1
|
Lu X, Yuan B, Liu Y, Liu LX, Zhu JJ. Bioinspired molecule-functionalized Cu with high CO adsorption for efficient CO electroreduction to acetate. Dalton Trans 2024; 53:10919-10927. [PMID: 38888145 DOI: 10.1039/d4dt01293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2) or carbon monoxide (CO) to valuable multi-carbon (C2+) products like acetate is a promising approach for a sustainable energy economy. However, it is still challenging to achieve high activity and selectivity for acetate production, especially in neutral electrolytes. Herein, a bioinspired hemin/Cu hybrid catalyst was developed to enhance the surface *CO coverage for highly efficient electroreduction of CO to acetate fuels. The hemin/Cu electrocatalyst exhibits a remarkable faradaic efficiency of 45.2% for CO-to-acetate electroreduction and a high acetate partial current density of 152.3 mA cm-2. Furthermore, the developed hybrid catalyst can operate stably at 200 mA cm-2 for 14.6 hours, producing concentrated acetate aqueous solutions (0.235 M, 2.1 wt%). The results of in situ Raman spectroscopy and theoretical calculations proved that the Fe-N4 structure of hemin could enhance the CO adsorption and enrich the local concentration of CO, thereby improving C-C coupling for acetate production. In addition, compared to the unmodified Cu catalysts, the Cu catalysts functionalized with cobalt phthalocyanine with a Co-N4 structure also exhibit improved acetate performance, proving the universality of this bioinspired molecule-enhanced strategy. This work paves a new way to designing bioinspired electrolysis systems for producing specific C2+ products from CO2 or CO electroreduction.
Collapse
Affiliation(s)
- Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Baozhen Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Li-Xia Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Samanta S, Sengupta S, Biswas S, Ghosh S, Barman S, Dey A. Iron Dioxygen Adduct Formed during Electrochemical Oxygen Reduction by Iron Porphyrins Shows Catalytic Heme Dioxygenase Reactivity. J Am Chem Soc 2023; 145:26477-26486. [PMID: 37993986 DOI: 10.1021/jacs.3c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Heme dioxygenases oxidize the indole ring of tryptophan to kynurenine which is the first step in the biosynthesis of several important biomolecules like NAD, xanthurenic acid, and picolinic acid. A ferrous heme dioxygen adduct (or FeIII-O2•-) is the oxidant, and both the atoms of O2 are inserted in the product and its catalytic function has been difficult to emulate as it is complicated by competing rapid reactions like auto-oxidation and/or formation of the μ-oxo dimer. In situ resonance Raman spectroscopy technique, SERRS-RDE, is used to probe the species accumulated during electrochemical ORR catalyzed by site-isolated imidazole-bound iron porphyrin installed on a self-assembled monolayer covered electrode. These in situ SERRS-RDE data using labeled O2 show that indeed a FeIII-O2•- species accumulate on the electrode during ORR between -0.05 and -0.30 V versus Ag/AgCl (satd. KCl) and is reduced by proton coupled electron transfer to a FeIII-OOH species which, on the other hand, builds up on the electrode between -0.20 and -0.40 V versus Ag/AgCl (satd. KCl). This FeIII-OOH species then gives way to a FeIV═O species, which accumulates at -0.50 V versus Ag/AgCl (satd. KCl). When 2,3-dimethylindole is present in the solution and the applied potential is held in the range where FeIII-O2•- species accumulate, it gets oxidized to N-(2-acetylphenyl)acetamide retaining both the oxygens from O2 mimicking the reaction of heme dioxygenases. Turnover numbers more than 104 are recorded, establishing this imidazole-bound ferrous porphyrin as a functional model of heme dioxygenases.
Collapse
Affiliation(s)
- Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Srijan Sengupta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Saptarshi Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sucheta Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sudip Barman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
3
|
Panda S, Phan H, Karlin KD. Heme-copper and Heme O 2-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry. J Inorg Biochem 2023; 249:112367. [PMID: 37742491 PMCID: PMC10615892 DOI: 10.1016/j.jinorgbio.2023.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Cytochrome c oxidase (CcO), also widely known as mitochondrial electron-transport-chain complex IV, is a multi-subunit transmembrane protein responsible for catalyzing the last step of the electron transport chain, dioxygen reduction to water, which is essential to the establishment and maintenance of the membrane proton gradient that drives ATP synthesis. Although many intermediates in the CcO catalytic cycle have been spectroscopically and/or computationally authenticated, the specifics regarding the IP intermediate, hypothesized to be a heme-Cu (hydro)peroxo species whose O-O bond homolysis is supported by a hydrogen-bonding network of water molecules, are largely obscured by the fast kinetics of the A (FeIII-O2•-/CuI/Tyr) → PM (FeIV=O/CuII-OH/Tyr•) step. In this review, we have focused on the recent advancements in the design, development, and characterization of synthetic heme-peroxo‑copper model complexes, which can circumvent the abovementioned limitation, for the investigation of the formation of IP and its O-O cleavage chemistry. Novel findings regarding (a) proton and electron transfer (PT/ET) processes, together with their contributions to exogenous phenol induced O-O cleavage, (b) the stereo-electronic tunability of the secondary coordination sphere (especially hydrogen-bonding) on the geometric and spin state alteration of the heme-peroxo‑copper unit, and (c) a plausible mechanism for the Tyr-His cofactor biogenesis, are discussed in great detail. Additionally, since the ferric-superoxide and the ferryl-oxo (Compound II) species are critically involved in the CcO catalytic cycle, this review also highlights a few fundamental aspects of these heme-only (i.e., without copper) species, including the structural and reactivity influences of electron-donating trans-axial ligands and Lewis acid-promoted H-bonding.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Zhang HT, Xie F, Guo YH, Xiao Y, Zhang MT. Selective Four-Electron Reduction of Oxygen by a Nonheme Heterobimetallic CuFe Complex. Angew Chem Int Ed Engl 2023; 62:e202310775. [PMID: 37837365 DOI: 10.1002/anie.202310775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
We report herein the first nonheme CuFe oxygen reduction catalyst ([CuII (bpbp)(μ-OAc)2 FeIII ]2+ , CuFe-OAc), which serves as a functional model of cytochrome c oxidase and can catalyze oxygen reduction to water with a turnover frequency of 2.4×103 s-1 and selectivity of 96.0 % in the presence of Et3 NH+ . This performance significantly outcompetes its homobimetallic analogues (2.7 s-1 of CuCu-OAc with %H2 O2 selectivity of 98.9 %, and inactive of FeFe-OAc) under the same conditions. Structure-activity relationship studies, in combination with density functional theory calculation, show that the CuFe center efficiently mediates O-O bond cleavage via a CuII (μ-η1 : η2 -O2 )FeIII peroxo intermediate in which the peroxo ligand possesses distinctive coordinating and electronic character. Our work sheds light on the nature of Cu/Fe heterobimetallic cooperation in oxygen reduction catalysis and demonstrates the potential of this synergistic effect in the design of nonheme oxygen reduction catalysts.
Collapse
Affiliation(s)
- Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fei Xie
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Hua Guo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yao Xiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Muneyasu R, Yamada T, Akai-Kasaya M, Kato HS. Self-assembly of heterogeneous bilayers stratified by Au-S and hydrogen bonds on Au(111). Phys Chem Chem Phys 2022; 24:22222-22230. [PMID: 36097862 DOI: 10.1039/d2cp03356a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of heterogeneous bilayers on Au substrates was investigated using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRAS). The formation of a well-defined bilayer including different types of functional groups would be one of the desired goals to create varying surface functionalities. In this study, we examined the assembly of a hydrogen-bonded molecular layer to another functional alkanethiolate self-assembled monolayer (SAM) on the Au(111) surface. The chemical properties and bond strength of the hydrogen bonds at the interlayer differ from those of the Au-S bonds at the anchor of thiolate SAMs, therefore the adsorbed molecules are expected to form a stratified bilayer. In this study, on one hand, we revealed that imidazole-terminated alkanethiolate SAMs (Im-SAMs) have an atomically smooth topography but chemically inhomogeneous Au-S anchors, rather incomplete than n-alkanethiolate SAMs, on the Au(111) surface. On the other hand, we confirmed the self-assembly of the heterogeneous bilayers including Im-SAMs on the Au(111) surface, even in a mixed solution containing two types of molecules. These results show that the self-assembly of the bilayer stratified by H bonds and Au-S bonds is flexible and adaptable.
Collapse
Affiliation(s)
- Riku Muneyasu
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Yamada
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Megumi Akai-Kasaya
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyuki S Kato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Marianov AN, Kochubei AS, Gu S, Jiang Y. Charge-Transfer Mechanism in Oxygen Reduction over Co Porphyrins: Single-Site Molecular Electrocatalysts to Macromolecular Frameworks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Alena S. Kochubei
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Shengshen Gu
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
8
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
9
|
Kamyabi MA, Amirkhani F, Bikas R, Soleymani-Bonoti F. Experimental and density functional theory study of oxygen reduction reaction at liquid-liquid interface by oxidovanadium(IV)-4-methyl salophen complex. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Wang J, Vilà N, Walcarius A. Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Fan L, Dai J, Huang Z, Xiao J, Li Q, Huang J, Zhou SF, Zhan G. Biomimetic Au/CeO 2 Catalysts Decorated with Hemin or Ferrous Phthalocyanine for Improved CO Oxidation via Local Synergistic Effects. iScience 2020; 23:101852. [PMID: 33313493 PMCID: PMC7721650 DOI: 10.1016/j.isci.2020.101852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Biomimetic catalysts have drawn broad research interest owing to both high specificity and excellent catalytic activity. Herein, we report a series of biomimetic catalysts by the integration of biomolecules (hemin or ferrous phthalocyanine) onto well-defined Au/CeO2, which leads to the high-performance CO oxidation catalysts. Strong electronic interactions among the biomolecule, Au, and CeO2 were confirmed, and the CO uptake over hemin-Au/CeO2 was roughly about 8 times greater than Au/CeO2. Based on the Au/CeO2(111) and hemin-Au/CeO2(111) models, the density functional theory calculations reveal the mechanisms of the biomolecules-assisted catalysis process. The theoretical prediction suggests that CO and O2 molecules preferentially bind to the surface of noncontacting Au atoms (low-coordinated sites) rather than the biomolecule sites, and the accelerating oxidation of Au-bound CO occurs via either the Langmuir-Hinshelwood mechanism or the Mars-van Krevelen mechanism. Accordingly, the findings provide useful insights into developing biomimetic catalysts with low cost and high activity.
Collapse
Affiliation(s)
- Longlong Fan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, Fujian, 361005, P. R. China
| | - Zhongliang Huang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| | - Jingran Xiao
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, Fujian, 361005, P. R. China.,College of Food and Biology Engineering, Jimei University, Xiamen, Fujian 361021, P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, Fujian, 361005, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
12
|
Mechanistic study in azide-alkyne cycloaddition (CuAAC) catalyzed by bifunctional trinuclear copper(I) pyrazolate complex: Shift in rate-determining step. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Fies WA, First JT, Dugger JW, Doucet M, Browning JF, Webb LJ. Quantifying the Extent of Hydration of a Surface-Bound Peptide Using Neutron Reflectometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:637-649. [PMID: 31846580 DOI: 10.1021/acs.langmuir.9b02559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Establishing how water, or the absence of water, affects the structure, dynamics, and function of proteins in contact with inorganic surfaces is critical to developing successful protein immobilization strategies. In the present article, the quantity of water hydrating a monolayer of helical peptides covalently attached to self-assembled monolayers (SAMs) of alkyl thiols on Au was measured using neutron reflectometry (NR). The peptide sequence was composed of repeating LLKK units in which the leucines were aligned to face the SAM. When immersed in water, NR measured 2.7 ± 0.9 water molecules per thiol in the SAM layer and between 75 ± 13 and 111 ± 13 waters around each peptide. The quantity of water in the SAM was nearly twice that measured prior to peptide functionalization, suggesting that the peptide disrupted the structure of the SAM. To identify the location of water molecules around the peptide, we compared our NR data to previously published molecular dynamics simulations of the same peptide on a hydrophobic SAM in water, revealing that 49 ± 5 of 95 ± 8 total nearby water molecules were directly hydrogen-bound to the peptide. Finally, we show that immersing the peptide in water compressed its structure into the SAM surface. Together, these results demonstrate that there is sufficient water to fully hydrate a surface-bound peptide even at hydrophobic interfaces. Given the critical role that water plays in biomolecular structure and function, these results are expected to be informative for a broad array of applications involving proteins at the bio/abio interface.
Collapse
Affiliation(s)
- Whitney A Fies
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 2506 Speedway STOP A5300 , Austin , Texas 78712 , United States
| | - Jeremy T First
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 2506 Speedway STOP A5300 , Austin , Texas 78712 , United States
| | - Jason W Dugger
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Mathieu Doucet
- Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - James F Browning
- Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Lauren J Webb
- Department of Chemistry and Texas Materials Institute , The University of Texas at Austin , 2506 Speedway STOP A5300 , Austin , Texas 78712 , United States
| |
Collapse
|
14
|
Maiti S, Roy N, Babu LT, Moharana P, Athira CC, Darsana Sreedhar E, De S, Ashok Kumar SK, Paira P. Cu(ii), Ir(i) and CuO nanocatalyzed mild synthesis of luminescent symmetrical and unsymmetrical bis(triazolylmethyl)quinoxalines: biocompatibility, cytotoxicity, live cell imaging and biomolecular interaction. NEW J CHEM 2020. [DOI: 10.1039/c9nj03131f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A microwave induced Cu(ii) and Ir(i) catalysed click reaction for the synthesis of anticancer symmetrical and unsymmetrical triazoles.
Collapse
Affiliation(s)
- Santanu Maiti
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Nilmadhab Roy
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | | | - Prithvi Moharana
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - C. C. Athira
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | | | - Sourav De
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - S. K. Ashok Kumar
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| | - Priyankar Paira
- Department of Chemistry
- School of Advanced Sciences
- VIT
- Vellore-632014
- India
| |
Collapse
|
15
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Bhunia S, Rana A, Roy P, Martin DJ, Pegis ML, Roy B, Dey A. Rational Design of Mononuclear Iron Porphyrins for Facile and Selective 4e -/4H + O 2 Reduction: Activation of O-O Bond by 2nd Sphere Hydrogen Bonding. J Am Chem Soc 2018; 140:9444-9457. [PMID: 29975839 DOI: 10.1021/jacs.8b02983] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facile and selective 4e-/4H+ electrochemical reduction of O2 to H2O in aqueous medium has been a sought-after goal for several decades. Elegant but synthetically demanding cytochrome c oxidase mimics have demonstrated selective 4e-/4H+ electrochemical O2 reduction to H2O is possible with rate constants as fast as 105 M-1 s-1 under heterogeneous conditions in aqueous media. Over the past few years, in situ mechanistic investigations on iron porphyrin complexes adsorbed on electrodes have revealed that the rate and selectivity of this multielectron and multiproton process is governed by the reactivity of a ferric hydroperoxide intermediate. The barrier of O-O bond cleavage determines the overall rate of O2 reduction and the site of protonation determines the selectivity. In this report, a series of mononuclear iron porphyrin complexes are rationally designed to achieve efficient O-O bond activation and site-selective proton transfer to effect facile and selective electrochemical reduction of O2 to water. Indeed, these crystallographically characterized complexes accomplish facile and selective reduction of O2 with rate constants >107 M-1 s-1 while retaining >95% selectivity when adsorbed on electrode surfaces (EPG) in water. These oxygen reduction reaction rate constants are 2 orders of magnitude faster than all known heme/Cu complexes and these complexes retain >90% selectivity even under rate determining electron transfer conditions that generally can only be achieved by installing additional redox active groups in the catalyst.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Atanu Rana
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Pronay Roy
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Daniel J Martin
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Michael L Pegis
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bijan Roy
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Abhishek Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| |
Collapse
|
17
|
Ménand M, Sollogoub M, Boitrel B, Le Gac S. Cyclodextrin-Sandwiched Hexaphyrin Hybrids: Side-to-Side Cavity Coupling Switched by a Temperature- and Redox-Responsive Central Device. Chemistry 2018; 24:5804-5812. [DOI: 10.1002/chem.201705958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Mickaël Ménand
- Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, UPMC Univ Paris 06, CNRS; Sorbonne Université; 4 place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, UPMC Univ Paris 06, CNRS; Sorbonne Université; 4 place Jussieu 75005 Paris France
| | - Bernard Boitrel
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226; Université de Rennes 1; 263 av. du General Leclerc 35042 Rennes cedex France
| | - Stéphane Le Gac
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226; Université de Rennes 1; 263 av. du General Leclerc 35042 Rennes cedex France
| |
Collapse
|
18
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
19
|
Vorburger P, Lo M, Choua S, Bernard M, Melin F, Oueslati N, Boudon C, Elhabiri M, Wytko JA, Hellwig P, Weiss J. A question of flexibility in cytochrome c oxidase models. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Madasu M, Hsia CF, Huang MH. Au-Cu core-shell nanocube-catalyzed click reactions for efficient synthesis of diverse triazoles. NANOSCALE 2017; 9:6970-6974. [PMID: 28517020 DOI: 10.1039/c7nr02466e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Au-Cu core-shell nanocubes and octahedra synthesized in aqueous solution were employed to catalyze a 1,3-dipolar cycloaddition reaction between phenylacetylene and benzyl azide in water at 50 °C for 3 h. Interestingly, the nanocubes were far more efficient in catalyzing this reaction, giving 91% yield of a regioselective 1,4-triazole product, while octahedra only recorded 46% yield. The Au-Cu nanocubes were subsequently employed to catalyze the click reaction between benzyl azide and a broad range of aromatic and aliphatic alkynes. The product yields ranged from 78 to 99%. Clearly the Au-Cu cubes exposing {100} surfaces are an excellent and green catalyst for click reactions.
Collapse
Affiliation(s)
- Mahesh Madasu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | |
Collapse
|
21
|
Zhang L, Vilà N, Kohring GW, Walcarius A, Etienne M. Covalent Immobilization of (2,2′-Bipyridyl) (Pentamethylcyclopentadienyl)-Rhodium Complex on a Porous Carbon Electrode for Efficient Electrocatalytic NADH Regeneration. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00128] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Zhang
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR7564 CNRS−Université de Lorraine, 405 rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France
| | - Neus Vilà
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR7564 CNRS−Université de Lorraine, 405 rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France
| | - Gert-Wieland Kohring
- Microbiology, Saarland University, Campus, Geb. A1.5, D-66123 Saarbruecken, Germany
| | - Alain Walcarius
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR7564 CNRS−Université de Lorraine, 405 rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France
| | - Mathieu Etienne
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR7564 CNRS−Université de Lorraine, 405 rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France
| |
Collapse
|
22
|
Chen QF, Zhao X, Liu Q, Jia JD, Qiu XT, Song YL, Young DJ, Zhang WH, Lang JP. Tungsten(VI)-Copper(I)-Sulfur Cluster-Supported Metal-Organic Frameworks Bridged by in Situ Click-Formed Tetrazolate Ligands. Inorg Chem 2017; 56:5669-5679. [PMID: 28443668 DOI: 10.1021/acs.inorgchem.7b00261] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six analogous two-dimensional (2D) [Tp*WS3Cu3]-based (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) networks, namely, {[(Tp*WS3Cu3)2L3](μ3-N3)}n (2: L = 5-methyltetrazolate (Mtta); 3a: L = 5-ethyltetrazolate (Etta)) and {[(Tp*WS3Cu3)2L3]BF4}n (3b: L = Etta; 4: L = 5-propyltetrazolate (Ptta); 5: L = 5-butyltetrazolate (Btta); 6: L = 5-pentyltetrazolate (Petta)) were synthesized by reactions of [Et4N][Tp*WS3] (1), [Cu(CH3CN)4]BF4, NaN3, and NH4BF4 in different nitrile solvents (CH3(CH2)nCN, n = 0, 1, 2, 3, and 4) under solvothermal conditions. In the structures of 2-6, each alkyl tetrazolate L as a bridging ligand was generated in situ from the "click" reaction between azide and nitrile. These 2D (6,3) networks support two types of voids wherein the pendant alkyl groups are accommodated. A tetrahedron cage-like cluster [Tp*W(μ3-S)3(μ3-S')Cu3]4 (7) was also formed in some of the above reactions and can be readily separated by solvent extraction. The proportion of 7 increased with the elongation of the alkyl chains and finally became the exclusive product when heptylnitrile was employed. Further use of CuCN as a surrogate for [Cu(CH3CN)4]BF4 with the aim of introducing additional CN bridges into the network led us to isolate a tetrazolate-free compound, {[Et4N]{(Tp*WS3Cu3)[Cu2(CN)4.5]}2·2PhCH2CN}n (8·2PhCH2CN), a unique 2D network that features {(Tp*WS3Cu3)[Cu2(CN)5]}22-, {(Tp*WS3Cu3)3[Cu3(CN)7]2[Cu(CN)3]}4-, and {(Tp*WS3Cu3)[Cu4(CN)9]}26- ring subunits. Compounds 5-8 are soluble in DMF and exhibit a reverse saturable absorption and self-focusing third-order nonlinear optical (NLO) effect at 532 nm with hyperpolarizability γ values in the range of 4.43 × 10-30 to 5.40 × 10-30 esu, which are 400-500 times larger than that of their precursor 1. The results provide an interesting insight into the synergetic synthetic strategy related to the assembly of the [Tp*WS3Cu3]2+ cluster core, the "click" formation of the tetrazolate ligands, and the construction of the [Tp*WS3Cu3]2+ cluster-based 2D networks.
Collapse
Affiliation(s)
- Qiu-Fang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, Jiangsu, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, People's Republic of China
| | - Xin Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, Jiangsu, People's Republic of China
| | - Quan Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, Jiangsu, People's Republic of China
| | - Ji-Dong Jia
- School of Physical Science and Technology, Soochow University , Suzhou 215006, Jiangsu, People's Republic of China
| | - Xiao-Ting Qiu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, Jiangsu, People's Republic of China
| | - Ying-Lin Song
- School of Physical Science and Technology, Soochow University , Suzhou 215006, Jiangsu, People's Republic of China
| | - David James Young
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast , Maroochydore, Queensland 4558, Australia
| | - Wen-Hua Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, Jiangsu, People's Republic of China
| | - Jian-Ping Lang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, Jiangsu, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, People's Republic of China
| |
Collapse
|
23
|
Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chem Rev 2017; 117:2059-2107. [PMID: 28103018 PMCID: PMC5963733 DOI: 10.1021/acs.chemrev.6b00636] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A longstanding research goal has been to understand the nature and role of copper-oxygen intermediates within copper-containing enzymes and abiological catalysts. Synthetic chemistry has played a pivotal role in highlighting the viability of proposed intermediates and expanding the library of known copper-oxygen cores. In addition to the number of new complexes that have been synthesized since the previous reviews on this topic in this journal (Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013-1046 and Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076), the field has seen significant expansion in the (1) range of cores synthesized and characterized, (2) amount of mechanistic work performed, particularly in the area of organic substrate oxidation, and (3) use of computational methods for both the corroboration and prediction of proposed intermediates. The scope of this review has been limited to well-characterized examples of copper-oxygen species but seeks to provide a thorough picture of the spectroscopic characteristics and reactivity trends of the copper-oxygen cores discussed.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Nicole L Gagnon
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin D Neisen
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Debanjan Dhar
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andrew D Spaeth
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Gereon M Yee
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Mase K, Aoi S, Ohkubo K, Fukuzumi S. Catalytic reduction of proton, oxygen and carbon dioxide with cobalt macrocyclic complexes. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616300111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conversion of solar energy into chemical energy by the reduction of small molecules provides a promising solution for the effective energy storage and transport. In this manuscript, we have highlighted our recent researches on the catalysis of cobalt-macrocycle complexes for the reduction of O2, proton and CO2. We have successfully clarified the reaction mechanisms of catalytic O2 reduction with cobalt phthalocyanine (Co[Formula: see text](Pc)) and cobalt chlorin (Co[Formula: see text](Ch)) based on detailed kinetic study under homogeneous conditions. The presence of proton-accepting moieties on these macrocyclic ligands enhances the electron-accepting ability, leading to the efficient catalytic two-electron reduction of O2 to produce hydrogen peroxide (H2O[Formula: see text] with high stability and less overpotential in acidic solutions. When Co[Formula: see text](Ch) is adsorbed on multi-walled carbon nanotubes (MWCNTs) and employed as an electrocatalyst, CO2 was successfully reduced to form CO with a Faradaic efficiency of 89% at an applied potential of -1.1 V vs. NHE in an aqueous solution. Finally, photocatalytic H2 evolution was attained from ascorbic acid with Co[Formula: see text](Ch) as a catalyst and [Ru(bpy)3][Formula: see text] (bpy [Formula: see text] 2,2[Formula: see text]-bipyridine) as a photocatalyst via a one-photon two-electron process.
Collapse
Affiliation(s)
- Kentaro Mase
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shoko Aoi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Division of Innovative Research for Drug Design, Institute of Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
25
|
Le Gac S, Boitrel B. Structurally characterized bimetallic porphyrin complexes of Pb, Bi, Hg and Tl based on unusual coordination modes. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616300068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This minireview highlights the unusual coordination geometries observed in bimetallic complexes of mercury, thallium, lead and bismuth. These bimetallic complexes remain scarce and through an analysis of their X-ray structures, the various structural features that favorise them will be underlined.
Collapse
Affiliation(s)
- Stéphane Le Gac
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes1, F-35042 Rennes Cedex, France
| | - Bernard Boitrel
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes1, F-35042 Rennes Cedex, France
| |
Collapse
|
26
|
Synthesis of N-2-aryl-substituted 1,2,3-triazoles mediated by magnetic and recoverable CuFe2O4 nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2457-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Yu Y, Cui C, Liu X, Petrik ID, Wang J, Lu Y. A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme. J Am Chem Soc 2015; 137:11570-3. [PMID: 26318313 PMCID: PMC4676421 DOI: 10.1021/jacs.5b07119] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Terminal
oxidases catalyze four-electron reduction of oxygen to
water, and the energy harvested is utilized to drive the synthesis
of adenosine triphosphate. While much effort has been made to design
a catalyst mimicking the function of terminal oxidases, most biomimetic
catalysts have much lower activity than native oxidases. Herein we
report a designed oxidase in myoglobin with an O2 reduction
rate (52 s–1) comparable to that of a native cytochrome
(cyt) cbb3 oxidase (50 s–1) under identical conditions. We achieved this goal by engineering
more favorable electrostatic interactions between a functional oxidase
model designed in sperm whale myoglobin and its native redox partner,
cyt b5, resulting in a 400-fold electron
transfer (ET) rate enhancement. Achieving high activity equivalent
to that of native enzymes in a designed metalloenzyme offers deeper
insight into the roles of tunable processes such as ET in oxidase
activity and enzymatic function and may extend into applications such
as more efficient oxygen reduction reaction catalysts for biofuel
cells.
Collapse
Affiliation(s)
| | | | - Xiaohong Liu
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| | | | - Jiangyun Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| | | |
Collapse
|
28
|
Decréau RA, Collman JP. Three toxic gases meet in the mitochondria. Front Physiol 2015; 6:210. [PMID: 26347655 PMCID: PMC4542460 DOI: 10.3389/fphys.2015.00210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022] Open
Abstract
The rationale of the study was two-fold: (i) develop a functional synthetic model of the Cytochrome c oxidase (CcO) active site, (ii) use it as a convenient tool to understand or predict the outcome of the reaction of CcO with ligands (physiologically relevant gases and other ligands). At physiological pH and potential, the model catalyzes the 4-electron reduction of oxygen. This model was immobilized on self-assembled-monolayer (SAM) modified electrode. During catalytic oxygen reduction, electron delivery through SAMs is rate limiting, similar to the situation in CcO. This model contains all three redox-active components in CcO's active site, which are required to minimize the production of partially-reduced-oxygen-species (PROS): Fe-heme (“heme a3”) in a myoglobin-like model fitted with a proximal imidazole ligand, and a distal tris-imidazole Copper (“CuB”) complex, where one imidazole is cross-linked to a phenol (mimicking “Tyr244”). This functional CcO model demonstrates how CcO itself might tolerate the hormone NO (which diffuses through the mitochondria). It is proposed that CuB delivers superoxide to NO bound to Fe-heme forming peroxynitrite, then nitrate that diffuses away. Another toxic gas, H2S, has exceptional biological effects: at ~80 ppm, H2S induces a state similar to hibernation in mice, lowering the animal's temperature and slowing respiration. Using our functional CcO model, we have demonstrated that at the same concentration range H2S can reversibly inhibit catalytic oxygen reduction. Such a reversible catalytic process on the model was also demonstrated with an organic compound, tetrazole (TZ). Following studies showed that TZ reversibly inhibits respiration in isolated mitochondria, and induces deactivation of platelets, a mitochondria-rich key component of blood coagulation. Hence, this program is a rare example illustrating the use of a functional model to understand and predict physiologically important reactions at the active site of CcO.
Collapse
Affiliation(s)
- Richard A Decréau
- Department of Chemistry (ICMUB Institute), University of Burgundy Franche-Comté Dijon, France ; Department of Chemistry, Stanford University Stanford, CA, USA
| | - James P Collman
- Department of Chemistry, Stanford University Stanford, CA, USA
| |
Collapse
|
29
|
Huang N, Zhang S, Yang L, Liu M, Li H, Zhang Y, Yao S. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application. ACS APPLIED MATERIALS & INTERFACES 2015. [PMID: 26222894 DOI: 10.1021/acsami.5b04597] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, a new strategy for the construction of multifunctional electrochemical detection platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide was first proposed. Inspired by the mussel adhesion proteins, 3,4-dihydroxyphenylalanine (DA) was selected as a reducing agent to simultaneously reduce graphene oxide and self-polymerize to obtain the polydopamine-reduced graphene oxide (PDA-rGO). The PDA-rGO was then functionalized with thiols and amines by the reaction of thiol/amino groups with quinine groups of PDA-rGO via the Michael addition/Schiff base reaction. Several typical compounds containing thiol and/or amino groups such as 1-[(4-amino)phenylethynyl] ferrocene (Fc-NH2), cysteine (cys), and glucose oxidase (GOx) were selected as the model molecules to anchor on the surface of PDA-rGO using the strategy for construction of multifunctional electrochemical platforms. The experiments revealed that the composite grafted with ferrocene derivative shows excellent catalysis activity toward many electroactive molecules and could be used for individual or simultaneous detection of dopamine hydrochloride (DA) and uric acid (UA), or hydroquinone (HQ) and catechol (CC), while, after grafting of cysteine on PDA-rGO, simultaneous discrimination detection of Pb(2+) and Cd(2+) was realized on the composite modified electrode. In addition, direct electron transfer of GOx can be observed when GOx-PDA-rGO was immobilized on glassy carbon electrode (GCE). When glucose was added into the system, the modified electrode showed excellent electric current response toward glucose. These results inferred that the proposed multifunctional electrochemical platforms could be simply, conveniently, and effectively regulated through changing the anchored recognition or reaction groups. This study would provide a versatile method to design more detection or biosensing platforms through a chemical reaction strategy in the future.
Collapse
Affiliation(s)
- Na Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Si Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Liuqing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
30
|
Mase K, Ohkubo K, Xue Z, Yamada H, Fukuzumi S. Catalytic two-electron reduction of dioxygen catalysed by metal-free [14]triphyrin(2.1.1). Chem Sci 2015; 6:6496-6504. [PMID: 30090268 PMCID: PMC6054055 DOI: 10.1039/c5sc02465j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/02/2015] [Indexed: 02/01/2023] Open
Abstract
The catalytic two-electron reduction of dioxygen (O2) by octamethylferrocene (Me8Fc) occurs with a metal-free triphyrin (HTrip) in the presence of perchloric acid (HClO4) in benzonitrile (PhCN) at 298 K to yield Me8Fc+ and H2O2. Detailed kinetic analysis has revealed that the catalytic two-electron reduction of O2 by Me8Fc with HTrip proceeds via proton-coupled electron transfer from Me8Fc to HTrip to produce H3Trip˙+, followed by a second electron transfer from Me8Fc to H3Trip˙+ to produce H3Trip, which is oxidized by O2via formation of the H3Trip/O2 complex to yield H2O2. The rate-determining step in the catalytic cycle is hydrogen atom transfer from H3Trip to O2 in the H3Trip/O2 complex to produce the radical pair (H3Trip˙+ HO2˙) as an intermediate, which was detected as a triplet EPR signal with fine-structure by the EPR measurements at low temperature. The distance between the two unpaired electrons in the radical pair was determined to be 4.9 Å from the zero-field splitting constant (D).
Collapse
Affiliation(s)
- Kentaro Mase
- Department of Material and Life Science , Graduate School of Engineering , ALCA and SENTAN , Japan Science and Technology Agency (JST) , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Kei Ohkubo
- Department of Material and Life Science , Graduate School of Engineering , ALCA and SENTAN , Japan Science and Technology Agency (JST) , Osaka University , Suita , Osaka 565-0871 , Japan . .,Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Zhaoli Xue
- Graduate School of Materials Science , Nara Institute of Science and Technology , CREST , Japan Science and Technology Agency (JST) , Ikoma , Nara 630-0192 , Japan .
| | - Hiroko Yamada
- Graduate School of Materials Science , Nara Institute of Science and Technology , CREST , Japan Science and Technology Agency (JST) , Ikoma , Nara 630-0192 , Japan .
| | - Shunichi Fukuzumi
- Department of Material and Life Science , Graduate School of Engineering , ALCA and SENTAN , Japan Science and Technology Agency (JST) , Osaka University , Suita , Osaka 565-0871 , Japan . .,Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea.,Faculty of Science and Engineering , ALCA , SENTAN , Japan Science and Technology Agency (JST) , Meijo University , Nagoya , Aichi 468-0073 , Japan
| |
Collapse
|
31
|
Nekoueian K, Hotchen CE, Amiri M, Sillanpää M, Nelson GW, Foord JS, Holdway P, Buchard A, Parker SC, Marken F. Interfacial electron-shuttling processes across KolliphorEL monolayer grafted electrodes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15458-15465. [PMID: 26104182 DOI: 10.1021/acsami.5b03654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Covalently grafted KolliphorEL (a poly(ethylene glycol)-based transporter molecule for hydrophobic water-insoluble drugs; MW, ca. 2486; diameter, ca. 3 nm) at the surface of a glassy-carbon electrode strongly affects the rate of electron transfer for aqueous redox systems such as Fe(CN)6(3-/4-). XPS data confirm monolayer grafting after electrochemical anodization in pure KolliphorEL. On the basis of voltammetry and impedance measurements, the charge transfer process for the Fe(CN)6(3-/4-) probe molecule is completely blocked after KolliphorEL grafting and in the absence of a "guest". However, in the presence of low concentrations of suitable ferrocene derivatives as guests, mediated electron transfer across the monolayer via a shuttle mechanism is observed. The resulting amplification of the ferrocene electroanalytical signal is investigated systematically and compared for five ferrocene derivatives. The low-concentration electron shuttle efficiency decreases in the following sequence: (dimethylaminomethyl)ferrocene > n-butyl ferrocene > ferrocene dimethanol > ferroceneacetonitrile > ferroceneacetic acid.
Collapse
Affiliation(s)
- Khadijeh Nekoueian
- †Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- ‡Department of Chemistry, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
- §Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | | | - Mandana Amiri
- ‡Department of Chemistry, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Mika Sillanpää
- §Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Geoffrey W Nelson
- ∥Imperial College London, Department of Materials, Royal School of Mines, Exhibition Road, London SW7 2AZ, United Kingdom
| | - John S Foord
- ⊥Chemistry Research Laboratories, Oxford University, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Philip Holdway
- #Department of Materials, Oxford University, Begbroke Science Park, Begbroke Hill, Oxford OX5 1PF, United Kingdom
| | - Antoine Buchard
- †Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Stephen C Parker
- †Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Frank Marken
- †Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
32
|
Jung J, Liu S, Ohkubo K, Abu-Omar MM, Fukuzumi S. Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles. Inorg Chem 2015; 54:4285-91. [PMID: 25867007 DOI: 10.1021/ic503012s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electron transfer from octamethylferrocene (Me8Fc) to the manganese(V) imidocorrole complex (tpfc)Mn(V)(NAr) [tpfc = 5,10,15-tris(pentafluorophenyl)corrole; Ar = 2,6-Cl2C6H3] proceeds efficiently to give an octamethylferrocenium ion (Me8Fc(+)) and [(tpfc)Mn(IV)(NAr)](-) in acetonitrile (MeCN) at 298 K. Upon the addition of trifluoroacetic acid (TFA), further reduction of [(tpfc)Mn(IV)(NAr)](-) by Me8Fc gives (tpfc)Mn(III) and ArNH2 in deaerated MeCN. TFA also results in hydrolysis of (tpfc)Mn(V)(NAr) with residual water to produce a protonated manganese(V) oxocorrole complex ([(tpfc)Mn(V)(OH)](+)) in deaerated MeCN. [(tpfc)Mn(V)(OH)](+) is rapidly reduced by 2 equiv of Me8Fc in the presence of TFA to give (tpfc)Mn(III) in deaerated MeCN. In the presence of dioxygen (O2), (tpfc)Mn(III) catalyzes the two-electron reduction of O2 by Me8Fc with TFA in MeCN to produce H2O2 and Me8Fc(+). The rate of formation of Me8Fc(+) in the catalytic reduction of O2 follows zeroth-order kinetics with respect to the concentrations of Me8Fc and TFA, whereas the rate increases linearly with increasing concentrations of (tpfc)Mn(V)(NAr) and O2. These kinetic dependencies are consistent with the rate-determining step being electron transfer from (tpfc)Mn(III) to O2, followed by further proton-coupled electron transfer from Me8Fc to produce H2O2 and [(tpfc)Mn(IV)](+). Rapid electron transfer from Me8Fc to [(tpfc)Mn(IV)](+) regenerates (tpfc)Mn(III), completing the catalytic cycle. Thus, catalytic two-electron reduction of O2 by Me8Fc with (tpfc)Mn(V)(NAr) as a catalyst precursor proceeds via a Mn(III)/Mn(IV) redox cycle.
Collapse
Affiliation(s)
- Jieun Jung
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.,‡Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shuo Liu
- §Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kei Ohkubo
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
| | - Mahdi M Abu-Omar
- §Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.,‡Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.,∥Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
33
|
NIE J, LI JP, DENG H, PAN HC. Progress on Click Chemistry and Its Application in Chemical Sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60819-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Mase K, Ohkubo K, Fukuzumi S. Much Enhanced Catalytic Reactivity of Cobalt Chlorin Derivatives on Two-Electron Reduction of Dioxygen to Produce Hydrogen Peroxide. Inorg Chem 2015; 54:1808-15. [DOI: 10.1021/ic502678k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kentaro Mase
- Department of Material and Life Science, Graduate School of Engineering,
ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Department of Material and Life Science, Graduate School of Engineering,
ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering,
ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Liu S, Mase K, Bougher C, Hicks SD, Abu-Omar MM, Fukuzumi S. High-valent chromium-oxo complex acting as an efficient catalyst precursor for selective two-electron reduction of dioxygen by a ferrocene derivative. Inorg Chem 2014; 53:7780-8. [PMID: 24988040 DOI: 10.1021/ic5013457] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient catalytic two-electron reduction of dioxygen (O2) by octamethylferrocene (Me8Fc) produced hydrogen peroxide (H2O2) using a high-valent chromium(V)-oxo corrole complex, [(tpfc)Cr(V)(O)] (tpfc = tris(pentafluorophenyl)corrole) as a catalyst precursor in the presence of trifluoroacetic acid (TFA) in acetonitrile (MeCN). The facile two-electron reduction of [(tpfc)Cr(V)(O)] by 2 equiv of Me8Fc in the presence of excess TFA produced the corresponding chromium(III) corrole [(tpfc)Cr(III)(OH2)] via fast electron transfer from Me8Fc to [(tpfc)Cr(V)(O)] followed by double protonation of [(tpfc)Cr(IV)(O)](-) and facile second-electron transfer from Me8Fc. The rate-determining step in the catalytic two-electron reduction of O2 by Me8Fc in the presence of excess TFA is inner-sphere electron transfer from [(tpfc)Cr(III)(OH2)] to O2 to produce the chromium(IV) superoxo species [(tpfc)Cr(IV)(O2(•-))], followed by fast proton-coupled electron transfer reduction of [(tpfc)Cr(IV)(O2(•-))] by Me8Fc to yield H2O2, accompanied by regeneration of [(tpfc)Cr(III)(OH2)]. Thus, although the catalytic two-electron reduction of O2 by Me8Fc was started by [(tpfc)Cr(V)(O)], no regeneration of [(tpfc)Cr(V)(O)] was observed in the presence of excess TFA, regardless of the tetragonal chromium complex being to the left of the oxo wall. In the presence of a stoichiometric amount of TFA, however, disproportionation of [(tfpc)Cr(IV)(O)](-) occurred via the protonated species [(tpfc)Cr(IV)(OH)] to produce [(tpfc)Cr(III)(OH2)] and [(tpfc)Cr(V)(O)].
Collapse
Affiliation(s)
- Shuo Liu
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | | | | | | | | | |
Collapse
|
36
|
18F-labeling using click cycloadditions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:361329. [PMID: 25003110 PMCID: PMC4070495 DOI: 10.1155/2014/361329] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
Due to expanding applications of positron emission tomography (PET) there is a demand for developing new techniques to introduce fluorine-18 (t1/2 = 109.8 min). Considering that most novel PET tracers are sensitive biomolecules and that direct introduction of fluorine-18 often needs harsh conditions, the insertion of 18F in those molecules poses an exceeding challenge. Two major challenges during 18F-labeling are a regioselective introduction and a fast and high yielding way under mild conditions. Furthermore, attention has to be paid to functionalities, which are usually present in complex structures of the target molecule. The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and several copper-free click reactions represent such methods for radiolabeling of sensitive molecules under the above-mentioned criteria. This minireview will provide a quick overview about the development of novel 18F-labeled prosthetic groups for click cycloadditions and will summarize recent trends in copper-catalyzed and copper-free click 18F-cycloadditions.
Collapse
|
37
|
Berg R, Straub BF. Advancements in the mechanistic understanding of the copper-catalyzed azide-alkyne cycloaddition. Beilstein J Org Chem 2013; 9:2715-50. [PMID: 24367437 PMCID: PMC3869285 DOI: 10.3762/bjoc.9.308] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022] Open
Abstract
The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC's catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates.
Collapse
Affiliation(s)
- Regina Berg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Bernd F Straub
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Donaldson SH, Das S, Gebbie MA, Rapp M, Jones LC, Roiter Y, Koenig PH, Gizaw Y, Israelachvili JN. Asymmetric electrostatic and hydrophobic-hydrophilic interaction forces between mica surfaces and silicone polymer thin films. ACS NANO 2013; 7:10094-10104. [PMID: 24138532 DOI: 10.1021/nn4050112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the Derjaguin-Landau-Verwey-Overbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.
Collapse
Affiliation(s)
- Stephen H Donaldson
- Department of Chemical Engineering, University of California, Santa Barbara (UCSB) , Santa Barbara, California 93106-5080, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Oxygen reduction with tetrathiafulvalene at liquid/liquid interfaces catalyzed by 5,10,15,20-tetraphenylporphyrin. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Wang B, Ahmed MN, Zhang J, Chen W, Wang X, Hu Y. Easy preparation of 1,4,5-trisubstituted 5-(2-alkoxy-1,2-dioxoethyl)-1,2,3-triazoles by chemoselective trapping of copper(I)–carbon bond with alkoxalyl chloride. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Chanda K, Rej S, Huang MH. Facet-Dependent Catalytic Activity of Cu2O Nanocrystals in the One-Pot Synthesis of 1,2,3-Triazoles by Multicomponent Click Reactions. Chemistry 2013; 19:16036-43. [DOI: 10.1002/chem.201302065] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Indexed: 11/07/2022]
|
42
|
Mukherjee S, Bandyopadhyay S, Dey A. Tuning the apparent formal potential of covalently attached ferrocene using SAM bearing ionizable COOH groups. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Wang B, Liu N, Shao C, Zhang Q, Wang X, Hu Y. Preparation of 1,4,5-Trisubstituted 5-Acyl-1,2,3-triazoles by Selective Acylation between Copper(I)-Carbon(sp) and Copper(I)-Carbon(sp2) Bonds with Acyl Chlorides. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem Rev 2013; 113:3084-213. [PMID: 23305185 PMCID: PMC3650130 DOI: 10.1021/cr300333u] [Citation(s) in RCA: 814] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anton V. Gulevich
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, 4500 SES, M/C 111, Chicago, Illinois 60607-7061
| | - Alexander S. Dudnik
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, 4500 SES, M/C 111, Chicago, Illinois 60607-7061
| | - Natalia Chernyak
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, 4500 SES, M/C 111, Chicago, Illinois 60607-7061
| | - Vladimir Gevorgyan
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, 4500 SES, M/C 111, Chicago, Illinois 60607-7061
| |
Collapse
|
45
|
Hu C, Yang DP, Wang Z, Yu L, Zhang J, Jia N. Improved EIS Performance of an Electrochemical Cytosensor Using Three-Dimensional Architecture Au@BSA as Sensing Layer. Anal Chem 2013; 85:5200-6. [DOI: 10.1021/ac400556q] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chenyi Hu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | | | - Ziyi Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | - Lili Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | | | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
46
|
Pellow MA, Stack TDP, Chidsey CED. Squish and CuAAC: additive-free covalent monolayers of discrete molecules in seconds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5383-7. [PMID: 23551032 PMCID: PMC3683963 DOI: 10.1021/la400172w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A terminal alkyne is immobilized rapidly into a full monolayer by squishing a small volume of a solution of the alkyne between an azide-modified surface and a copper plate. The monolayer is covalently attached to the surface through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, and the coverages of the immobilized electroactive alkyne species are quantified by cyclic voltammetry. A reaction time of less than 20 s is possible with no other reagents required. The procedure is effective under aerobic conditions using either an aqueous or aprotic organic solution of the alkyne (1-100 mM).
Collapse
Affiliation(s)
- Matthew A Pellow
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | | | | |
Collapse
|
47
|
Zhang Y, Jiang J, Hu C. Synthesis and Characterization of Iron(III) Complexes of 5-(8-Carboxy-1-naphthyl)-10, 15, 20-tritolyl Porphyrin. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Ladomenou K, Charalambidis G, Coutsolelos AG. CO and O2 binding studies of new model complexes for CcO. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.01.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Mase K, Ohkubo K, Fukuzumi S. Efficient Two-Electron Reduction of Dioxygen to Hydrogen Peroxide with One-Electron Reductants with a Small Overpotential Catalyzed by a Cobalt Chlorin Complex. J Am Chem Soc 2013; 135:2800-8. [DOI: 10.1021/ja312199h] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kentaro Mase
- Department of Material and Life Science, Graduate
School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Department of Material and Life Science, Graduate
School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate
School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
50
|
Monitoring surface functionalization of dendrigraft poly-l-lysines via click chemistry by capillary electrophoresis and Taylor dispersion analysis. J Chromatogr A 2013; 1273:111-6. [DOI: 10.1016/j.chroma.2012.11.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022]
|