1
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
2
|
Menezes L, Sampaio RMSN, Meurer L, Szpoganicz B, Cervo R, Cargnelutti R, Wang L, Yang J, Prabhakar R, Fernandes C, Horn A. A Multipurpose Metallophore and Its Copper Complexes with Diverse Catalytic Antioxidant Properties to Deal with Metal and Oxidative Stress Disorders: A Combined Experimental, Theoretical, and In Vitro Study. Inorg Chem 2024; 63:14827-14850. [PMID: 39078252 PMCID: PMC11323273 DOI: 10.1021/acs.inorgchem.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the discovery that the molecule 1-(pyridin-2-ylmethylamino)propan-2-ol (HL) can reduce oxidative stress in neuronal C6 glioma cells exposed to reactive oxygen species (O2-•, H2O2, and •OH) and metal (Cu+) stress conditions. Furthermore, its association with Cu2+ generates [Cu(HL)Cl2] (1) and [Cu(HL)2](ClO4)2 (2) complexes that also exhibit antioxidant properties. Potentiometric titration data show that HL can coordinate to Cu2+ in 1:1 and 1:2 Cu2+:ligand ratios, which was confirmed by monocrystal X-ray studies. The subsequent ultraviolet-visible, electrospray ionization mass spectrometry, and electron paramagnetic resonance experiments show that they can decompose a variety of reactive oxygen species (ROS). Kinetic studies revealed that 1 and 2 mimic the superoxide dismutase and catalase activities. Complex 1 promotes the fastest decomposition of H2O2 (kobs = 2.32 × 107 M-1 s-1), efficiently dismutases the superoxide anion (kcat = 3.08 × 107 M-1 s-1), and scavenges the hydroxyl radical (RSA50 = 25.7 × 10-6 M). Density functional theory calculations support the formation of dinuclear Cu-peroxide and mononuclear Cu-superoxide species in the reactions of [Cu(HL)Cl2] with H2O2 and O2•-, respectively. Furthermore, both 1 and 2 also reduce the oxidative stress of neuronal glioma C6 cells exposed to different ROS, including O2•- and •OH.
Collapse
Affiliation(s)
- Lucas
B. Menezes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Raquel M. S. N. Sampaio
- Laboratório
de Ciências Químicas, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Lino Meurer
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rodrigo Cervo
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Lukun Wang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jiawen Yang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Christiane Fernandes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Adolfo Horn
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
3
|
Raslin A, Sercel ZP, Fridman N, Saltsman I, Gross Z. Surprising Route to a Monoazaporphyrin and Full Characterization of Its Complexes with Five Different 3d Metals. Inorg Chem 2024; 63:7828-7837. [PMID: 38631042 PMCID: PMC11061829 DOI: 10.1021/acs.inorgchem.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
In the search for mild agents for the oxidative cyclization of tetrapyrromethane to the corresponding corrole, we discovered a route that leads to a monoazaporphyrin with three meso-CF3 groups. Optimization studies that allowed access to appreciable amounts of this new macrocycle paved the way for the preparation of its cobalt, copper, nickel, zinc, and iron complexes. All complexes were fully characterized by various spectroscopic methods and X-ray crystallography. Their photophysical and electrochemical properties were determined and compared to those of analogous porphyrins in order to deduce the effect of the peripheral N atom. Considering the global efforts for designing efficient alternatives to platinum group metal (PGM) catalysts, they were also absorbed onto a porous carbon electrode material and studied as electrocatalysts for the oxygen reduction reaction (ORR). The cobalt complex was found to be operative at a quite positive catalytic onset potential and with good selectivity for the desirable 4-electrons/4-protons pathway.
Collapse
Affiliation(s)
- Arik Raslin
- Schulich
Faculty of Chemistry, Technion−Israel
Institute of Technology, Haifa 32000, Israel
| | - Zachary P. Sercel
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Natalia Fridman
- Schulich
Faculty of Chemistry, Technion−Israel
Institute of Technology, Haifa 32000, Israel
| | - Irena Saltsman
- Schulich
Faculty of Chemistry, Technion−Israel
Institute of Technology, Haifa 32000, Israel
| | - Zeev Gross
- Schulich
Faculty of Chemistry, Technion−Israel
Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
4
|
Dong K, Le T, Nakibli Y, Schleusener A, Wächtler M, Amirav L. Molecular Metallocorrole-Nanorod Photocatalytic System for Sustainable Hydrogen Production. CHEMSUSCHEM 2022; 15:e202200804. [PMID: 35789067 PMCID: PMC9540064 DOI: 10.1002/cssc.202200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Solar-driven photocatalytic generation of hydrogen from water is a potential source of clean and renewable fuel. Yet systems that are sufficiently stable and efficient for practical use have not been realized. Here, nanorod photocatalysts that have proven record activity for the water reduction half reaction were successfully combined with molecular metallocorroles suitable for catalyzing the accompanying oxidation reactions. Utilization of OH- /⋅OH redox species as charge transfer shuttle between freely mixed metallocorroles and rods resulted in quantum efficiency that peaked as high as 17 % for hydrogen production from water in the absence of sacrificial hole scavengers. While typically each sacrificial scavenger is able to extract but a single hole, here the molecular metallocorrole catalysts were found to successfully handle nearly 300,000 holes during their lifespan. The implications of the new system on the prospects of realizing practical overall water splitting and direct solar-to-fuel energy conversion were discussed.
Collapse
Affiliation(s)
- Kaituo Dong
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa32000Israel
- Current address of T.-A. Le: Faculty of science and engineeringÅbo Akademi UniversityTurku20500Finland
| | - Trung‐Anh Le
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa32000Israel
- Current address of T.-A. Le: Faculty of science and engineeringÅbo Akademi UniversityTurku20500Finland
| | - Yifat Nakibli
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa32000Israel
- Current address of T.-A. Le: Faculty of science and engineeringÅbo Akademi UniversityTurku20500Finland
| | - Alexander Schleusener
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Current address of Dr. A. Schleusener: Istituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Maria Wächtler
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Current address of Dr. A. Schleusener: Istituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of PhotonicsAlbert-Einstein-Straße 607745JenaGermany
| | - Lilac Amirav
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa32000Israel
- Current address of T.-A. Le: Faculty of science and engineeringÅbo Akademi UniversityTurku20500Finland
| |
Collapse
|
5
|
Soll M, Goldshtein H, Rotkopf R, Russek-Blum N, Gross Z. A Synthetic SOD/Catalase Mimic Compound for the Treatment of ALS. Antioxidants (Basel) 2021; 10:827. [PMID: 34067277 PMCID: PMC8224677 DOI: 10.3390/antiox10060827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. To date, the etiology of the disease is still unclear, with evidence of reactive oxygen species, mitochondrial dysfunction, iron homeostasis perturbation, protein misfolding and protein aggregation as key players in the pathology of the disease. Twenty percent of familial ALS and two percent of sporadic ALS instances are due to a mutation in Cu/Zn superoxide dismutase (SOD1). Sporadic and familial ALS affects the same neurons with similar pathology; therefore, the underlying hypothesis is that therapies effective in mutant SOD1 models could be translated to sporadic ALS. Corrole metal complexes have lately been identified as strong and potent catalytic antioxidants with beneficial effects in oxidative stress-related diseases such as Parkinson's disease, Alzheimer's disease, atherosclerosis, diabetes and its complications. One of the most promising candidates is the iron complex of an amphiphilic corrole, 1-Fe. In this study we used the SOD1 G93R mutant zebrafish ALS model to assess whether 1-Fe, as a potent catalytic antioxidant, displays any therapeutic merits in vivo. Our results show that 1-Fe caused a substantial increase in mutant zebrafish locomotor activity (up to 30%), bringing the locomotive abilities of the mutant treated group close to that of the wild type untreated group (50% more than the mutated untreated group). Furthermore, 1-Fe did not affect WT larvae locomotor activity, suggesting that 1-Fe enhances locomotor ability by targeting mechanisms underlying SOD1 ALS specifically. These results may pave the way for future development of 1-Fe as a viable treatment for ALS.
Collapse
Affiliation(s)
- Matan Soll
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| | - Hagit Goldshtein
- The Dead Sea & Arava Science Center, Auspices of Ben Gurion University, Central Arava 86815, Israel;
| | - Ron Rotkopf
- Bioinformatics and Biological Computing Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Niva Russek-Blum
- The Dead Sea & Arava Science Center, Auspices of Ben Gurion University, Central Arava 86815, Israel;
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
6
|
Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255
expr 886172045 + 931245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Mathieu E, Tolbert AE, Koebke KJ, Tard C, Iranzo O, Penner-Hahn JE, Policar C, Pecoraro V. Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation. Chemistry 2020; 26:249-258. [PMID: 31710732 PMCID: PMC6944188 DOI: 10.1002/chem.201903808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Indexed: 01/16/2023]
Abstract
Superoxide dismutases (SODs) are highly efficient enzymes for superoxide dismutation and the first line of defense against oxidative stress. These metalloproteins contain a redox-active metal ion in their active site (Mn, Cu, Fe, Ni) with a tightly controlled reduction potential found in a close range around the optimal value of 0.36 V versus the normal hydrogen electrode (NHE). Rationally designed proteins with well-defined three-dimensional structures offer new opportunities for obtaining functional SOD mimics. Here, we explore four different copper-binding scaffolds: H3 (His3 ), H4 (His4 ), H2 DH (His3 Asp with two His and one Asp in the same plane) and H3 D (His3 Asp with three His in the same plane) by using the scaffold of the de novo protein GRα3 D. EPR and XAS analysis of the resulting copper complexes demonstrates that they are good CuII -bound structural mimics of Cu-only SODs. Furthermore, all the complexes exhibit SOD activity, though three orders of magnitude slower than the native enzyme, making them the first de novo copper SOD mimics.
Collapse
Affiliation(s)
- Emilie Mathieu
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- These authors contributed equally to this work
| | - Audrey E. Tolbert
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
- These authors contributed equally to this work
| | - Karl J. Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| | - Cédric Tard
- LCM, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Olga Iranzo
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Vincent Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| |
Collapse
|
9
|
|
10
|
Gomes LMF, Mahammed A, Prosser KE, Smith JR, Silverman MA, Walsby CJ, Gross Z, Storr T. A catalytic antioxidant for limiting amyloid-beta peptide aggregation and reactive oxygen species generation. Chem Sci 2019; 10:1634-1643. [PMID: 30842826 PMCID: PMC6369440 DOI: 10.1039/c8sc04660c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a multifaceted disease that is characterized by increased oxidative stress, metal-ion dysregulation, and the formation of intracellular neurofibrillary tangles and extracellular amyloid-β (Aβ) aggregates. In this work we report the large affinity binding of the iron(iii) 2,17-bis-sulfonato-5,10,15-tris(pentafluorophenyl)corrole complex FeL1 to the Aβ peptide (K d ∼ 10-7) and the ability of the bound FeL1 to act as a catalytic antioxidant in both the presence and absence of Cu(ii) ions. Specific findings are that: (a) an Aβ histidine residue binds axially to FeL1; (b) that the resulting adduct is an efficient catalase; (c) this interaction restricts the formation of high molecular weight peptide aggregates. UV-Vis and electron paramagnetic resonance (EPR) studies show that although the binding of FeL1 does not influence the Aβ-Cu(ii) interaction (K d ∼ 10-10), bound FeL1 still acts as an antioxidant thereby significantly limiting reactive oxygen species (ROS) generation from Aβ-Cu. Overall, FeL1 is shown to bind to the Aβ peptide, and modulate peptide aggregation. In addition, FeL1 forms a ternary species with Aβ-Cu(ii) and impedes ROS generation, thus showing the promise of discrete metal complexes to limit the toxicity pathways of the Aβ peptide.
Collapse
Affiliation(s)
- Luiza M F Gomes
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Atif Mahammed
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 32000 , Israel .
| | - Kathleen E Prosser
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Jason R Smith
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Michael A Silverman
- Department of Biological Sciences , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada
| | - Charles J Walsby
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Zeev Gross
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 32000 , Israel .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| |
Collapse
|
11
|
Abstract
In this Review, we focus on catalytic antioxidant study based on transition metal complexes, organoselenium compounds, supramolecules and protein scaffolds.
Collapse
Affiliation(s)
- Riku Kubota
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
12
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018; 29:1691-1724. [PMID: 29926755 PMCID: PMC6207162 DOI: 10.1089/ars.2017.7453] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP5+ (BMX-010, AEOL10113) and MnTnBuOE-2-PyP5+ (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP5+-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/H2O2/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level. CRITICAL ISSUES Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue. FUTURE DIRECTIONS Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute , Durham, North Carolina
| |
Collapse
|
13
|
Costa RO, Ferreira SS, Pereira CA, Harmer JR, Noble CJ, Schenk G, Franco RWA, Resende JALC, Comba P, Roberts AE, Fernandes C, Horn A. A New Mixed-Valence Mn(II)Mn(III) Compound With Catalase and Superoxide Dismutase Activities. Front Chem 2018; 6:491. [PMID: 30456211 PMCID: PMC6231112 DOI: 10.3389/fchem.2018.00491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
The synthesis, X-ray molecular structure, physico-chemical characterization and dual antioxidant activity (catalase and superoxide dismutase) of a new polymeric mixed valence Mn(III)Mn(II) complex, containing the ligand H2BPClNOL (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)] propylamine) is described. The monomeric unit is composed of a dinuclear Mn(II)Mn(III) moiety, [Mn(III)(μ-HBPClNOL)(μ-BPClNOL)Mn(II)(Cl)](ClO4)·2H2O, 1, in which the Mn ions are connected by two different bridging groups provided by two molecules of the ligand H2BPClNOL, a phenoxide and an alkoxide group. In the solid state, this mixed valence dinuclear unit is connected to its neighbors through chloro bridges. Magnetic measurements indicated the presence of ferromagnetic [J = +0.076(13) cm−1] and antiferromagnetic [J = −5.224(13) cm−1] interactions. The compound promotes O2•- dismutation in aqueous solution (IC50 = 0.370 μmol dm−3, kcat = 3.6x106 M−1 s−1). EPR studies revealed that a high-valent Mn(III)-O-Mn(IV) species is involved in the superoxide dismutation catalytic cycle. Complex 1 shows catalase activity only in the presence of a base, e.g., piperazine or triethylamine. Kinetic studies were carried out in the presence of piperazine and employing two different methods, resulting in kcat values of 0.58 ± 0.03 s−1 (detection of O2 production employing a Clark electrode) and 2.59 ± 0.12 s−1 (H2O2 consuption recorded via UV-Vis). EPR and ESI-(+)-MS studies indicate that piperazine induces the oxidation of 1, resulting in the formation of the catalytically active Mn(III)-O-Mn(IV) species.
Collapse
Affiliation(s)
- Rafael O Costa
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Crystiane A Pereira
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Christopher J Noble
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Roberto W A Franco
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Jackson A L C Resende
- Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Universidade Federal do Mato Grosso, Barra do Garças, Brazil
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.,Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg, Germany
| | - Asha E Roberts
- Anorganisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.,Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg, Germany
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
14
|
Rationally designed mimics of antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Jiang X, Naitana ML, Desbois N, Quesneau V, Brandès S, Rousselin Y, Shan W, Osterloh WR, Blondeau-Patissier V, Gros CP, Kadish KM. Electrochemistry of Bis(pyridine)cobalt (Nitrophenyl)corroles in Nonaqueous Media. Inorg Chem 2018; 57:1226-1241. [DOI: 10.1021/acs.inorgchem.7b02655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoqin Jiang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Mario L. Naitana
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Nicolas Desbois
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Valentin Quesneau
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Stéphane Brandès
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Yoann Rousselin
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Wenqian Shan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - W. Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Virginie Blondeau-Patissier
- Department of Time-Frequency, Université de Bourgogne Franche-Comté, Institut FEMTO-ST (UMR CNRS 6174), 26 Chemin de l’épitaphe, 25030 Besançon Cedex, France
| | - Claude P. Gros
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
16
|
Chan W, Almasieh M, Catrinescu MM, Levin LA. Cobalamin-Associated Superoxide Scavenging in Neuronal Cells Is a Potential Mechanism for Vitamin B 12-Deprivation Optic Neuropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:160-172. [PMID: 29037851 PMCID: PMC5745528 DOI: 10.1016/j.ajpath.2017.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/31/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022]
Abstract
Chronic deficiency of vitamin B12 is the only nutritional deficiency definitively proved to cause optic neuropathy and loss of vision. The mechanism by which this occurs is unknown. Optic neuropathies are associated with death of retinal ganglion cells (RGCs), neurons that project their axons along the optic nerve to the brain. Injury to RGC axons causes a burst of intracellular superoxide, which then signals RGC apoptosis. Vitamin B12 (cobalamin) was recently shown to be a superoxide scavenger, with a rate constant similar to superoxide dismutase. Given that vitamin B12 deficiency causes an optic neuropathy through unknown mechanisms and that it is a potent superoxide scavenger, we tested whether cobalamin, a vitamin B12 vitamer, would be neuroprotective in vitro and in vivo. We found that cobalamin scavenged superoxide in neuronal cells in vitro treated with the reduction-oxidation cycling agent menadione. In vivo confocal scanning laser ophthalmoscopy demonstrated that optic nerve transection in Long-Evans rats increased superoxide levels in RGCs. The RGC superoxide burst was significantly reduced by intravitreal cobalamin and resulted in increased RGC survival. These data demonstrate that cobalamin may function as an endogenous neuroprotectant for RGCs through a superoxide-associated mechanism.
Collapse
Affiliation(s)
- Wesley Chan
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Mohammadali Almasieh
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada; Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Maria-Magdalena Catrinescu
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada; Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Leonard A Levin
- Maisonneuve-Rosemont Hospital Research Center and Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada; Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
17
|
Affiliation(s)
- Yuanyuan Fang
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongping Ou
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Karl M. Kadish
- Department
of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
18
|
Soll M, Bar Am O, Mahammed A, Saltsman I, Mandel S, Youdim MBH, Gross Z. Neurorescue by a ROS Decomposition Catalyst. ACS Chem Neurosci 2016; 7:1374-1382. [PMID: 27442690 DOI: 10.1021/acschemneuro.6b00144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The effect of the bis-sulfonated iron(III) corrole (1-Fe), a potent decomposition catalyst of reactive oxygen species, on rescuing SN4741 cells that were damaged by 6-hydroxydopamine (6-OHDA) was investigated as an in vitro model system for studying cell death of dopaminergic neurons in the substantia nigra. Important findings that accompanied the ability to rescue dopaminergic neurons were increased expression of phenotypic dopaminergic proteins, such as tyrosine hydroxylase (TH) and dopamine transporter (DAT), which were significantly depleted upon 6-OHDA-mediated damage. 1-Fe also elevated expression levels of aldehyde dehydrogenase 1 (ALDH-1), previously disclosed as a cardinal protein in the pathogenesis of Parkinson's disease. Since these findings suggested that 1-Fe affects quite a wide range of intracellular mechanisms, vital intracellular pathways that involve neuroplasticity, growth, differentiation and survival of neurons, were examined. Phosphatidylinositol 3-kinase (PI3K) and protein kinase c (PKC) were found to be involved, as pharmacological inhibitors of these kinases abolished the neurorescue effect of 1-Fe. 1-Fe also elevated the expression of antiapoptotic protein Bcl-2, which is essential for proper mitochondrial function and cellular survival. The overall conclusion is that 1-Fe is capable of rescuing already damaged neuronal cells by a variety of mechanisms that are beyond its antioxidant activity.
Collapse
Affiliation(s)
- Matan Soll
- Schulich Faculty of Chemistry, and ‡Ruth & Bruce Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Orit Bar Am
- Schulich Faculty of Chemistry, and ‡Ruth & Bruce Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry, and ‡Ruth & Bruce Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Irena Saltsman
- Schulich Faculty of Chemistry, and ‡Ruth & Bruce Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Silvia Mandel
- Schulich Faculty of Chemistry, and ‡Ruth & Bruce Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Moussa B. H. Youdim
- Schulich Faculty of Chemistry, and ‡Ruth & Bruce Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, and ‡Ruth & Bruce Rappaport Faculty of Medicine, Technion − Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
19
|
Evaluating the influence of the diamine unit (ethylenediamine, piperazine and homopiperazine) on the molecular structure, physical chemical properties and superoxide dismutase activity of copper complexes. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Avidan-Shlomovich S, Gross Z. Reaction mechanism for the highly efficient catalytic decomposition of peroxynitrite by the amphipolar iron(III) corrole 1-Fe. Dalton Trans 2016; 44:12234-43. [PMID: 25747957 DOI: 10.1039/c5dt00086f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The amphipolar iron(III) corrole 1-Fe is one of the most efficient catalysts for the decomposition of peroxynitrite, the toxin involved in numerous diseases. This research focused on the mechanism of that reaction at physiological pH, where peroxynitrite is in equilibrium with its much more reactive conjugated acid, by focusing on the elementary steps involved in the catalytic cycle. Kinetic investigations uncovered the formation of a reaction intermediate in a process that is complete within a few milliseconds (k1 ∼ 3 × 10(7) M(-1) s(-1) at 5 °C, about 7 orders of magnitude larger than the first order rate constant for the non-catalyzed process). Multiple evidence points towards iron-catalyzed homolytic O-O bond cleavage to form nitrogen dioxide and hydroxo- or oxo-iron(iv) corrole. The iron(iv) intermediate was found to decay via multiple pathways that proceed at similar rates (k2 about 10(6) M(-1) s(-1)): reaction with nitrogen dioxide to form nitrate, nitration of the corrole macrocyclic, and dimerization to binuclear iron(iv) corrole. Catalysis in the presence of substrates affects the decay of the iron intermediate by either oxidative nitration (phenolic substrates) or reduction (ascorbate). A large enough excess of ascorbate accelerates the catalytic decomposition of PN by 1-Fe by orders of magnitude, prevents other decay routes of the iron intermediate, and eliminates nitration products as well. This suggests that the beneficial effect of the iron corrole under the reducing conditions present in most biological media might be even larger than in the purely chemical system. The acquired mechanistic insight is of prime importance for the design of optimally acting catalysts for the fast and safe decomposition of reactive oxygen and nitrogen species.
Collapse
|
21
|
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 Department of PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute, Duke University School of Medicine , Durham, North Carolina
| |
Collapse
|
22
|
Bhupathiraju NVSDK, Rizvi W, Batteas JD, Drain CM. Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics. Org Biomol Chem 2016; 14:389-408. [PMID: 26514229 PMCID: PMC6180335 DOI: 10.1039/c5ob01839k] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porphyrinoids are robust heterocyclic dyes studied extensively for their applications in medicine and as photonic materials because of their tunable photophysical properties, diverse means of modifying the periphery, and the ability to chelate most transition metals. Commercial applications include their use as phthalocyanine dyes in optical discs, porphyrins in photodynamic therapy, and as oxygen sensors. Most applications of these dyes require exocyclic moieties to improve solubility, target diseases, modulate photophysical properties, or direct the self-organization into architectures with desired photonic properties. The synthesis of the porphyrinoid depends on the desired application, but the de novo synthesis often involves several steps, is time consuming, and results in low isolated yields. Thus, the application of core porphyrinoid platforms that can be rapidly and efficiently modified to evaluate new molecular architectures allows researchers to focus on the design concepts rather than the synthesis methods, and opens porphyrinoid chemistry to a broader scientific community. We have focused on several widely available, commercially viable porphyrinoids as platforms: meso-perfluorophenylporphyrin, perfluorophthalocyanine, and meso-perfluorophenylcorrole. The perfluorophenylporphyrin is readily converted to the chlorin, bacteriochlorin, and isobacteriochlorin. Derivatives of all six of these core platforms can be efficiently and controllably made via mild nucleophilic aromatic substitution reactions using primary S, N, and O nucleophiles bearing a wide variety of functional groups. The remaining fluoro groups enhance the photo and oxidative stability of the dyes and can serve as spectroscopic signatures to characterize the compounds or in imaging applications using (19)F NMR. This review provides an overview of the chemistry of fluorinated porphyrinoids that are being used as a platform to create libraries of photo-active compounds for applications in medicine and materials.
Collapse
Affiliation(s)
- N V S Dinesh K Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York (CUNY), 695 Park Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
23
|
Mn Porphyrin-Based Redox-Active Therapeutics. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 2015; 5:43-65. [PMID: 25827425 PMCID: PMC4392060 DOI: 10.1016/j.redox.2015.01.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA.
| | - Artak Tovmasyan
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA; PK/PD BioAnalytical Duke Cancer Institute Shared Resource, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
25
|
Saltsman I, Goldberg I, Gross Z. Porphyrins and Corroles with 2,6-Pyrimidyl Substituents. Org Lett 2015; 17:3214-7. [DOI: 10.1021/acs.orglett.5b01297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Irena Saltsman
- Schulich
Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 32000, Israel
| | - Israel Goldberg
- School
of Chemistry, Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Zeev Gross
- Schulich
Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
26
|
Zhang Y, Wen JY, Mahmood MHR, Wang XL, Lv BB, Ying X, Wang H, Ji LN, Liu HY. DNA/HSA interaction and nuclease activity of an iron(III) amphiphilic sulfonated corrole. LUMINESCENCE 2015; 30:1045-54. [PMID: 25736221 DOI: 10.1002/bio.2857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/21/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022]
Abstract
The DNA binding of amphiphilic iron(III) 2,17-bis(sulfonato)-5,10,15-tris(pentafluorophenyl)corrole complex (Fe-SC) was studied using spectroscopic methods and viscosity measurements. Its nuclease-like activity was examined by using pBR322 DNA as a target. The interaction of Fe-SC with human serum albumin (HSA) in vitro was also examined using multispectroscopic techniques. Experimental results revealed that Fe-SC binds to ct-DNA via an outside binding mode with a binding constant of 1.25 × 10(4) M(-1). This iron corrole also displays good activity during oxidative DNA cleavage by hydrogen peroxide or tert-butyl hydroperoxide oxidants, and high-valent (oxo)iron(V,VI) corrole intermediates may play an important role in DNA cleavage. Fe-SC exhibits much stronger binding affinity to site II than site I of HSA, indicating a selective binding tendency to HSA site II. The HSA conformational change induced by Fe-SC was confirmed by UV/Vis and CD spectroscopy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Chemistry, South China University of Technology, Guangzhou, 510640, China
| | - Jin-Yan Wen
- Department of Chemistry, South China University of Technology, Guangzhou, 510640, China
| | - Mian H R Mahmood
- Department of Chemistry, South China University of Technology, Guangzhou, 510640, China
| | - Xiang-Li Wang
- Department of Chemistry, South China University of Technology, Guangzhou, 510640, China
| | - Biao-Biao Lv
- Department of Applied Phsics, South China University of Technology, Guangzhou, 510640, China
| | - Xiao Ying
- Department of Applied Phsics, South China University of Technology, Guangzhou, 510640, China
| | - Hui Wang
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun-Yat Sen University, Guangzhou, 510275, China
| | - Liang-Nian Ji
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun-Yat Sen University, Guangzhou, 510275, China.,MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun-Yat Sen University, Guangzhou, 510275, China
| | - Hai-Yang Liu
- Department of Chemistry, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
27
|
Ribeiro TP, Fernandes C, Melo KV, Ferreira SS, Lessa JA, Franco RWA, Schenk G, Pereira MD, Horn A. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radic Biol Med 2015; 80:67-76. [PMID: 25511255 DOI: 10.1016/j.freeradbiomed.2014.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/31/2022]
Abstract
Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities.
Collapse
Affiliation(s)
- Thales P Ribeiro
- Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro - Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Karen V Melo
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro - Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Sarah S Ferreira
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro - Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Josane A Lessa
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro - Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Roberto W A Franco
- Laboratório de Ciência Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro - Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Marcos D Pereira
- Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil.
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro - Campos dos Goytacazes, 28013-602, RJ, Brazil.
| |
Collapse
|
28
|
Slosky LM, Vanderah TW. Therapeutic potential of peroxynitrite decomposition catalysts: a patent review. Expert Opin Ther Pat 2015; 25:443-66. [PMID: 25576197 DOI: 10.1517/13543776.2014.1000862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Peroxynitrite is a cytotoxic oxidant species implicated in a host of pathologies, including inflammatory and neurodegenerative diseases, cancer, radiation injury and chronic pain. With the recognition of the role of peroxynitrite in disease, numerous experimental and therapeutic tools have arisen to probe peroxyntirite's pathophysiological contribution and attenuate its oxidative damage. Peroxynitrite decomposition catalysts (PNDCs) are redox-active compounds that detoxify peroxynitrite by catalyzing its isomerization or reduction to nitrate or nitrite. AREAS COVERED This review discusses recent research articles and patents published 1995 - 2014 on the development and therapeutic use of PNDCs. Iron and manganese metalloporphyrin PNDCs attenuate the toxic effects of peroxynitrite and are currently being developed for clinical applications. Additionally, some Mn porphyrin-based PNDCs have optimized pharmaceutical properties such that they exhibit greater peroxynitrite selectivity. Other classes of PNDC agents, including bis(hydroxyphenyl)dipyrromethenes and metallocorroles, have demonstrated preclinical efficacy, oral availability and reduced toxicity risk. EXPERT OPINION Interest in the drug-like properties of peroxynitrite-neutralizing agents has grown with the realization that PNDCs will be powerful tools in the treatment of disease. The design of compounds with enhanced oral availability and peroxynitrite selectivity is a critical step toward the availability of safe, effective and selective redox modulators for the treatment of peroxynitrite-associated pathologies.
Collapse
Affiliation(s)
- Lauren M Slosky
- University of Arizona, Department of Pharmacology , Life Science North Rm 621, 1501 North Campbell Ave., Tucson, AZ 85721 , USA
| | | |
Collapse
|
29
|
Haber A, Gross Z. Catalytic antioxidant therapy by metallodrugs: lessons from metallocorroles. Chem Commun (Camb) 2015; 51:5812-27. [DOI: 10.1039/c4cc08715a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article provides a perspective on the utility of metal-based catalytic antioxidants for disease prevention or treatment, with focus on their mode of action and its dependence (DCA) or independence (ICA) on the involvement of cofactors.
Collapse
Affiliation(s)
- Adi Haber
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Technion City
- Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Technion City
- Israel
| |
Collapse
|
30
|
Tovmasyan A, Carballal S, Ghazaryan R, Melikyan L, Weitner T, Maia CC, Reboucas JS, Radi R, Spasojevic I, Benov L, Batinic-Haberle I. Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem 2014; 53:11467-83. [PMID: 25333724 PMCID: PMC4220860 DOI: 10.1021/ic501329p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/06/2023]
Abstract
Our goal herein has been to gain further insight into the parameters which control porphyrin therapeutic potential. Mn porphyrins (MnTnOct-2-PyP(5+), MnTnHexOE-2-PyP(5+), MnTE-2-PyPhP(5+), and MnTPhE-2-PyP(5+)) that bear the same positive charge and same number of carbon atoms at meso positions of porphyrin core were explored. The carbon atoms of their meso substituents are organized to form either linear or cyclic structures of vastly different redox properties, bulkiness, and lipophilicities. These Mn porphyrins were compared to frequently studied compounds, MnTE-2-PyP(5+), MnTE-3-PyP(5+), and MnTBAP(3-). All Mn(III) porphyrins (MnPs) have metal-centered reduction potential, E1/2 for Mn(III)P/Mn(II)P redox couple, ranging from -194 to +340 mV versus NHE, log kcat(O2(•-)) from 3.16 to 7.92, and log kred(ONOO(-)) from 5.02 to 7.53. The lipophilicity, expressed as partition between n-octanol and water, log POW, was in the range -1.67 to -7.67. The therapeutic potential of MnPs was assessed via: (i) in vitro ability to prevent spontaneous lipid peroxidation in rat brain homogenate as assessed by malondialdehyde levels; (ii) in vivo O2(•-) specific assay to measure the efficacy in protecting the aerobic growth of SOD-deficient Saccharomyces cerevisiae; and (iii) aqueous solution chemistry to measure the reactivity toward major in vivo endogenous antioxidant, ascorbate. Under the conditions of lipid peroxidation assay, the transport across the cellular membranes, and in turn shape and size of molecule, played no significant role. Those MnPs of E1/2 ∼ +300 mV were the most efficacious, significantly inhibiting lipid peroxidation in 0.5-10 μM range. At up to 200 μM, MnTBAP(3-) (E1/2 = -194 mV vs NHE) failed to inhibit lipid peroxidation, while MnTE-2-PyPhP(5+) with 129 mV more positive E1/2 (-65 mV vs NHE) was fully efficacious at 50 μM. The E1/2 of Mn(III)P/Mn(II)P redox couple is proportional to the log kcat(O2(•-)), i.e., the SOD-like activity of MnPs. It is further proportional to kred(ONOO(-)) and the ability of MnPs to prevent lipid peroxidation. In turn, the inhibition of lipid peroxidation by MnPs is also proportional to their SOD-like activity. In an in vivo S. cerevisiae assay, however, while E1/2 predominates, lipophilicity significantly affects the efficacy of MnPs. MnPs of similar log POW and E1/2, that have linear alkyl or alkoxyalkyl pyridyl substituents, distribute more easily within a cell and in turn provide higher protection to S. cerevisiae in comparison to MnP with bulky cyclic substituents. The bell-shape curve, with MnTE-2-PyP(5+) exhibiting the highest ability to catalyze ascorbate oxidation, has been established and discussed. Our data support the notion that the SOD-like activity of MnPs parallels their therapeutic potential, though species other than O2(•-), such as peroxynitrite, H2O2, lipid reactive species, and cellular reductants, may be involved in their mode(s) of action(s).
Collapse
Affiliation(s)
- Artak Tovmasyan
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Sebastian Carballal
- Departamento
de Bioquímica and Center for Free Radical and Biomedical
Research, Facultad de Medicina, Universidad
de la República, Montevideo, Uruguay
| | - Robert Ghazaryan
- Department of Organic Chemistry, Faculty
of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Lida Melikyan
- Department of Organic Chemistry, Faculty
of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Tin Weitner
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Clarissa
G. C. Maia
- Departamento de Quimica, CCEN, Universidade
Federal de Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Julio S. Reboucas
- Departamento de Quimica, CCEN, Universidade
Federal de Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical
Research, Facultad de Medicina, Universidad
de la República, Montevideo, Uruguay
| | - Ivan Spasojevic
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ines Batinic-Haberle
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| |
Collapse
|
31
|
Batinic-Haberle I, Tovmasyan A, Roberts ERH, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014; 20:2372-415. [PMID: 23875805 PMCID: PMC4005498 DOI: 10.1089/ars.2012.5147] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
Abstract
SIGNIFICANCE Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·(-); no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. RECENT ADVANCES Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·(-)) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. CRITICAL ISSUES Although log kcat(O2·(-)) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. FUTURE DIRECTIONS Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Emily R. H. Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- King Abdulaziz University, Jeddah, Saudi Arabia Kingdom
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
32
|
Greco JA, Rossi A, Birge RR, Brückner C. A spectroscopic and theoretical investigation of a free-base meso-trithienylcorrole. Photochem Photobiol 2013; 90:402-14. [PMID: 24303811 DOI: 10.1111/php.12203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/25/2013] [Indexed: 11/27/2022]
Abstract
The unique optical properties of free-base meso-tris(5-methylthien-2-yl)corrole were compared to those of the widely investigated meso-triphenyl-substituted analogue. A combination of spectroscopic and computational experiments was undertaken to elucidate the relationship between structural features of the neutral, mono-anionic and mono-cationic forms of the corroles and their corresponding optical properties. A general bathochromic shift was measured for the thienyl-substituted corrole. The experimental spectra are supported by excited state calculations. A systematic series of ground state minimizations were performed to determine energy minima for the flexible and solvent-sensitive molecules. Trithienylcorrole was found to have a more nonplanar macrocycle in conjunction with a high degree of π-overlap with the meso-substituents. Both structural features contribute to their bathochromically shifted optical spectra. The configurational character of the thienyl-substituted corrole is shown to have a larger degree of molecular orbital mixing and doubly excited character, which suggest a more complex electronic structure that does not fully adhere to the Gouterman four-orbital model. The reactivity of the thienyl groups, particularly with respect to their ability to be (electro)-polymerized, combined with the tight coupling of the meso-thienyl groups with the corrole chromophore elucidated in this work, recommends the meso-thienylcorroles as building blocks in, for instance, organic semiconductor devices.
Collapse
Affiliation(s)
- Jordan A Greco
- Department of Chemistry, University of Connecticut, Storrs, CT
| | | | | | | |
Collapse
|
33
|
Haber A, Angel I, Mahammed A, Gross Z. Combating diabetes complications by 1-Fe, a corrole-based catalytic antioxidant. J Diabetes Complications 2013; 27:316-21. [PMID: 23602197 DOI: 10.1016/j.jdiacomp.2013.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/28/2013] [Accepted: 02/12/2013] [Indexed: 01/05/2023]
Abstract
The potent corrole-based ROS/RNS decomposition catalyst 1-Fe was examined regarding its effect on the development of diabetes complications, in parallel with studies that addressed safety and toxicity issues that are crucial for forwarding the compound towards clinical trials. Cardiotoxicity and mutagenic potential were addressed by applying the hERG and AMES tests on 1-Fe, revealing that it is safe enough for further development. General toxicity studies in rats disclosed the appearance of mild adverse effect only at a dose of 300 mg/kg/day. In the streptozotocin-induced rat model of diabetes, 20 mg/kg/day 1-Fe prevented cataract incidents and reduced its severity, displayed a favorable effect on kidney function, and also decreased serum cholesterol and triglyceride levels. Comparisons with alpha lipoic acid, a compound with reported benefits in the same mouse model, indicate that the benefits of 1-Fe are due to the combination of its ability to disarm ROS/RNS and its positive effect on lipid profile.
Collapse
Affiliation(s)
- Adi Haber
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | |
Collapse
|
34
|
Liu HY, Mahmood MHR, Qiu SX(S, Chang CK. Recent developments in manganese corrole chemistry. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.12.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Synthesis, characterization, DNA binding properties and antioxidant activity of a manganese(II) complex with NO6 chromophore. J Inorg Biochem 2013; 118:48-58. [DOI: 10.1016/j.jinorgbio.2012.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/19/2022]
|
36
|
Haber A, Abu-Younis Ali A, Aviram M, Gross Z. Allosteric inhibitors of HMG-CoA reductase, the key enzyme involved in cholesterol biosynthesis. Chem Commun (Camb) 2013; 49:10917-9. [DOI: 10.1039/c3cc44740e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner DS, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract 2012; 22:103-30. [PMID: 23075911 PMCID: PMC3640855 DOI: 10.1159/000341715] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/01/2012] [Indexed: 12/18/2022] Open
Abstract
Based on aqueous redox chemistry and simple in vivo models of oxidative stress, Escherichia coli and Saccharomyces cerevisiae, the cationic Mn(III) N-substituted pyridylporphyrins (MnPs) have been identified as the most potent cellular redox modulators within the porphyrin class of drugs; their efficacy in animal models of diseases that have oxidative stress in common is based on their high ability to catalytically remove superoxide, peroxynitrite, carbonate anion radical, hypochlorite, nitric oxide, lipid peroxyl and alkoxyl radicals, thus suppressing the primary oxidative event. While doing so MnPs could couple with cellular reductants and redox-active proteins. Reactive species are widely accepted as regulators of cellular transcriptional activity: minute, nanomolar levels are essential for normal cell function, while submicromolar or micromolar levels impose oxidative stress, which is evidenced in increased inflammatory and immune responses. By removing reactive species, MnPs affect redox-based cellular transcriptional activity and consequently secondary oxidative stress, and in turn inflammatory processes. The equal ability to reduce and oxidize superoxide during the dismutation process and recently accumulated results suggest that pro-oxidative actions of MnPs may also contribute to their therapeutic effects. All our data identify the superoxide dismutase-like activity, estimated by log k(cat)O2-*), as a good measure for the therapeutic efficacy of MnPs. Their accumulation in mitochondria and their ability to cross the blood-brain barrier contribute to their remarkable efficacy. We summarize herein the therapeutic effects of MnPs in cancer, central nervous system injuries, diabetes, their radioprotective action and potential for imaging. Few of the most potent modulators of cellular redox-based pathways, MnTE2-PyP5+, MnTDE-2-ImP5+, MnTnHex-2-PyP5+ and MnTnBuOE-2-PyP5+, are under preclinical and clinical development.
Collapse
Affiliation(s)
- Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
| | - Tin Weitner
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Amanda Arulpragasam
- Department of Duke University Neuroscience Undergraduate
Program, Duke University Medical Center, Durham, N.C., USA
| | - Miaomiao Lu
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
- Department of Department of Anesthesiology, Second Affiliated
Hospital, Zhengzhou University, Zhengzhou, China
| | - David S. Warner
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham,
N.C., USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| |
Collapse
|
38
|
DNA Binding, Antioxidant Activity, and DNA Damage Protection of Chiral Macrocyclic Mn(III) Salen Complexes. Chirality 2012; 24:1063-73. [DOI: 10.1002/chir.22098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/13/2012] [Indexed: 12/27/2022]
|
39
|
Pap JS, Kripli B, Bors I, Bogáth D, Giorgi M, Kaizer J, Speier G. Transition metal complexes bearing flexible N₃ or N₃O donor ligands: reactivity toward superoxide radical anion and hydrogen peroxide. J Inorg Biochem 2012; 117:60-70. [PMID: 23078775 DOI: 10.1016/j.jinorgbio.2012.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 01/25/2023]
Abstract
Mononuclear complexes of N-methylpropanoate-N,N-bis-(2-pyridylmethyl)amine (MPBMPA) and N-propanoate-N,N-bis-(2-pyridylmethyl)amine (HPBMPA) with first row transition metals from Mn to Cu were synthesized and characterized by spectroscopy (infrared, UV-visible), electrochemistry (cyclic voltammetry), microanalysis and in four cases X-ray crystallography. Structure of the complexes revealed high flexibility of these ligands that can adopt facial (Fe) and meridional (Cu) geometry. Activity in the degradation of reactive oxygen species (superoxide radical anion: superoxide dismutase (SOD)-like activity and hydrogen peroxide: catalase-like activity) was tested throughout the complex series in aqueous solutions. In connection with the catalytic dismutation of H(2)O(2), bleaching tests with morin were also conducted in water. Comparison of the two ligands helped in elucidating the possible role of the carboxylate moiety in the different catalytic reactions. Although no general trends could be revealed between reactivity and constitution of the first coordination sphere, plausible explanations for differences are discussed individually for SOD like, catalase-like and bleaching activity.
Collapse
Affiliation(s)
- József S Pap
- Department of Chemistry, University of Pannonia, 8201 Veszprém, Hungary
| | | | | | | | | | | | | |
Collapse
|
40
|
Okun Z, Gross Z. Fine Tuning the Reactivity of Corrole-Based Catalytic Antioxidants. Inorg Chem 2012; 51:8083-90. [DOI: 10.1021/ic300408s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zoya Okun
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
41
|
Rajic Z, Tovmasyan A, Spasojevic I, Sheng H, Lu M, Li AM, Gralla EB, Warner DS, Benov L, Batinic-Haberle I. A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity. Free Radic Biol Med 2012; 52:1828-34. [PMID: 22336516 PMCID: PMC3353805 DOI: 10.1016/j.freeradbiomed.2012.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/17/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022]
Abstract
The Mn porphyrins of k(cat)(O(2)(.-)) as high as that of a superoxide dismutase enzyme and of optimized lipophilicity have already been synthesized. Their exceptional in vivo potency is at least in part due to their ability to mimic the site and location of mitochondrial superoxide dismutase, MnSOD. MnTnHex-2-PyP(5+) is the most studied among lipophilic Mn porphyrins. It is of remarkable efficacy in animal models of oxidative stress injuries and particularly in central nervous system diseases. However, when used at high single and multiple doses it becomes toxic. The toxicity of MnTnHex-2-PyP(5+) has been in part attributed to its micellar properties, i.e., the presence of polar cationic nitrogens and hydrophobic alkyl chains. The replacement of a CH(2) group by an oxygen atom in each of the four alkyl chains was meant to disrupt the porphyrin micellar character. When such modification occurs at the end of long alkyl chains, the oxygens become heavily solvated, which leads to a significant drop in the lipophilicity of porphyrin. However, when the oxygen atoms are buried deeper within the long heptyl chains, their excessive solvation is precluded and the lipophilicity preserved. The presence of oxygens and the high lipophilicity bestow the exceptional chemical and physical properties to Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP(5+). The high SOD-like activity is preserved and even enhanced: log k(cat)(O(2)(.-))=7.83 vs 7.48 and 7.65 for MnTnHex-2-PyP(5+) and MnTnHep-2-PyP(5+), respectively. MnTnBuOE-2-PyP(5+) was tested in an O(2)(.-) -specific in vivo assay, aerobic growth of SOD-deficient yeast, Saccharomyces cerevisiae, where it was fully protective in the range of 5-30 μM. MnTnHep-2-PyP(5+) was already toxic at 5 μM, and MnTnHex-2-PyP(5+) became toxic at 30 μM. In a mouse toxicity study, MnTnBuOE-2-PyP(5+) was several-fold less toxic than either MnTnHex-2-PyP(5+) or MnTnHep-2-PyP(5+).
Collapse
Affiliation(s)
- Zrinka Rajic
- Department of Radiation Oncology, Duke University Medical Center, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, NC 27710, USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center, NC 27710, USA
| | - Miaomiao Lu
- Department of Anesthesiology, Duke University Medical Center, NC 27710, USA
- Department of Anesthesiology, Second Affiliated Hospital, Zhengzhou University, Henan, China
| | - Alice M. Li
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | - Edith B. Gralla
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | - David S. Warner
- Department of Anesthesiology, Duke University Medical Center, NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, 13110 Safat, Kuwait
| | | |
Collapse
|
42
|
Ghosh A, Ravikanth M. Synthesis, Structure, Spectroscopic, and Electrochemical Properties of Highly Fluorescent Phosphorus(V)-meso-Triarylcorroles. Chemistry 2012; 18:6386-96. [DOI: 10.1002/chem.201103226] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/27/2012] [Indexed: 11/07/2022]
|
43
|
Superoxide signaling and cell death in retinal ganglion cell axotomy: effects of metallocorroles. Exp Eye Res 2012; 97:31-5. [PMID: 22366296 DOI: 10.1016/j.exer.2012.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/09/2012] [Indexed: 11/24/2022]
Abstract
Injury to retinal ganglion cell (RGC) axons within the optic nerve causes apoptosis of the soma. We previously demonstrated that in vivo axotomy causes elevation of superoxide anion within the RGC soma, and that this occurs 1-2 days before annexin-V positivity, a marker of apoptosis. Pegylated superoxide dismutase delivery to the RGC prevents the superoxide elevation and rescues the soma. Together, these results imply that superoxide is an upstream signal for apoptosis after axonal injury in RGCs. We then studied metallocorroles, potent superoxide dismutase mimetics, which we had shown to be neuroprotective in vitro and superoxide scavengers in vivo for RGCs. RGCs were retrograde labeled with the fluorescent dye 4Di-10Asp, and then axotomized by intraorbital optic nerve transection. Iron(III) 2,17-bis-sulfonato-5,10,15-tris(pentafluorophenyl)corrole (Fe(tpfc)(SO(3)H)(2)) (Fe-corrole) was injected intravitreally. Longitudinal imaging of RGCs was performed and the number of surviving RGCs enumerated. There was significantly greater survival of labeled RGCs with Fe-corrole, but the degree of neuroprotection was relatively less than that predicted by their ability to scavenge superoxide-This implies an unexpected complexity in signaling of apoptosis by reactive oxygen species.
Collapse
|
44
|
Haber A, Aviram M, Gross Z. Variables that influence cellular uptake and cytotoxic/cytoprotective effects of macrocyclic iron complexes. Inorg Chem 2011; 51:28-30. [PMID: 22148393 DOI: 10.1021/ic202204u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determination of the cellular uptake of macrocyclic iron(III) complexes by a facile method, accompanied by cell viability tests under both basal and induced oxidative stress, demonstrates that protection against intracellular oxidative stress requires reasonably high internalization and favorable anti/prooxidant profiles. Of the four tested complexes, only amphipolar iron(III) corrole met these criteria.
Collapse
Affiliation(s)
- Adi Haber
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | |
Collapse
|
45
|
Rausaria S, Ghaffari MME, Kamadulski A, Rodgers K, Bryant L, Chen Z, Doyle T, Shaw MJ, Salvemini D, Neumann WL. Retooling manganese(III) porphyrin-based peroxynitrite decomposition catalysts for selectivity and oral activity: a potential new strategy for treating chronic pain. J Med Chem 2011; 54:8658-69. [PMID: 22082008 DOI: 10.1021/jm201233r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Redox-active metalloporphyrins represent the most well-characterized class of catalysts capable of attenuating oxidative stress in vivo through the direct interception and decomposition of superoxide and peroxynitrite. While many interesting pharmacological probes have emerged from these studies, few catalysts have been developed with pharmaceutical properties in mind. Herein, we describe our efforts to identify new Mn(III)-porphyrin systems with enhanced membrane solubilizing properties. To this end, seven new Mn(III)-tetracyclohexenylporphyin (TCHP) analogues, 7, 10, 12, 15, and 16a-c, have been prepared in which the beta-fused cyclohexenyl rings provide a means to shield the charged metal center from the membrane during passive transport. Compounds 7, 15, and 16a-c have been shown to be orally active and potent analgesics in a model of carrageenan-induced thermal hyperalgesia. In addition, oral administration of compound 7 (10-100 mg/kg, n=5) has been shown to dose dependently reverse mechano-allodynia in the CCI model of chronic neuropathic pain.
Collapse
Affiliation(s)
- Smita Rausaria
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University, Edwardsville, Illinois 62026, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dmitriev RI, Ropiak HM, Ponomarev GV, Yashunsky DV, Papkovsky DB. Cell-Penetrating Conjugates of Coproporphyrins with Oligoarginine Peptides: Rational Design and Application for Sensing Intracellular O2. Bioconjug Chem 2011; 22:2507-18. [DOI: 10.1021/bc200324q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ruslan I. Dmitriev
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building,
Cork, Ireland
| | - Honorata M. Ropiak
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building,
Cork, Ireland
| | - Gelii V. Ponomarev
- Institute
of Biomedical Chemistry, Russian Academy of Medical Sciences, Pogodinskaia Ul.
10/2, 119992 Moscow, Russia
| | - Dmitri V. Yashunsky
- Institute
of Biomedical Chemistry, Russian Academy of Medical Sciences, Pogodinskaia Ul.
10/2, 119992 Moscow, Russia
| | - Dmitri B. Papkovsky
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building,
Cork, Ireland
| |
Collapse
|
47
|
Pap JS, Kripli B, Váradi T, Giorgi M, Kaizer J, Speier G. Comparison of the SOD-like activity of hexacoordinate Mn(II), Fe(II) and Ni(II) complexes having isoindoline-based ligands. J Inorg Biochem 2011; 105:911-8. [DOI: 10.1016/j.jinorgbio.2011.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/11/2011] [Accepted: 01/31/2011] [Indexed: 11/29/2022]
|
48
|
Tovmasyan AG, Rajic Z, Spasojevic I, Reboucas JS, Chen X, Salvemini D, Sheng H, Warner DS, Benov L, Batinic-Haberle I. Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(III) N-methoxyalkylpyridylporphyrins. Dalton Trans 2011; 40:4111-21. [PMID: 21384047 PMCID: PMC3652547 DOI: 10.1039/c0dt01321h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic Mn(III) N-alkylpyridylporphyrins (MnPs) are potent SOD mimics and peroxynitrite scavengers and diminish oxidative stress in a variety of animal models of central nervous system (CNS) injuries, cancer, radiation, diabetes, etc. Recently, properties other than antioxidant potency, such as lipophilicity, size, shape, and bulkiness, which influence the bioavailability and the toxicity of MnPs, have been addressed as they affect their in vivo efficacy and therapeutic utility. Porphyrin bearing longer alkyl substituents at pyridyl ring, MnTnHex-2-PyP(5+), is more lipophilic, thus more efficacious in vivo, particularly in CNS injuries, than the shorter alkyl-chained analog, MnTE-2-PyP(5+). Its enhanced lipophilicity allows it to accumulate in mitochondria (relative to cytosol) and to cross the blood-brain barrier to a much higher extent than MnTE-2-PyP(5+). Mn(III) N-alkylpyridylporphyrins of longer alkyl chains, however, bear micellar character, and when used at higher levels, become toxic. Recently we showed that meta isomers are ∼10-fold more lipophilic than ortho species, which enhances their cellular accumulation, and thus reportedly compensates for their somewhat inferior SOD-like activity. Herein, we modified the alkyl chains of the lipophilic meta compound, MnTnHex-3-PyP(5+) via introduction of a methoxy group, to diminish its toxicity (and/or enhance its efficacy), while maintaining high SOD-like activity and lipophilicity. We compared the lipophilic Mn(III) meso-tetrakis(N-(6'-methoxyhexyl)pyridinium-3-yl)porphyrin, MnTMOHex-3-PyP(5+), to a hydrophilic Mn(III) meso-tetrakis(N-(2'-methoxyethyl)pyridinium-3-yl)porphyrin, MnTMOE-3-PyP(5+). The compounds were characterized by uv-vis spectroscopy, mass spectrometry, elemental analysis, electrochemistry, and ability to dismute O(2)˙(-). Also, the lipophilicity was characterized by thin-layer chromatographic retention factor, R(f). The SOD-like activities and metal-centered reduction potentials for the Mn(III)P/Mn(II)P redox couple were similar-to-identical to those of N-alkylpyridyl analogs: log k(cat) = 6.78, and E(1/2) = +68 mV vs. NHE (MnTMOHex-3-PyP(5+)), and log k(cat) = 6.72, and E(1/2) = +64 mV vs. NHE (MnTMOE-3-PyP(5+)). The compounds were tested in a superoxide-specific in vivo model: aerobic growth of SOD-deficient E. coli, JI132. Both MnTMOHex-3-PyP(5+) and MnTMOE-3-PyP(5+) were more efficacious than their alkyl analogs. MnTMOE-3-PyP(5+) is further significantly more efficacious than the most explored compound in vivo, MnTE-2-PyP(5+). Such a beneficial effect of MnTMOE-3-PyP(5+) on diminished toxicity, improved efficacy and transport across the cell wall may originate from the favorable interplay of the size, length of pyridyl substituents, rotational flexibility (the ortho isomer, MnTE-2-PyP(5+), is more rigid, while MnTMOE-3-PyP(5+) is a more flexible meta isomer), bulkiness and presence of oxygen.
Collapse
Affiliation(s)
- Artak G. Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA. Fax: +1 919-684-8718; Tel: +1 919-684-2101
| | - Zrinka Rajic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA. Fax: +1 919-684-8718; Tel: +1 919-684-2101
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Julio S. Reboucas
- Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Joao Pessoa PB 58051-970, Brazil
| | - Xin Chen
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO, 63104, USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - David S. Warner
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, 13110, Safat, Kuwait
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA. Fax: +1 919-684-8718; Tel: +1 919-684-2101
| |
Collapse
|
49
|
Iranzo O. Manganese complexes displaying superoxide dismutase activity: A balance between different factors. Bioorg Chem 2011; 39:73-87. [DOI: 10.1016/j.bioorg.2011.02.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/05/2023]
|
50
|
Schwalbe M, Dogutan DK, Stoian SA, Teets TS, Nocera DG. Xanthene-Modified and Hangman Iron Corroles. Inorg Chem 2011; 50:1368-77. [DOI: 10.1021/ic101943h] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Schwalbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dilek K. Dogutan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sebastian A. Stoian
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas S. Teets
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel G. Nocera
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|