 USA
| | - Partha Basu
- School Science Department of Chemistry and Chemical Biology Indiana University-Purdue University Indianapolis 402 N. Blackford St. Indianapolis IN 462020 USA
| |
Collapse
|
17
|
Hossain MK, Plutenko MO, Schachner JA, Haukka M, Mösch-Zanetti NC, Fritsky IO, Nordlander E. Dioxomolybdenum(VI) complexes of hydrazone phenolate ligands - syntheses and activities in catalytic oxidation reactions. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Dey S, Todorova TK, Fontecave M, Mougel V. Electroreduction of CO
2
to Formate with Low Overpotential using Cobalt Pyridine Thiolate Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Subal Dey
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France, Paris Sorbonne Université PSL Research University 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Tanya K. Todorova
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France, Paris Sorbonne Université PSL Research University 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France, Paris Sorbonne Université PSL Research University 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France, Paris Sorbonne Université PSL Research University 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| |
Collapse
|
19
|
Dey S, Todorova TK, Fontecave M, Mougel V. Electroreduction of CO 2 to Formate with Low Overpotential using Cobalt Pyridine Thiolate Complexes. Angew Chem Int Ed Engl 2020; 59:15726-15733. [PMID: 32673413 DOI: 10.1002/anie.202006269] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/11/2022]
Abstract
Electrocatalytic CO2 reduction to value-added products provides a viable alternative to the use of carbon sources derived from fossil fuels. Carrying out these transformations at reasonable energetic costs, for example, with low overpotential, remains a challenge. Molecular catalysts allow fine control of activity and selectivity via tuning of their coordination sphere and ligand set. Herein we investigate a series of cobalt(III) pyridine-thiolate complexes as electrocatalysts for CO2 reduction. The effect of the ligands and proton sources on activity was examined. We identified bipyridine bis(2-pyridinethiolato) cobalt(III) hexaflurophosphate as a highly selective catalyst for formate production operating at a low overpotential of 110 mV with a turnover frequency (TOF) of 10 s-1 . Electrokinetic analysis coupled with density functional theory (DFT) computations established the mechanistic pathway, highlighting the role of metal hydride intermediates. The catalysts deactivate via the formation of stable cobalt carbonyl complexes, but the active species could be regenerated upon oxidation and release of coordinated CO ligands.
Collapse
Affiliation(s)
- Subal Dey
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland.,Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Paris, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Tanya K Todorova
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Paris, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Paris, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland.,Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Paris, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| |
Collapse
|
20
|
Abstract
Tungsten is the heaviest element used in biological systems. It occurs in the active sites of several bacterial or archaeal enzymes and is ligated to an organic cofactor (metallopterin or metal binding pterin; MPT) which is referred to as tungsten cofactor (Wco). Wco-containing enzymes are found in the dimethyl sulfoxide reductase (DMSOR) and the aldehyde:ferredoxin oxidoreductase (AOR) families of MPT-containing enzymes. Some depend on Wco, such as aldehyde oxidoreductases (AORs), class II benzoyl-CoA reductases (BCRs) and acetylene hydratases (AHs), whereas others may incorporate either Wco or molybdenum cofactor (Moco), such as formate dehydrogenases, formylmethanofuran dehydrogenases or nitrate reductases. The obligately tungsten-dependent enzymes catalyze rather unusual reactions such as ones with extremely low-potential electron transfers (AOR, BCR) or an unusual hydration reaction (AH). In recent years, insights into the structure and function of many tungstoenzymes have been obtained. Though specific and unspecific ABC transporter uptake systems have been described for tungstate and molybdate, only little is known about further discriminative steps in Moco and Wco biosynthesis. In bacteria producing Moco- and Wco-containing enzymes simultaneously, paralogous isoforms of the metal insertase MoeA may be specifically involved in the molybdenum- and tungsten-insertion into MPT, and in targeting Moco or Wco to their respective apo-enzymes. Wco-containing enzymes are of emerging biotechnological interest for a number of applications such as the biocatalytic reduction of CO2, carboxylic acids and aromatic compounds, or the conversion of acetylene to acetaldehyde.
Collapse
|
21
|
Ahmed ME, Rana A, Saha R, Dey S, Dey A. Homogeneous Electrochemical Reduction of CO 2 to CO by a Cobalt Pyridine Thiolate Complex. Inorg Chem 2020; 59:5292-5302. [PMID: 32267696 DOI: 10.1021/acs.inorgchem.9b03056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical and electrochemical reduction of CO2 to value added chemicals entails the development of efficient and selective catalysts. Synthesis, characterization and electrochemical CO2 reduction activity of a air-stable cobalt(III) diphenylphosphenethano-bis(2-pyridinethiolate)chloride [{Co(dppe)(2-PyS)2}Cl, 1-Cl] complex is divulged. The complex reduces CO2 under homogeneous electrocatalytic conditions to produce CO with high Faradaic efficiency (FE > 92%) and selectivity in the presence of water. Through detailed electrochemical investigations, product analysis, and mechanistic investigations supported by theoretical calculations, it is established that complex 1-Cl reduces CO2 in its Co(I) state. A reductive cleavage leads to a dangling protonated pyridine arm which enables facile CO2 binding through a H-bond donation and facilitates the C-O bond cleavage via a directed protonation. A systematic benchmarking of this catalyst indicates that it has a modest overpotential (∼180 mV) and a TOF of ∼20 s-1 for selective reduction of CO2 to CO with H2O as a proton source.
Collapse
Affiliation(s)
- Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atanu Rana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Kalla, Asansol, Paschim Bardhaman 713340, India
| | - Subal Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
22
|
Leimkühler S. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 2020; 22:2007-2026. [PMID: 32239579 DOI: 10.1111/1462-2920.15003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
23
|
Kuriakose D, Kurup MP. Mononuclear and binuclear dioxidomolybdenum(VI) complexes of ONO appended aroylhydrazone: Crystal structures, interaction energy calculation and cytotoxicity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Oliveira AR, Mota C, Mourato C, Domingos RM, Santos MFA, Gesto D, Guigliarelli B, Santos-Silva T, Romão MJ, Cardoso Pereira IA. Toward the Mechanistic Understanding of Enzymatic CO2 Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00086] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Cristiano Mota
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cláudia Mourato
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Renato M. Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Marino F. A. Santos
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Diana Gesto
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Bruno Guigliarelli
- Aix Marseille Université, CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille 13402, France
| | - Teresa Santos-Silva
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria João Romão
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Inês A. Cardoso Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
25
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
26
|
Kuriakose D, Kurup MP. Crystal structures and supramolecular architectures of ONO donor hydrazone and solvent exchangeable dioxidomolybdenum(VI) complexes derived from 3,5-diiodosalicyaldehyde-4-methoxybenzoylhydrazone: Hirshfeld surface analysis and interaction energy calculations. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
New metal cofactors and recent metallocofactor insights. Curr Opin Struct Biol 2019; 59:1-8. [PMID: 30711735 DOI: 10.1016/j.sbi.2018.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022]
Abstract
A vast array of metal cofactors are associated with the active sites of metalloenzymes. This Opinion describes the most recently discovered metal cofactor, a nickel-pincer nucleotide (NPN) coenzyme that is covalently tethered to lactate racemase from Lactobacillus plantarum. The enzymatic function of the NPN cofactor and its pathway for biosynthesis are reviewed. Furthermore, insights are summarized from recent advances involving other selected organometallic and inorganic-cluster cofactors including the lanthanide-pyrroloquinoline quinone found in certain alcohol dehydrogenases, tungsten-pyranopterins or molybdenum-pyranopterins in chosen enzymes, the iron-guanylylpyridinol cofactor of [Fe] hydrogenase, the nickel-tetrapyrrole coenzyme F430 of methyl coenzyme M reductase, the vanadium-iron cofactor of nitrogenase, redox-dependent rearrangements of the nickel-iron-sulfur C-cluster in carbon monoxide dehydrogenase, and light-dependent changes in the multi-manganese cluster of the oxygen-evolving complex.
Collapse
|
28
|
Catalytic epoxidation using dioxidomolybdenum(VI) complexes with tridentate aminoalcohol phenol ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Sugimoto H, Sato M, Asano K, Suzuki T, Ogura T, Itoh S. Oxido-alcoholato/thiolato-molybdenum(VI) complexes with a dithiolene ligand generated by oxygen atom transfer to the molybdenum(IV) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Fogeron T, Retailleau P, Chamoreau L, Li Y, Fontecave M. Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO
2
Photoreduction. Angew Chem Int Ed Engl 2018; 57:17033-17037. [DOI: 10.1002/anie.201809084] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/19/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Saclay 1, av.de la Terrasse 91198 Gif-sur-Yvette France
| | - Lise‐Marie Chamoreau
- Sorbonne Universités Université Paris Sorbonne Institut Parisien de Chimie Moléculaire, UMR 8232 CNRS 4 place Jussieu 75252 Paris Cedex 5 France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| |
Collapse
|
31
|
Fogeron T, Retailleau P, Chamoreau L, Li Y, Fontecave M. Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO
2
Photoreduction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Saclay 1, av.de la Terrasse 91198 Gif-sur-Yvette France
| | - Lise‐Marie Chamoreau
- Sorbonne Universités Université Paris Sorbonne Institut Parisien de Chimie Moléculaire, UMR 8232 CNRS 4 place Jussieu 75252 Paris Cedex 5 France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS Collège de France, Université Paris Sorbonne 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France
| |
Collapse
|
32
|
Fogeron T, Retailleau P, Gomez-Mingot M, Li Y, Fontecave M. Nickel Complexes Based on Molybdopterin-like Dithiolenes: Catalysts for CO2 Electroreduction. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00655] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Pascal Retailleau
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, Av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Maria Gomez-Mingot
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
33
|
Mota C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ. Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Haque MR, Ghosh S, Rahman MM, Siddiquee TA, Nesterov VN, Richmond MG, Hogarth G, Kabir SE. Mixed-valence dimolybdenum complexes containing hard oxo and soft carbonyl ligands: synthesis, structure, and electrochemistry of Mo 2(O)(CO) 2(μ-κ 2-S(CH 2) nS) 2(κ 2-diphosphine). Dalton Trans 2018; 47:10102-10112. [PMID: 29999052 DOI: 10.1039/c8dt02231c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mixed-valence dimolybdenum complexes Mo2(O)(CO)2{μ-κ2-S(CH2)nS}2(κ2-Ph2P(CH2)mPPh2) (n = 2, 3; m = 1, 2) (1-4) have been synthesized from one-pot reactions of fac-Mo(CO)3(NCMe)3 and dithiols, HS(CH2)nSH, in the presence of diphosphines. The dimolybdenum framework is supported by two thiolate bridges, with one molybdenum carrying a terminal oxo ligand and the second two carbonyls. The dppm (m = 1) products exist as a pair of diastereomers differing in the relative orientation of the two carbonyls (cis and trans) at the Mo(CO)2(dppm) center, while dppe (m = 2) complexes are found solely as the trans isomers. Small amounts of Mo(CO){κ3-S(CH2CH2S)2}(κ2-dppe) (5) also result from the reaction using HS(CH2)2SH and dppe. The bonding in isomers of 1-4 has been computationally explored by DFT calculations, trans diastereomers being computed to be more stable than the corresponding pair of cis diastereomers for all. The calculations confirm the existence of Mo[triple bond, length as m-dash]O and Mo-Mo bond orders and suggest that the new dimeric compounds are best viewed as Mo(v)-Mo(i) mixed-valence systems. The electrochemical properties of 1 have been investigated by CV and show a reversible one-electron reduction associated with the Mo(v) centre, while two closely spaced irreversible oxidation waves are tentatively assigned to oxidation of the Mo(i) centre of the two isomers as supported by DFT calculations.
Collapse
Affiliation(s)
- Mohd Rezaul Haque
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Synthesis, crystal structure, theoretical studies and biological properties of three novel trigonal prismatic Co(II), Ni(II) and Cu(II) macroacyclic Schiff base complexes incorporating piperazine moiety. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
de Aguiar SRMM, Öztopcu Ö, Troiani A, de Petris G, Weil M, Stöger B, Pittenauer E, Allmaier G, Veiros LF, Kirchner K. Formation of Mono Oxo Molybdenum(IV) PNP Pincer Complexes: Interplay between Water and Molecular Oxygen. Eur J Inorg Chem 2018; 2018:876-884. [PMID: 31057330 PMCID: PMC6485545 DOI: 10.1002/ejic.201701413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/11/2022]
Abstract
The synthesis of cationic mono oxo MoIV PNP pincer complexes of the type [Mo(PNPMe-iPr)(O)X]+ (X = I, Br) from [Mo(PNPMe-iPr)(CO)X2] is described. These compounds are coordinatively unsaturated and feature a strong Mo≡O triple bond. The formation of these complexes proceeds via cationic 14e intermediates [Mo(PNPMe-iPr)(CO)X]+ and requires both molecular oxygen and water. ESI MS measurements with 18O labeled water (H2 18O) and molecular oxygen (18O2) indicates that water plays a crucial role in the formation of the Mo≡O bond. A plausible mechanism based on DFT calculations is provided. The X-ray structure of [Mo(PNPMe-iPr)(O)I]SbF6 is presented.
Collapse
Affiliation(s)
- Sara R. M. M. de Aguiar
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Özgür Öztopcu
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Anna Troiani
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità di Roma “La Sapienza”P. le Aldo Moro 500185RomaItaly
| | - Giulia de Petris
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità di Roma “La Sapienza”P. le Aldo Moro 500185RomaItaly
| | - Matthias Weil
- Institute of Chemical Technologies and AnalyticsVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Berthold Stöger
- X‐ray CenterVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and AnalyticsVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Günter Allmaier
- Institute of Chemical Technologies and AnalyticsVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Luis F. Veiros
- Centro de Química EstruturalInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais No. 11049‐001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| |
Collapse
|
38
|
Maurya MR, Mengesha B, Uprety B, Jangra N, Tomar R, Avecilla F. Oxygen atom transfer between DMSO and benzoin catalyzed by cis-dioxidomolybdenum(vi) complexes of tetradentate Mannich bases. NEW J CHEM 2018. [DOI: 10.1039/c7nj03551a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dioxidomolybdenum(vi) complexes of tetradentate ONNO donor Mannich base ligands for the catalytic oxygen atom transfer between benzoin and DMSO are reported.
Collapse
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Bekele Mengesha
- Department of Chemistry, Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Bhawna Uprety
- Department of Chemistry, Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Nancy Jangra
- Department of Chemistry, Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Reshu Tomar
- Department of Chemistry, Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Fernando Avecilla
- Grupo Xenomar
- Centro de Investigacións Científicas Avanzadas (CICA)
- Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
| |
Collapse
|
39
|
Jiang Y, Zhang Y, Banks C, Heaven S, Longhurst P. Investigation of the impact of trace elements on anaerobic volatile fatty acid degradation using a fractional factorial experimental design. WATER RESEARCH 2017; 125:458-465. [PMID: 28898703 DOI: 10.1016/j.watres.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 05/28/2023]
Abstract
The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 26-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation.
Collapse
Affiliation(s)
- Ying Jiang
- Centre for Bioenergy & Resource Management, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| | - Yue Zhang
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charles Banks
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sonia Heaven
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Philip Longhurst
- Centre for Bioenergy & Resource Management, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
40
|
Yang J, Dong C, Kirk ML. Xanthine oxidase-product complexes probe the importance of substrate/product orientation along the reaction coordinate. Dalton Trans 2017; 46:13242-13250. [PMID: 28696463 PMCID: PMC5634921 DOI: 10.1039/c7dt01728f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A combination of reaction coordinate computations, resonance Raman spectroscopy, spectroscopic computations, and hydrogen bonding investigations have been used to understand the importance of substrate orientation along the xanthine oxidase reaction coordinate. Specifically, 4-thiolumazine and 2,4-dithiolumazine have been used as reducing substrates for xanthine oxidase to form stable enzyme-product charge transfer complexes suitable for spectroscopic study. Laser excitation into the near-infrared molybdenum-to-product charge transfer band produces rR enhancement patterns in the high frequency in-plane stretching region that directly probe the nature of this MLCT transition and provide insight into the effects of electron redistribution along the reaction coordinate between the transition state and the stable enzyme-product intermediate, including the role of the covalent Mo-O-C linkage in facilitating this process. The results clearly show that specific Mo-substrate orientations allow for enhanced electronic coupling and facilitate strong hydrogen bonding interactions with amino acid residues in the substrate binding pocket.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM87131-0001, USA.
| | | | | |
Collapse
|
41
|
Teoh WK, Salleh FM, Shahir S. Characterization of Thiomonas delicata arsenite oxidase expressed in Escherichia coli. 3 Biotech 2017; 7:97. [PMID: 28560637 DOI: 10.1007/s13205-017-0740-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/20/2017] [Indexed: 11/26/2022] Open
Abstract
Microbial arsenite oxidation is an essential biogeochemical process whereby more toxic arsenite is oxidized to the less toxic arsenate. Thiomonas strains represent an important arsenite oxidizer found ubiquitous in acid mine drainage. In the present study, the arsenite oxidase gene (aioBA) was cloned from Thiomonas delicata DSM 16361, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant Aio consisted of two subunits with the respective molecular weights of 91 and 21 kDa according to SDS-PAGE. Aio catalysis was optimum at pH 5.5 and 50-55 °C. Aio exhibited stability under acidic conditions (pH 2.5-6). The V max and K m values of the enzyme were found to be 4 µmol min-1 mg-1 and 14.2 µM, respectively. SDS and Triton X-100 were found to inhibit the enzyme activity. The homology model of Aio showed correlation with the acidophilic adaptation of the enzyme. This is the first characterization studies of Aio from a species belonging to the Thiomonas genus. The arsenite oxidase was found to be among the acid-tolerant Aio reported to date and has the potential to be used for biosensor and bioremediation applications in acidic environments.
Collapse
Affiliation(s)
- Wei Kheng Teoh
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Faezah Mohd Salleh
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Shafinaz Shahir
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
42
|
Perkhulyn NV, Rovenko BM, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Exposure to sodium molybdate results in mild oxidative stress in Drosophila melanogaster. Redox Rep 2017; 22:137-146. [PMID: 28245708 PMCID: PMC6837345 DOI: 10.1080/13510002.2017.1295898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES The study was conducted to assess the redox status of Drosophila flies upon oral intake of insulin-mimetic salt, sodium molybdate (Na2MoO4). METHODS Oxidative stress parameters and activities of antioxidant and associated enzymes were analyzed in two-day-old D. melanogaster insects after exposure of larvae and newly eclosed adults to three molybdate levels (0.025, 0.5, or 10 mM) in the food. RESULTS Molybdate increased content of low molecular mass thiols and activities of catalase, superoxide dismutase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase in males. The activities of these enzymes were not affected in females. Males exposed to molybdate demonstrated lower carbonyl protein levels than the control cohort, whereas females at the same conditions had higher carbonyl protein content and catalase activity than ones in the control cohort. The exposure to 10 mM sodium molybdate decreased the content of protein thiols in adult flies of both sexes. Sodium molybdate did not affect the activities of NADP-dependent malate dehydrogenase and thioredoxin reductase in males or NADP-dependent isocitrate dehydrogenase in either sex at any concentration. DISCUSSION Enhanced antioxidant capacity in upon Drosophila flies low molybdate levels in the food suggests that molybdate can be potentially useful for the treatment of certain pathologies associated with oxidative stress.
Collapse
Affiliation(s)
- Natalia V. Perkhulyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Bohdana M. Rovenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh V. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Janet M. Storey
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
43
|
Sproules S, Eagle AA, George GN, White JM, Young CG. Mononuclear Sulfido-Tungsten(V) Complexes: Completing the Tp*MEXY (M = Mo, W; E = O, S) Series. Inorg Chem 2017; 56:5189-5202. [DOI: 10.1021/acs.inorgchem.7b00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Aston A. Eagle
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Graham N. George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Jonathan M. White
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles G. Young
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
44
|
Romão MJ, Coelho C, Santos-Silva T, Foti A, Terao M, Garattini E, Leimkühler S. Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics. Curr Opin Chem Biol 2017; 37:39-47. [DOI: 10.1016/j.cbpa.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
45
|
Reschke S, Mebs S, Sigfridsson-Clauss KGV, Kositzki R, Leimkühler S, Haumann M. Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy. Inorg Chem 2017; 56:2165-2176. [DOI: 10.1021/acs.inorgchem.6b02846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stefan Reschke
- Institut für
Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Ramona Kositzki
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Silke Leimkühler
- Institut für
Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
46
|
Fogeron T, Retailleau P, Chamoreau LM, Fontecave M, Li Y. The unusual ring scission of a quinoxaline-pyran-fused dithiolene system related to molybdopterin. Dalton Trans 2017; 46:4161-4164. [DOI: 10.1039/c7dt00377c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of a bioinspired dithiolene system in acidic medium led to an unprecedented cleavage of the C–O bond in the pyran ring.
Collapse
Affiliation(s)
- Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques
- UMR 8229 CNRS
- Collège de France
- 75231 Paris Cedex 05
- France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles
- CNRS UPR 2301
- Université Paris-Saclay
- 91198 Gif-sur-Yvette
- France
| | - Lise-Marie Chamoreau
- Sorbonne Universités
- UPMC Université Paris 6
- Institut Parisien de Chimie Moléculaire
- UMR 8232 CNRS
- 75252 Paris Cedex 5
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques
- UMR 8229 CNRS
- Collège de France
- 75231 Paris Cedex 05
- France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques
- UMR 8229 CNRS
- Collège de France
- 75231 Paris Cedex 05
- France
| |
Collapse
|
47
|
Correia MAS, Otrelo-Cardoso AR, Schwuchow V, Sigfridsson Clauss KGV, Haumann M, Romão MJ, Leimkühler S, Santos-Silva T. The Escherichia coli Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes. ACS Chem Biol 2016; 11:2923-2935. [PMID: 27622978 DOI: 10.1021/acschembio.6b00572] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The xanthine oxidase (XO) family comprises molybdenum-dependent enzymes that usually form homodimers (or dimers of heterodimers/trimers) organized in three domains that harbor two [2Fe-2S] clusters, one FAD, and a Mo cofactor. In this work, we crystallized an unusual member of the family, the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli. This is the first example of an E. coli protein containing a molybdopterin-cytosine-dinucleotide cofactor and is the only heterotrimer of the XO family so far structurally characterized. The crystal structure revealed the presence of an unexpected [4Fe-4S] cluster, anchored to an additional 40 residues subdomain. According to phylogenetic analysis, proteins containing this cluster are widely spread in many bacteria phyla, putatively through repeated gene transfer events. The active site of PaoABC is highly exposed to the surface with no aromatic residues and an arginine (PaoC-R440) making a direct interaction with PaoC-E692, which acts as a base catalyst. In order to understand the importance of R440, kinetic assays were carried out, and the crystal structure of the PaoC-R440H variant was also determined.
Collapse
Affiliation(s)
- Márcia A. S. Correia
- UCIBIO/Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita Otrelo-Cardoso
- UCIBIO/Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Viola Schwuchow
- Institut
für Biologie und Biochemie, Universität Potsdam, Am Neuen Palais
10, 14469 Potsdam, Deutschland
| | | | - Michael Haumann
- Freie Universität Berlin, Fachbereich Physik, 14195 Berlin, Germany
| | - Maria João Romão
- UCIBIO/Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Silke Leimkühler
- Institut
für Biologie und Biochemie, Universität Potsdam, Am Neuen Palais
10, 14469 Potsdam, Deutschland
| | - Teresa Santos-Silva
- UCIBIO/Requimte,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
48
|
Saeednia S, Iranmanesh P, Ardakani MH, Ebadinejad N. Sonochemical and solvothermal synthesis of methanol {2-[(2-hydroxy-1,1-dimethyl-ethylimino)-methyl]phenolato}-dioxidomolybdenum(VI) complex and its decomposition to MoO3 nanoparticles. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476616050188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Wang J, Keceli G, Cao R, Su J, Mi Z. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism. Redox Rep 2016; 22:17-25. [PMID: 27686142 DOI: 10.1080/13510002.2016.1206175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. BACKGROUND Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. METHODS We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. RESULTS UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. CONCLUSIONS To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| | - Gizem Keceli
- b Department of Chemistry , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Rui Cao
- b Department of Chemistry , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Jiangtao Su
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| | - Zhiyuan Mi
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| |
Collapse
|
50
|
|