1
|
Chen B, Jäkle F. Boron-Nitrogen Lewis Pairs in the Assembly of Supramolecular Macrocycles, Molecular Cages, Polymers, and 3D Materials. Angew Chem Int Ed Engl 2024; 63:e202313379. [PMID: 37815889 DOI: 10.1002/anie.202313379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B-N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2 and acetylene, and soft polymer networks that serve as recyclable, self-healing, and responsive thermosets, gels and elastomeric materials.
Collapse
Affiliation(s)
- Beijia Chen
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Adamek J, Marek-Urban PH, Woźniak K, Durka K, Luliński S. Highly electron-deficient 3,6-diaza-9-borafluorene scaffolds for the construction of luminescent chelate complexes. Chem Sci 2023; 14:12133-12142. [PMID: 37969585 PMCID: PMC10631248 DOI: 10.1039/d3sc03876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
The synthesis and characterization of two fluorinated 3,6-diaza-9-hydroxy-9-borafluorene oxonium acids featuring improved hydrolytic stability and the strong electron-deficient character of the diazaborafluorene core is reported. These boracycles served as precursors of fluorescent spiro-type complexes with (O,N)-chelating ligands which revealed specific properties such as delayed emission, white light emission in the solid state and photocatalytic performance in singlet oxygen-mediated oxidation reactions.
Collapse
Affiliation(s)
- Jan Adamek
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Paulina H Marek-Urban
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Krzysztof Woźniak
- Department of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
3
|
Leidinger P, Panighel M, Pérez Dieste V, Villar-Garcia IJ, Vezzoni P, Haag F, Barth JV, Allegretti F, Günther S, Patera LL. Probing dynamic covalent chemistry in a 2D boroxine framework by in situ near-ambient pressure X-ray photoelectron spectroscopy. NANOSCALE 2023; 15:1068-1075. [PMID: 36541666 PMCID: PMC9851174 DOI: 10.1039/d2nr04949j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 06/08/2023]
Abstract
Dynamic covalent chemistry is a powerful approach to design covalent organic frameworks, where high crystallinity is achieved through reversible bond formation. Here, we exploit near-ambient pressure X-ray photoelectron spectroscopy to elucidate the reversible formation of a two-dimensional boroxine framework. By in situ mapping the pressure-temperature parameter space, we identify the regions where the rates of the condensation and hydrolysis reactions become dominant, being the key to enable the thermodynamically controlled growth of crystalline frameworks.
Collapse
Affiliation(s)
- Paul Leidinger
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | | | | | | | - Pablo Vezzoni
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Felix Haag
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | | | - Sebastian Günther
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Laerte L Patera
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Wang W, Wang L, Du F, Wang GD, Hou L, Zhu Z, Liu B, Wang YY. Dative B←N bonds based crystalline organic framework with permanent porosity for acetylene storage and separation. Chem Sci 2023; 14:533-539. [PMID: 36741528 PMCID: PMC9847669 DOI: 10.1039/d2sc06016g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The utilization of dative B←N bonds for the creation of crystalline organic framework (BNOF) has increasingly received intensive interest; however, the shortage of permanent porosity is an obstacle that must be overcome to guarantee their application as porous materials. Here, we report the first microporous crystalline framework, BNOF-1, that is assembled through sole monomers, which can be scalably synthesized by the cheap 4-pyridine boronic acid. The 2D networks of BNOF-1 were stacked in parallel to generate a highly porous supramolecular open framework, which possessed not only the highest BET surface area of 1345 m2 g-1 amongst all of the BNOFs but also features a record-high uptake of C2H2 and CO2 in covalent organic framework (COF) materials to date. Dynamic breakthrough experiments demonstrated that BNOF-1 material can efficiently separate C2H2/CO2 mixtures. In addition, the network can be regenerated in organic solvents with no loss in performance, making its solution processable. We believe that BNOF-1 would greatly diversify the reticular chemistry and open new avenues for the application of BNOFs.
Collapse
Affiliation(s)
- Weize Wang
- College of Chemistry & Pharmacy, Northwest A&F UniversityYangling 712100P. R. China
| | - Linxia Wang
- College of Chemistry & Pharmacy, Northwest A&F UniversityYangling 712100P. R. China
| | - Fei Du
- College of Chemistry & Pharmacy, Northwest A&F UniversityYangling 712100P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest UniversityXi'an 710127P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest UniversityXi'an 710127P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of QueenslandBrisbane4072Australia
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F UniversityYangling 712100P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest UniversityXi'an 710127P. R. China
| |
Collapse
|
5
|
Chakraborty D, Mukherjee PS. Recent trends in organic cage synthesis: push towards water-soluble organic cages. Chem Commun (Camb) 2022; 58:5558-5573. [PMID: 35420101 DOI: 10.1039/d2cc01014c] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on organic cages has blossomed over the past few years into a mature field of study which can contribute to solving some of the challenging problems. In this review we aim to showcase the recent trends in synthesis of organic cages including a brief discussion on their use in catalysis, gas sorption, host-guest chemistry and energy transfer. Among the organic cages, water-soluble analogues are a special class of compounds which have gained renewed attention in recent times. Due to their advantage of being compatible with water, such cages have the potential of showing biomimetic activities and can find use in drug delivery and also as hosts for catalysis in aqueous medium. Hence, the synthetic strategies for the formation of water-soluble organic cages shall be discussed along with their potential applications.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
6
|
Dudkin SV, Chuprin AS, Belova SA, Vologzhanina AV, Zubavichus YV, Kaletina PM, Shundrina IK, Bagryanskaya EG, Voloshin YZ. Hybrid iron(II) phthalocyaninatoclathrochelates with a terminal reactive vinyl group and their organo-inorganic polymeric derivatives: synthetic approaches, X-ray structures and copolymerization with styrene. Dalton Trans 2022; 51:5645-5659. [PMID: 35322826 DOI: 10.1039/d1dt04187h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hybrid metallo(IV)phthalocyaninate-capped tris-dioximate iron(II) complexes (termed as "phthalocyaninatoclathrochelates") with non-equivalent apical fragments and functionalized with one terminal reactive vinyl group were prepared for the first time using three different synthetic approaches: (i) transmetallation (capping group exchange) of the appropriate labile boron,antimony-capped cage precursors, (ii) capping of the initially isolated reactive semiclathrochelate intermediate, and (iii) direct one-pot template condensation of their ligand synthons on the iron(II) ion as a matrix. The obtained polytopic cage complexes were characterized using elemental analysis, 1H NMR, MALDI-TOF MS and UV-vis spectra, and the single-crystal X-ray diffraction experiments. One of the obtained vinyl-terminated iron(II) phthalocyaninatoclathrochelates and its semiclathrochelate precursor were tested as monomers in a copolymerization reaction with styrene as the main component. These vinyl-terminated (semi)clathrochelate iron(II) complexes were found to be successfully copolymerized with this industrially important monomer, affording the intensely colored copolymer products. Because of a low solubility of the tested zirconium(IV) phthalocyaninate-capped tris-nioximate monomer in styrene as a solvent, a molar ratio of 1 : 500 was used. The obtained copolymer products and the kinetics of their formation were studied using GPC, FTIR, UV-vis, TGA and DSC methods. Even at such a low concentration of the Fe,Zr-binuclear metallocomplex component, an increase in the rate of the UV-light degradation of the organo-inorganic products, as well as in their thermal stability, was observed.
Collapse
Affiliation(s)
- Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 6305590 Koltsovo, Russia
| | - Polina M Kaletina
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Inna K Shundrina
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Elena G Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia. .,Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
7
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Krzyżanowski M, Nowicka AM, Kazimierczuk K, Durka K, Lulinski S, Kasprzak A. Design of a D3h-symmetry prismatic tris-(ferrocene-1,1ʹ-diyl) molecular cage bearing boronate ester linkages. Dalton Trans 2022; 51:10601-10611. [DOI: 10.1039/d2dt01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents a simple, highly selective, and efficient (isolated yield 68%) synthesis of a novel D3h-symmetry prismatic tris-(ferrocene-1,1ʹ-diyl) organic cage (FcB-cage) by incorporating the boronate ester as a linkage...
Collapse
|
9
|
Do HW, Kim H, Cho ES. Enhanced hydrogen storage kinetics and air stability of nanoconfined NaAlH 4 in graphene oxide framework. RSC Adv 2021; 11:32533-32540. [PMID: 35493568 PMCID: PMC9041783 DOI: 10.1039/d1ra05111c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022] Open
Abstract
With a growing concern over climate change, hydrogen offers a wide range of opportunities for decarbonization and provides a flexibility in overall energy systems. While hydrogen energy is already plugged into industrial sectors, a physical hydrogen storage system poses a formidable challenge, giving momentum for safe and efficient solid-state hydrogen storage. Accommodating such demands, sodium alanate (NaAlH4) has been considered one of the candidate materials due to its high storage capacity. However, it requires a high temperature for hydrogen desorption and becomes inactive irreversibly upon air-exposure. To enhance sluggish reaction kinetics and reduce the hydrogen desorption temperature, NaAlH4 can be confined into a porous nanoscaffold; however, nanoconfined NaAlH4 with sufficient hydrogen storage performance and competent stability has not been demonstrated so far. In this work, we demonstrate a simultaneously enhanced hydrogen storage performance and air-stability for NaAlH4 particles confined in a nanoporous graphene oxide framework (GOF). The structure of the GOF was elaborately optimized as a nanoscaffold, and NaAlH4 was infiltrated into the pores of the GOF via incipient wetness impregnation. As a result of the nanoconfinement, both the onset temperature and activation energy for hydrogen desorption of NaAlH4 are significantly decreased without transition metal catalysts, while simultaneously achieving the stability under ambient conditions. NaAlH4 nanoconfined in a graphene oxide framework (NaAlH4@GOF) showed significantly enhanced hydrogen storage kinetics as well as improved oxidative stability under ambient conditions.![]()
Collapse
Affiliation(s)
- Hyung Wan Do
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - HyeonJi Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Eun Seon Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
10
|
Iwasawa N, Ono K. 3D-Boronic Ester Architectures: Synthesis, Host-Guest Chemistry, Dynamic Behavior, and Supramolecular Catalysis. CHEM REC 2021; 22:e202100214. [PMID: 34596949 DOI: 10.1002/tcr.202100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Boronic esters are known to be formed simply by mixing boronic acids and alcohols under neutral conditions, and the equilibrium is in favor of the boronic esters when 1,2- or 1,3-diols are employed as alcohols. By utilizing the dynamic nature of the boronic ester formation, our group successfully constructed unique boron-containing 3D structures, such as ring-shaped macrocycles, cages, and tubes, based on the boronic ester formation of various aromatic di-, tri-, or hexaboronic acids with an originally designed tetrol 1 containing two sets of fixed 1,2-diol units oriented on the same face of an indacene framework. Various functions of the obtained boronates were further pursued to disclose the characteristic features of this system. This personal account describes our self-assembled boronate system using tetrol 1 including synthesis, host-guest chemistry, kinetic connection, characteristic dynamic behaviors, and supramolecular catalysis.
Collapse
Affiliation(s)
- Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kosuke Ono
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
11
|
Boronic acid with high oxidative stability and utility in biological contexts. Proc Natl Acad Sci U S A 2021; 118:2013691118. [PMID: 33653951 DOI: 10.1073/pnas.2013691118] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their desirable attributes, boronic acids have had a minimal impact in biological contexts. A significant problem has been their oxidative instability. At physiological pH, phenylboronic acid and its boronate esters are oxidized by reactive oxygen species at rates comparable to those of thiols. After considering the mechanism and kinetics of the oxidation reaction, we reasoned that diminishing electron density on boron could enhance oxidative stability. We found that a boralactone, in which a carboxyl group serves as an intramolecular ligand for the boron, increases stability by 104-fold. Computational analyses revealed that the resistance to oxidation arises from diminished stabilization of the p orbital of boron that develops in the rate-limiting transition state of the oxidation reaction. Like simple boronic acids and boronate esters, a boralactone binds covalently and reversibly to 1,2-diols such as those in saccharides. The kinetic stability of its complexes is, however, at least 20-fold greater. A boralactone also binds covalently to a serine side chain in a protein. These attributes confer unprecedented utility upon boralactones in the realms of chemical biology and medicinal chemistry.
Collapse
|
12
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Kilic A, Savci A, Alan Y, Birsen H. Synthesis and spectroscopic properties of 4,4′-bipyridine linker bioactive macrocycle boronate esters: photophysical properties and antimicrobial with antioxidant studies. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Aung YY, Kristanti AN, Khairunisa SQ, Nasronudin N, Fahmi MZ. Inactivation of HIV-1 Infection through Integrative Blocking with Amino Phenylboronic Acid Attributed Carbon Dots. ACS Biomater Sci Eng 2020; 6:4490-4501. [PMID: 33455181 DOI: 10.1021/acsbiomaterials.0c00508] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current antiretroviral HIV therapies continue to have problems related to procedural complications, toxicity, and uncontrolled side effects. In this study, amino phenylboronic acid-modified carbon dots (APBA-CDs) were introduced as a new nanoparticle-based on gp120 targeting that inhibits HIV-1 entry processes. Prolonged by simple pyrolysis for preparing carbon dots, this report further explores attributing amino phenylboronic acid on carbon dots, which prove the formation of graphene-like structures on carbon dots and boronic acid sites, thereby enabling the enhancement of positive optical properties through photoluminescent detection. Aside from performing well in terms of biocompatibility and low cytotoxicity (the CC50 reach up to 11.2 mg/mL), APBA-CDs exhibited superior capabilities in terms of prohibiting HIV-1 entry onto targeted MOLT-4 cells recognized by the delimitations of syncitia formation and higher ATP signal rather than bare carbon dots. The modified carbon dots also promote dual-action on HIV-1 treatment by both intracellularly and extracellularly viral blocking by combining with the Duviral drug, along with compressing p24 antigen signals that are better than APBA-CDs and Duviral itself.
Collapse
Affiliation(s)
- Yu Yu Aung
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | | | | | - Mochamad Zakki Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.,Supra Modification Nano-micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
15
|
Tran TPN, Nguyen TN, Taniike T, Nishimura S. Tailoring Graphene Oxide Framework with N- and S- Containing Organic Ligands for the Confinement of Pd Nanoparticles Towards Recyclable Catalyst Systems. Catal Letters 2020. [DOI: 10.1007/s10562-020-03284-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Li S, Zhou Y, Ma N, Zhang J, Zheng Z, Streb C, Chen X. Organoboron-Functionalization Enables the Hierarchical Assembly of Giant Polyoxometalate Nanocapsules. Angew Chem Int Ed Engl 2020; 59:8537-8540. [PMID: 32227580 PMCID: PMC7318661 DOI: 10.1002/anie.202003550] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 11/08/2022]
Abstract
The aggregation of molecular metal oxides into larger superstructures can bridge the gap between molecular compounds and solid-state materials. Here, we report that functionalization of polyoxotungstates with organo-boron substituents leads to giant polyoxometalate-based nanocapsules with dimensions of up to 4 nm. A "lock and key" mechanism enables the site-specific anchoring of aromatic organo-boronic acids to metal-functionalized Dawson anions [M3 P2 W15 O62 ]9- (M=TaV or NbV ), resulting in unique nanocapsules containing up to twelve POM units. Experimental and theoretical studies provide initial insights into the role of the organo-boron moieties and the metal-functionalized POMs for the assembly of the giant aggregates. The study therefore lays the foundations for the design of organo-POM-based functional nanostructures.
Collapse
Affiliation(s)
- Shujun Li
- School of Chemistry and Chemical EngineeringHenan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsHenan Normal UniversityXinxiangHenan453007China
| | - Yanfang Zhou
- School of Chemistry and Chemical EngineeringHenan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsHenan Normal UniversityXinxiangHenan453007China
| | - Nana Ma
- School of Chemistry and Chemical EngineeringHenan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsHenan Normal UniversityXinxiangHenan453007China
| | - Jie Zhang
- School of Chemistry and Chemical EngineeringHenan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsHenan Normal UniversityXinxiangHenan453007China
| | - Zhiping Zheng
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Xuenian Chen
- School of Chemistry and Chemical EngineeringHenan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsHenan Normal UniversityXinxiangHenan453007China
- College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
17
|
Organobor‐Funktionalisierung ermöglicht die hierarchische Aggregation gigantischer Polyoxometallat‐Nanokapseln. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Tahara K, Abe M. Stimuli-responsive Mixed-valence Architectures: Synthetic Design and Interplay between Mobile and Introduced Charges. CHEM LETT 2020. [DOI: 10.1246/cl.200069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
19
|
González-Hernández A, León-Negrete A, Galván-Hidalgo JM, Gómez E, Barba V. Hexacyclic monomeric boronates derived from tridentate shiff-base ligands fused by dative N→B bond. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Herrera-España AD, Höpfl H, Morales-Rojas H. Boron-Nitrogen Double Tweezers Comprising Arylboronic Esters and Diamines: Self-Assembly in Solution and Adaptability as Hosts for Aromatic Guests in the Solid State. Chempluschem 2020; 85:548-560. [PMID: 32202393 DOI: 10.1002/cplu.201900717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/11/2019] [Indexed: 01/07/2023]
Abstract
The thermodynamic stability of 1 : 1 and 2 : 1 boron-nitrogen (B←N) adducts formed between aromatic boronic esters with mono- and diamines was studied in solution by NMR and UV-vis spectroscopy with association energies (ΔG°) ranging from -11 to -28 kJ mol-1 . The effect of different substituents in the boronic ester, the nature of the diamine linker, and the effect of the solvent was explored. Stable 2 : 1 B←N adducts with diamines such as 1,3-diaminopropane were produced in solutions of hydrogen-bonding acceptor solvents (acetonitrile and ethyl acetate), which can be isolated in the solid state as crystalline solvates, whereas the use of noncoordinating solvents such as 1,2-dichloroethane afforded mainly 1 : 1 B←N adducts. In suitable combinations, aromatic bis-pyridyl diamines produced stable 2 : 1 B←N adducts that were isolated either as solvent-free solids, solvates, or cocrystals. In these crystalline forms, double-tweezer hosts were observed with an exceptional syn/anti conformational guest-adaptability driven by simultaneous donor-acceptor and C-H⋅⋅⋅π interactions in the tweezer cavities, resembling preorganized covalent tweezer hosts. Interestingly, cocrystals with electron-rich guests such as tetrathiafulvalene and pyrene showed non-centrosymmetric crystal lattices with infinite π-stacked donor-acceptor columns.
Collapse
Affiliation(s)
- Angel D Herrera-España
- Centro de Investigaciones Químicas Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Herbert Höpfl
- Centro de Investigaciones Químicas Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Hugo Morales-Rojas
- Centro de Investigaciones Químicas Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| |
Collapse
|
21
|
Drogkaris V, Northrop BH. Discrete boronate ester ladders from the dynamic covalent self-assembly of oligo(phenylene ethynylene) derivatives and phenylenebis(boronic acid). Org Chem Front 2020. [DOI: 10.1039/d0qo00083c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reversible boronate ester chemistry enables the controlled, dynamic self-assembly of olig(phenylene ethynylene)s into highly conjugated ladder frameworks.
Collapse
|
22
|
Nishiyabu R, Takahashi Y, Yabuki T, Gommori S, Yamamoto Y, Kitagishi H, Kubo Y. Boronate sol-gel method for one-step fabrication of polyvinyl alcohol hydrogel coatings by simple cast- and dip-coating techniques. RSC Adv 2019; 10:86-94. [PMID: 35492531 PMCID: PMC9048246 DOI: 10.1039/c9ra08208e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
The self-assembly of polyvinyl alcohol (PVA) and benzene-1,4-diboronic acid (DBA) is employed as a sol–gel method for one-step fabrication of hydrogel coatings with versatile functionalities. A mixture of PVA and DBA in aqueous ethanol is prepared as a coating agent. The long pot life of the mixture allows for the coating of a wide range of materials with hydrogel films by simple cast- and dip-coating techniques. The resultant films show negligible dissolution in water and the intrinsic hydrophilicity of PVA provides the films with functional properties, such as improved antifogging property and resistance to protein and cell fouling. The self-assembling process shows adaptive inclusion properties toward nanoscale materials, such as metal–organic coordination polymers and inorganic nanoparticles, affording composite films. Furthermore, the coating film exhibits a unique secondary functionalization reactivity toward boronic acid-appended fluorescent dyes, through which a variety of materials are converted into fluorescent materials. The self-assembly of polyvinyl alcohol (PVA) and benzene-1,4-diboronic acid (DBA) is employed as a sol–gel method for one-step fabrication of hydrogel coatings with versatile functionalities.![]()
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Yuki Takahashi
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Taro Yabuki
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Shoji Gommori
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
23
|
Baraniak MK, Lalancette RA, Jäkle F. Electron‐Deficient Borinic Acid Polymers: Synthesis, Supramolecular Assembly, and Examination as Catalysts in Amide Bond Formation. Chemistry 2019; 25:13799-13810. [DOI: 10.1002/chem.201903196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Monika K. Baraniak
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
24
|
González‐Hernández A, Rivera‐Segura J, Lacroix PG, Barba V. Unexpected Bisboronic Dicationic Acid Obtained from One‐Pot Condensation Reaction of 3‐Aminophenylboronic Acid and 2,6‐Pyridincarboxyaldehyde. ChemistrySelect 2019. [DOI: 10.1002/slct.201900302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Arturo González‐Hernández
- Centro de Investigaciones Químicas-IICBA.Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col. Chamilpa Cuernavaca Morelos C.P 62209
| | - Jacobo Rivera‐Segura
- Centro de Investigaciones Químicas-IICBA.Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col. Chamilpa Cuernavaca Morelos C.P 62209
| | - Pascal G. Lacroix
- CNRSLCC (Laboratoire de Chimie de Coordination) 205, Route de Narbonne Toulouse F- 31077 France
| | - Victor Barba
- Centro de Investigaciones Químicas-IICBA.Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col. Chamilpa Cuernavaca Morelos C.P 62209
| |
Collapse
|
25
|
Wei Y, Luo M, Zhang G, Lei J, Xie LH, Huang W. A convenient one-pot nanosynthesis of a C(sp 2)-C(sp 3)-linked 3D grid via an 'A 2 + B 3' approach. Org Biomol Chem 2019; 17:6574-6579. [PMID: 31237308 DOI: 10.1039/c9ob00754g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluorene-based 3D-grid-FTPA was synthesised with a total yield of 55% via the one-pot formation of six C(sp2)-C(sp3) bonds through a BF3·Et2O-mediated Friedel-Crafts reaction of A2-type bifluorene tertiary alcohol (BIOH) and two B3-type triphenylamines. At the same time, Un-grid-FTPA (2.7%) and 2D-grid-FTPA (5.6%) were obtained as by-products from this synthesis method. In addition, the effect of stereoisomers of BIOH was evaluated to demonstrate that Rac-BIOH is a better A2-type building block to prepare 3D-grid-FTPA in a relatively high yield. Furthermore, 3D-grid-FTPA showed excellent chemical, thermal, and photo-stabilities.
Collapse
Affiliation(s)
- Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Mengcheng Luo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Guangwei Zhang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Jiaqi Lei
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Ling-Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China. and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| |
Collapse
|
26
|
Fornasari L, d'Agostino S, Braga D. Zwitterionic Systems Obtained by Condensation of Heteroaryl-Boronic Acids and Rhodizonic Acid. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Luca Fornasari
- Dipartimento di Chimica G. Ciamician; Università di Bologna; Via Selmi, 2 40126 Bologna Italy
| | - Simone d'Agostino
- Dipartimento di Chimica G. Ciamician; Università di Bologna; Via Selmi, 2 40126 Bologna Italy
| | - Dario Braga
- Dipartimento di Chimica G. Ciamician; Università di Bologna; Via Selmi, 2 40126 Bologna Italy
| |
Collapse
|
27
|
Ohishi T, Igarashi K, Kadosono H, Kikkawa S, Azumaya I, Yokoyama A. Synthesis and structural analysis of conjugated benzoxazaborine derivatives. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Nanoarchitectured Graphene-Organic Frameworks (GOFs): Synthetic Strategies, Properties, and Applications. Chem Asian J 2018; 13:3561-3574. [DOI: 10.1002/asia.201800984] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 11/07/2022]
|
29
|
Golovanov IS, Mazeina GS, Nelyubina YV, Novikov RA, Mazur AS, Britvin SN, Tartakovsky VA, Ioffe SL, Sukhorukov AY. Exploiting Coupling of Boronic Acids with Triols for a pH-Dependent "Click-Declick" Chemistry. J Org Chem 2018; 83:9756-9773. [PMID: 30062896 DOI: 10.1021/acs.joc.8b01296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Click-like condensation of boronic acids with specifically designed triols (boronate-triol coupling) produces stable diamantane adducts in aqueous medium, which can be controllably cleaved to initial components under acidic conditions or by using boric acid as a chemical trigger. This novel "click-declick" strategy allows for the creation of temporary covalent connections between two or more modular units, which was demonstrated by the synthesis of new fluorophore-labeled natural molecules (peptides, steroids), supramolecular assemblies, modified polymers, boronic acid scavengers, solid-supported organocatalysts, biodegradable COF-like materials, and dynamic combinatorial libraries.
Collapse
Affiliation(s)
- Ivan S Golovanov
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect, 47 , Moscow 119991 , Russia
| | - Galina S Mazeina
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect, 47 , Moscow 119991 , Russia.,Dmitry Mendeleev University of Chemical Technology of Russia , Miusskaya Sq. 9 , Moscow 125047 , Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds , Vavilov Str. 28 , Moscow 119991 , Russia
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect, 47 , Moscow 119991 , Russia
| | - Anton S Mazur
- Center for Magnetic Resonance , St. Petersburg State University , University Av. 26 , St. Petersburg 198504 , Russia
| | - Sergey N Britvin
- Department of Crystallography , St. Petersburg State University , Universitetskaya Nab. 7/9 , St. Petersburg 199034 , Russia
| | - Vladimir A Tartakovsky
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect, 47 , Moscow 119991 , Russia
| | - Sema L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect, 47 , Moscow 119991 , Russia
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect, 47 , Moscow 119991 , Russia
| |
Collapse
|
30
|
Kawahata M, Matsuura M, Tominaga M, Katagiri K, Yamaguchi K. Hydrogen-bonded structures from adamantane-based catechols. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Cárdenas-Valenzuela AJ, González-García G, Zárraga- Nuñez R, Höpfl H, Campos-Gaxiola JJ, Cruz-Enríquez A. Crystal structure and Hirshfeld surface analysis of 3-cyano-phenyl-boronic acid. Acta Crystallogr E Crystallogr Commun 2018; 74:441-444. [PMID: 29765741 PMCID: PMC5946963 DOI: 10.1107/s2056989018003146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 12/02/2022]
Abstract
In the title compound, C7H6BNO2, the mean plane of the -B(OH)2 group is twisted by 21.28 (6)° relative to the cyano-phenyl ring mean plane. In the crystal, mol-ecules are linked by O-H⋯O and O-H⋯N hydrogen bonds, forming chains propagating along the [101] direction. Offset π-π and B⋯π stacking inter-actions link the chains, forming a three-dimensional network. Hirshfeld surface analysis shows that van der Waals inter-actions constitute a further major contribution to the inter-molecular inter-actions, with H⋯H contacts accounting for 25.8% of the surface.
Collapse
Affiliation(s)
- A. Jaquelin Cárdenas-Valenzuela
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México
| | - Gerardo González-García
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Sede Noria Alta, Noria Alta S/N, Col. Noria Alta, CP 36050, Guanajuato, Gto., México
| | - Ramón Zárraga- Nuñez
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Sede Noria Alta, Noria Alta S/N, Col. Noria Alta, CP 36050, Guanajuato, Gto., México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos, México
| | - José J. Campos-Gaxiola
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México
| | - Adriana Cruz-Enríquez
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México
| |
Collapse
|
32
|
Beuerle F, Gole B. Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angew Chem Int Ed Engl 2018; 57:4850-4878. [DOI: 10.1002/anie.201710190] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Florian Beuerle
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) &; Bavarian Polymer Institute (BPI); Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Bappaditya Gole
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) &; Bavarian Polymer Institute (BPI); Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
33
|
Beuerle F, Gole B. Kovalente organische Netzwerke und Käfigverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerüsten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710190] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Florian Beuerle
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Deutschland
- Zentrum für Nanosystemchemie (CNC) &; Bayerisches Polymerinstitut (BPI); Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Bappaditya Gole
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Deutschland
- Zentrum für Nanosystemchemie (CNC) &; Bayerisches Polymerinstitut (BPI); Theodor-Boveri-Weg 97074 Würzburg Deutschland
| |
Collapse
|
34
|
Hamer M, Bassi N, Agata Grela D. Development of an electrophoretic method based on nanostructured materials for HbA1c determination. Electrophoresis 2018; 39:1048-1053. [PMID: 29384199 DOI: 10.1002/elps.201700484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 11/06/2022]
Abstract
Glycosylated hemoglobin (HbA1c) detection is performed routinely in hospitals as it is the most widespread confirmatory diagnosis of diabetes mellitus. Here we present a novel CE method for measuring HbA1c by introducing silica nanoparticles (NPs) modified with a boronic acid derivative (sugar loadings of 51 ± 2 μg/mg) as pseudo-stationary phase. Before the sample injection, SiO2 NP─B(OH)2 were introduced via pressure. Electrophoretic separation was explored through variation of the buffer pH and separation voltage, being the best separation, resolution and shorter separation time achieved with a 25 mM phosphate buffer pH 6.5. The calibration curve obtained was expressed as Area = 182.05%-1 × HbA1c - 377.02; R2 = 0.9826, using a UV/VIS absorbance detector at 415 nm (diode array). No interferences were observed from carbamylated or acetylated hemoglobin and the method shows a noteworthy stability. A paired t-test was applied to compare the developed CE method with a commercial HbA1c test and no significant variations have been observed at a 90% significance level.
Collapse
Affiliation(s)
- Mariana Hamer
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Analítica y Fisicoquímica, Cátedra de Química Analítica, Junin, Buenos Aires, Argentina.,CONICET-Instituto de Nanosistemas, Universidad de San Martín, Campus Miguelete, San Martín, Provincia de Buenos Aires, Argentina
| | - Narella Bassi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Analítica y Fisicoquímica, Cátedra de Química Analítica, Junin, Buenos Aires, Argentina
| | - Denise Agata Grela
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Analítica y Fisicoquímica, Cátedra de Química Analítica, Junin, Buenos Aires, Argentina
| |
Collapse
|
35
|
Nishiyabu R, Shimizu A. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol. Chem Commun (Camb) 2018; 52:9765-8. [PMID: 27311634 DOI: 10.1039/c6cc02782b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions.
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| | - Ai Shimizu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
36
|
Nishiyabu R, Tomura M, Okade T, Kubo Y. Boronic acids as molecular inks for surface functionalization of polyvinyl alcohol substrates. NEW J CHEM 2018. [DOI: 10.1039/c8nj00992a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boronic acids are proposed to be used as molecular inks for surface functionalization of polyvinyl alcohol substrates using marker pen applicators.
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Miku Tomura
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Tomo Okade
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
37
|
Chakraborty A, Jana NR. Vitamin C-Conjugated Nanoparticle Protects Cells from Oxidative Stress at Low Doses but Induces Oxidative Stress and Cell Death at High Doses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41807-41817. [PMID: 29135217 DOI: 10.1021/acsami.7b16055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although the antioxidant property of vitamin C is well-known for protecting cells from oxidative stress, a recent study shows that it can also generate oxidative stress under a high intracellular concentration and induce cell death. However, poor chemical stability and low biological concentration (micromolar) of vitamin C restrict its function primarily as an antioxidant. Here, we report two different nanoparticle forms of vitamin C with its intact chemical stability, glucose-responsive release from nanoparticle, and efficient cell delivery in micro to millimolar concentrations. Nanoparticles are composed of silica-coated Au nanoparticles or lipophilic polyaspartic acid-based polymer micelles which are conjugated with vitamin C via phenylboronic acid. Surface chemistry of nanoparticles is optimized for an efficient cellular interaction/uptake and for cell delivery of vitamin C. We found that vitamin C protects cells from oxidative stress at micromolar concentrations, but at millimolar concentrations, it induces cell death by generating oxidative stress. In particular, high-dose vitamin C produces H2O2, disrupts the cellular redox balance, and induces cell death. This study highlights the concentration-dependent biological performance of vitamin C and the requirement of a high-dose cell delivery approach for enhanced therapeutic benefit.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Centre for Advanced Materials, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Nikhil R Jana
- Centre for Advanced Materials, Indian Association for the Cultivation of Science , Kolkata 700032, India
| |
Collapse
|
38
|
Sánchez-Portillo P, Barba V. Bis-Imine Boronic Esters Obtained by One-Step Multicomponent Reactions. Synthesis and X-Ray Diffraction Structural Analysis. ChemistrySelect 2017. [DOI: 10.1002/slct.201702465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Paola Sánchez-Portillo
- Centro de Investigaciones Químicas-IICBA; Universidad Autónoma del Estado de Morelos; Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos México
| | - Victor Barba
- Centro de Investigaciones Químicas-IICBA; Universidad Autónoma del Estado de Morelos; Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos México
| |
Collapse
|
39
|
|
40
|
Wan WM, Li SS, Liu DM, Lv XH, Sun XL. Synthesis of Electron-Deficient Borinic Acid Polymers with Multiresponsive Properties and Their Application in the Fluorescence Detection of Alizarin Red S and Electron-Rich 8-Hydroxyquinoline and Fluoride Ion: Substituent Effects. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wen-Ming Wan
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| | - Shun-Shun Li
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| | - Dong-Ming Liu
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| | - Xin-Hu Lv
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| | - Xiao-Li Sun
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| |
Collapse
|
41
|
Structural analysis of pyridine-imino boronic esters involving secondary interactions on solid state. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Lv XH, Li SS, Tian CY, Yang MM, Li C, Zhou Y, Sun XL, Zhang J, Wan WM. Borinic Acid Polymer: Simplified Synthesis and Enzymatic Biofuel Cell Application. Macromol Rapid Commun 2017; 38. [PMID: 28169485 DOI: 10.1002/marc.201600687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 12/29/2022]
Abstract
A simplified one-pot and less harmful method has been introduced for the synthesis of borinic acid monomer. The corresponding borinic acid polymer (PBA) has been prepared by reversible addition-fragmentation chain transfer polymerization. Property investigations confirm the characteristics of PBA as a new type of "smart material" in the field of thermo-responsive polymer. The potential application of PBA in the field of enzymatic biofuel cell has been illustrated with a wide open circuit potential of 0.92 V.
Collapse
Affiliation(s)
- Xin-Hu Lv
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shun-Shun Li
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Cong-Yu Tian
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mao-Mao Yang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Cheng Li
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Zhou
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiao-Li Sun
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Zhang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wen-Ming Wan
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, and College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
43
|
Publisher's note – Correction. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Campos-Gaxiola JJ, García-Grajeda BA, Hernández-Ahuactzi IF, Guerrero-Álvarez JA, Höpfl H, Cruz-Enríquez A. Supramolecular networks in molecular complexes of pyridine boronic acids and polycarboxylic acids: synthesis, structural characterization and fluorescence properties. CrystEngComm 2017. [DOI: 10.1039/c7ce00762k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
3- and 4-pyridineboronic acids have been combined with trimesic and pyromellitic acids to give three molecular complexes.
Collapse
Affiliation(s)
| | | | | | - Jorge A. Guerrero-Álvarez
- Centro de Investigaciones Químicas
- Instituto de Investigación en Ciencias Básicas y Aplicadas
- Universidad Autónoma del Estado de Morelos
- Cuernavaca
- Mexico
| | - Herbert Höpfl
- Centro de Investigaciones Químicas
- Instituto de Investigación en Ciencias Básicas y Aplicadas
- Universidad Autónoma del Estado de Morelos
- Cuernavaca
- Mexico
| | | |
Collapse
|
45
|
Kawai M, Hoshi A, Nishiyabu R, Kubo Y. Fluorescent chirality recognition by simple boronate ensembles with aggregation-induced emission capability. Chem Commun (Camb) 2017; 53:10144-10147. [DOI: 10.1039/c7cc05784a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chiral boronate ensembles showed enantioselective aggregation behaviors for chiral diamines and cinchona alkaloids, enabling the fluorescent recognition of their chirality.
Collapse
Affiliation(s)
- Meiko Kawai
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Ayaka Hoshi
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
46
|
Nishiyabu R, Iizuka S, Minegishi S, Kitagishi H, Kubo Y. Surface modification of a polyvinyl alcohol sponge with functionalized boronic acids to develop porous materials for multicolor emission, chemical sensing and 3D cell culture. Chem Commun (Camb) 2017; 53:3563-3566. [DOI: 10.1039/c7cc00490g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface modification of a polyvinyl alcohol sponge with functionalized boronic acids led to the formation of porous materials applicable for multicolor emission, chemical sensing and 3D cell culture.
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Shunsuke Iizuka
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Saika Minegishi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
47
|
Xu X, Zhang Q, Yu Y, Chen W, Hu H, Li H. Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson's Ratio. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9223-9230. [PMID: 27594204 DOI: 10.1002/adma.201603079] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/22/2016] [Indexed: 05/26/2023]
Abstract
A novel natural drying (ND) strategy for low-cost and simple fabrication of graphene aerogels (GAs) is highlighted. The as-formed NDGAs exhibit ultralarge reversible compressibility (99%) and tunable Poisson's ratio behaviors (-0.30 < ν < 0.46), which suggests promising applications in soft actuators, soft robots, sensors, deformable electronic devices, drug release, thermal insulator, and protective materials.
Collapse
Affiliation(s)
- Xiang Xu
- Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education (Harbin Institute of Technology), Harbin, 150090, P. R. China.
- Center of Structural Health Monitoring and Control, School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Qiangqiang Zhang
- Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education (Harbin Institute of Technology), Harbin, 150090, P. R. China
- Center of Structural Health Monitoring and Control, School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 743311, P. R. China
| | - Yikang Yu
- Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education (Harbin Institute of Technology), Harbin, 150090, P. R. China
- Center of Structural Health Monitoring and Control, School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Wenli Chen
- Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education (Harbin Institute of Technology), Harbin, 150090, P. R. China
- Center of Structural Health Monitoring and Control, School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Han Hu
- Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hui Li
- Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education (Harbin Institute of Technology), Harbin, 150090, P. R. China.
- Center of Structural Health Monitoring and Control, School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
48
|
|
49
|
Chan Y, Wylie JJ, Xia L, Ren Y, Chen YT. Modelling of particle-laden flow inside nanomaterials. Proc Math Phys Eng Sci 2016; 472:20160289. [PMID: 27616926 DOI: 10.1098/rspa.2016.0289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.
Collapse
Affiliation(s)
- Yue Chan
- School of Mathematical Sciences , University of Nottingham , 199 Taikang East Road, Ningbo 315100, People's Republic of China
| | - Jonathan J Wylie
- Department of Mathematics , City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Liang Xia
- Department of Architecture and Built Environment , University of Nottingham , 199 Taikang East Road, Ningbo 315100, People's Republic of China
| | - Yong Ren
- Department of Mechanical , Materials and Manufacturing Engineering , University of Nottingham , 199 Taikang East Road, Ningbo 315100, People's Republic of China
| | - Yung-Tsang Chen
- Department of Civil Engineering, Faculty of Science and Engineering , University of Nottingham , 199 Taikang East Road, Ningbo 315100, People's Republic of China
| |
Collapse
|
50
|
Tahara K, Akita T, Yabumoto S, Terashita N, Katao S, Kikuchi JI, Tokunaga K. Construction of hydrogen-bonded networks of 1′,1‴-diboronic acids of biferrocene and biferrocenium cation. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|