1
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
2
|
Xu W, Nie C, Li Z, Qiu S, Xiang J, Zhou Y, Tomasevic I, Sun W. Effect of green tea or black tea extract on lipid and protein oxidation in Cantonese sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39390704 DOI: 10.1002/jsfa.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Natural polyphenols offer a safer alternative to synthetic antioxidants in meat products. This study investigated the efficacy of green tea and black tea extracts as natural antioxidants in Cantonese sausages to inhibit lipid and protein oxidation. RESULTS Sausages were prepared with the addition of different concentrations - 100, 300, and 600 mg kg-1 total polyphenols (TP) - of green tea or black tea extract. Oxidation of the sausages was assessed through thiobarbituric acid reactants, carbonyl content, and thiol content, whereas consumer acceptability was evaluated based on texture, color, and sensory analysis. The tea extracts inhibited malondialdehyde production and reduced the thiobarbituric acid reactive substance value from 23.72 mmol MDA g-1 to less than 1.94 mmol MDA g-1. However, the addition of tea extracts decreased the thiol content and caused the loss of myosin heavy chain and actin bonds in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Although the addition of tea extracts increased the redness and hardness of the sausage, no significant difference in consumer acceptance between the control and treatment groups was observed in the sensory analysis. CONCLUSION The tea extract inhibited the oxidation of lipids in Cantonese sausage. There was no negative effect on the sensory characteristics of sausages. The use of tea extracts as natural antioxidants in Cantonese sausage is therefore feasible. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weibing Xu
- Guangzhou Restaurant Enterprises Group Likofu Foodstuff Co., Ltd., Guangzhou, China
- Guangzhou Restaurant Group Co., Ltd., Guangzhou, China
| | - Chunlin Nie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhicheng Li
- Guangzhou Restaurant Enterprises Group Likofu Foodstuff Co., Ltd., Guangzhou, China
| | - Shuxian Qiu
- Guangzhou Restaurant Enterprises Group Likofu Foodstuff Co., Ltd., Guangzhou, China
| | - Junyi Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Qingyuan Food Inspection Center, Qingyuan, China
| | - Yongqiang Zhou
- Guangzhou Restaurant Enterprises Group Likofu Foodstuff Co., Ltd., Guangzhou, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- DIL German Institute of Food Technologies, Quakenbruck, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Kuhnert N. Children of Nature: Thoughts on Targeted and Untargeted Analytical Approaches to Decipher Polyphenol Reactivity in Food Processing and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17695-17705. [PMID: 39101581 PMCID: PMC11328182 DOI: 10.1021/acs.jafc.3c09211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Following 25 years of polyphenol research in our laboratory, the astonishing chemical and metabolic reactivity of polyphenols resulting in considerable chemical diversity has emerged as the most remarkable attribute of this class of natural products. To illustrate this concept, we will present selected data from black tea and coffee chemistry. In black tea chemistry, enzymatic fermentation converts six catechin derivatives into an estimated 30 000 different polyphenolic compounds via a process we have termed the oxidative cascade process. In coffee roasting, around 45 chlorogenic acids are converted into an estimated 250 novel derivatives following a series of diverse chemical transformations. Following ingestion by humans, these dietary polyphenols, whether genuine secondary metabolites or food processing products, encounter the microorganisms of the gut microbiota, converting them into a myriad of novel structures. In the case of coffee, only two out of 250 chlorogenic acids are absorbed intact, with most others being subject to gut microbial metabolism. Modern mass spectrometry (MS) has been key in unravelling the true complexity of polyphenols subjected to food processing and metabolism. We will accompany this assay with a short overview on analytical strategies developed, including ultrahigh-resolution MS, tandem MS, multivariate statistics, and molecular networking that allow an insight into the fascinating chemical processes surrounding dietary polyphenols. Finally, experimental results studying biological activity of polyphenols will be presented and discussed, highlighting a general promiscuity of this class of compounds associated with nonselective protein binding leading to loss of enzymatic function, another noteworthy general property of many dietary polyphenols frequently overlooked.
Collapse
Affiliation(s)
- Nikolai Kuhnert
- School of Science, Constructor University, Campusring 8, 28759 Bremen, Germany
| |
Collapse
|
4
|
Wang GX, Fei WC, Zhi LL, Bai XD, You B. Fermented tea leave extract against oxidative stress and ageing of skin in vitro and in vivo. Int J Cosmet Sci 2024. [PMID: 39119798 DOI: 10.1111/ics.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE The objective is to develop a natural and stable anti-oxidative stress and anti-ageing ingredient. In this study, we evaluated the changes in white tea leaves fermented with Eurotium cristatum PLT-PE and Saccharomyces boulardii PLT-HZ and their efficacy against skin oxidative stress. METHODS We employed untargeted metabolomics technology to analyse the differential metabolites between tea extract (TE) and fermented tea extract (FTE). In vitro, using H2O2-induced HaCaT cells, we evaluated cell vitality, ROS, and inflammatory factors (TNF-α, IL-1β, and IL-6). Additionally, we verified the effects on the extracellular matrix and nuclear DNA using fibroblasts or reconstructed skin models. We measured skin hydration, elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio in volunteers after using an emulsion containing 3% FTE for 28 and 56 days. RESULTS Targeted metabolomics analysis of white tea leaves yielded more than 20 differential metabolites with antioxidant and anti-inflammatory activities, including amino acids, polypeptides, quercetin, and liquiritin post-fermentation. FTE, compared to TE, can significantly reduce reactive oxygen species (ROS) and protect against oxidative stress-induced skin damage in H2O2-induced HaCaT cells. FTE can inhibit H2O2-induced collagen degradation by suppressing the MAPK/c-Jun signalling pathway and can also mitigate the reactive oxygen species damage to nuclear DNA. Clinical studies showed that the volunteers' stratum corneum water content, skin elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio significantly improved from the baseline after 28 and 56 days of FTE use. CONCLUSION This study contributes to the growing body of literature supporting the protective effects against skin oxidative stress and ageing from fermented plant extracts. Moreover, our findings might inspire multidisciplinary efforts to investigate new fermentation techniques that could produce even more potent anti-ageing solutions.
Collapse
Affiliation(s)
| | - Wei-Cheng Fei
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | | | - Xue-Dong Bai
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | | |
Collapse
|
5
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Muniandy Y, Mohamad S, Raoov M. Green and efficient magnetic micro-solid phase extraction utilizing tea waste impregnated with magnetic nanoparticles for the analysis of ibuprofen in water samples by using UV-vis spectrophotometry. RSC Adv 2024; 14:11977-11985. [PMID: 38623288 PMCID: PMC11017375 DOI: 10.1039/d4ra00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
A green method based on magnetic micro-solid phase extraction (MNP-TW-μ-SPE) of tea waste impregnated with magnetic nanoparticles (MNP-TW) was developed for the extraction of ibuprofen (IBP) in water samples prior to UV-Vis spectrophotometric analysis. Experimenting parameters that affect the extraction efficiency of IBP, such as pH of the sample solution, sorbent dosage, extraction time, ionic strength, volume of the sample, type of desorption solvent, desorption time, and desorption volume, were studied and optimized in detail. The characterization studies for the MNP-TW were carried out by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectrometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, a vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Under the optimum conditions, the linearity ranges from 30 to 700 μg L-1 for IBP, with determination coefficients (R2) of 0.9983. The limit of detection (LOD) and limit of quantification (LOQ) were 9.40 μg L-1 and 28.50 μg L-1, respectively. The method also demonstrated good precision in reproducibility (RSD ≤ 1.53%), repeatability (RSD ≤ 1.48%), and recovery (86-115%). This method represents the advantages of low solvent consumption, flexibility, and better sensitivity compared to other studies employing spectrophotometric analysis. The usage of tea waste in the extraction process presents many advantages, as it is biodegradable, versatile, and contributes to an intelligent and sustainable economic strategy projected toward a circular economy approach.
Collapse
Affiliation(s)
- Yagulan Muniandy
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
7
|
Su W, Ni L, Chen Y, Wang D, Lin CC, Liu Y, Liu Z. Multidimensional exploration of the bitterness amelioration effect of roasting on Wuyi Rock tea. Food Chem 2024; 437:137954. [PMID: 37952394 DOI: 10.1016/j.foodchem.2023.137954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The influence of roasting on tea bitterness remains unclear. With Wuyi Rock tea (WRT) as an example, this study investigated the impact of roasting on WRT's bitterness, utilizing an integrated approach involving sensory evaluation, bitter compound profiling, and cell-based calcium imaging. Sensory analysis revealed that roasting effectively reduced the perceived bitterness of WRT. This reduction was supported by decreases in various bitter compounds, including 19 flavanols, 11 flavonols, 12 phenolic acids, 2 purine alkaloids, and 9 bitter amino acids, which diminished by 16%, 26%, 19%, 2%, and 70%, respectively. Furthermore, we established two heterogeneous bitter receptor expression systems: TAS2R39/Gα15-HEK293T and TAS2R14/Gα15-HEK293T cell lines. These systems quantitatively confirmed the reduction in bitterness, demonstrating 51% and 62% decreases in intracellular calcium mobilization within the transfected cells, respectively. These findings provide compelling evidence for the bitterness-ameliorating effect of roasting, expanding our knowledge of the role of roasting in shaping the flavor of tea.
Collapse
Affiliation(s)
- Weiying Su
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yizhe Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Daoliang Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, Province of China, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
8
|
Dai F, Lv K, Zhang B, Zhao J, Wang S, Lan K, Zhao Y, Zhang X, Kan B. Overcoming the structure deficiency of nanodrug coated with tannic acid shell through phenolic hydroxyl protection strategy for Alzheimer's disease combination treatment. BIOMATERIALS ADVANCES 2023; 154:213651. [PMID: 37827021 DOI: 10.1016/j.bioadv.2023.213651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Tannic acid (TA) shell is of great interest for nanodrug design due to its versatile application such as antioxidant, antibacterial, anti-inflammatory. However, evidence is emerging that TA air oxidation in storage stage and unfavorable interactions of TA with electrolyte or protein in drug delivery could bring great challenge for the structure stability of nanodrug. In this study, a smart TA shell of nanomicelles was constructed through phenolic hydroxyl protection strategy, and the antioxidant capacity of nanomicelles maintain stable after 24 days storage. The phenolic hydroxyl protective tannic acid micelles (PHPTA micelles) show excellent performance for combination delivery of azoramide (Azo), dantrolene (Dan), Trazodone (Tra) in accelerated senescence (SAMP8) mice. This study may pave the way for the fabrication of nanodrugs with stable and smart TA shell for oxidative stress relevant diseases.
Collapse
Affiliation(s)
- Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Kepeng Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bo Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ke Lan
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaolei Zhang
- Hebei Research Centre of Analysis and Testing, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Bohong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| |
Collapse
|
9
|
Gui X, Feng X, Tang M, Li J. Aroma Difference Analysis of Partridge Tea ( Mallotus oblongifolius) with Different Drying Treatments Based on HS-SPME-GC-MS Technique. Molecules 2023; 28:6836. [PMID: 37836679 PMCID: PMC10574705 DOI: 10.3390/molecules28196836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Partridge tea has high medicinal value due to its rich content of terpenoids, phenols, flavonoids, and other related bioactive components. In order to study the best drying method for partridge tea, four treatments, including outdoor sun drying (OD), indoor shade drying (ID), hot-air drying (HAD), and low-temperature freeze-drying (LTD), were performed. The results showed that the OD and HAD treatments favored the retention of the red color of their products, while the ID and LTD treatments were more favorable for the retention of the green color. The HS-SPME-GC-MS results showed that a total of 82 compounds were identified in the four drying treatments of partridge tea, and the most abundant compounds were terpenoids (88.34-89.92%). The HAD-treated tea had the highest terpenoid content (89.92%) and high levels of flavor compounds typical of partridge tea (52.28%). OPLS-DA and PCA showed that α-copaene, β-bourbonene, caryophyllene, α-guaiene, and δ-cadinene could be considered candidate marker compounds for judging the aroma quality of partridge tea with different drying treatments. This study will not only provide a basis for processing and flavor quality control but also for spice and seasoning product development in partridge tea.
Collapse
Affiliation(s)
| | | | | | - Juanling Li
- Hainan Key Laboratory of Biology of Tropical Flowers and Trees Resources, Forestry Institute, Hainan University, Haikou 570228, China; (X.G.); (X.F.); (M.T.)
| |
Collapse
|
10
|
Sun L, Su Y, Hu K, Li D, Guo H, Xie Z. Microbial-Transferred Metabolites of Black Tea Theaflavins by Human Gut Microbiota and Their Impact on Antioxidant Capacity. Molecules 2023; 28:5871. [PMID: 37570841 PMCID: PMC10420933 DOI: 10.3390/molecules28155871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Theaflavins (TFs), the primary bioactive components in black tea, are poorly absorbed in the small intestine. However, the biological activity of TFs does not match their low bioavailability, which suggests that the gut microbiota plays a crucial role in their biotransformation and activities. In this study, we aimed to investigate the biotransferred metabolites of TFs produced by the human gut microbiota and these metabolites' function. We profiled the microbial metabolites of TFs by in vitro anaerobic human gut microbiota fermentation using liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. A total of 17 microbial metabolites were identified, and their corresponding metabolic pathways were proposed. Moreover, full-length 16S rRNA gene sequence analysis revealed that the TFs altered the gut microbiota diversity and increased the relative abundance of specific members of the microbiota involved in the catabolism of the TFs, including Flavonifractor_plautii, Bacteroides_uniformis, Eubacterium_ramulus, etc. Notably, the antioxidant capacity of the TF sample increased after fermentation compared to the initial sample. In conclusion, the results contribute to a more comprehensive understanding of the microbial metabolites and antioxidant capacity of TFs.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.S.); (D.L.); (H.G.)
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.S.); (K.H.)
| | - You Su
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.S.); (K.H.)
| | - Kaiyin Hu
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.S.); (K.H.)
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.S.); (D.L.); (H.G.)
| | - Huimin Guo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.S.); (D.L.); (H.G.)
- Center for Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.S.); (D.L.); (H.G.)
| |
Collapse
|
11
|
Dai YH, Wei JR, Chen XQ. Interactions between tea polyphenols and nutrients in food. Compr Rev Food Sci Food Saf 2023; 22:3130-3150. [PMID: 37195216 DOI: 10.1111/1541-4337.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Tea polyphenols (TPs) are important secondary metabolites in tea and are active in the food and drug industry because of their rich biological activities. In diet and food production, TPs are often in contact with other food nutrients, affecting their respective physicochemical properties and functional activity. Therefore, the interaction between TPs and food nutrients is a very important topic. In this review, we describe the interactions between TPs and food nutrients such as proteins, polysaccharides, and lipids, highlight the forms of their interactions, and discuss the changes in structure, function, and activity resulting from their interactions.
Collapse
Affiliation(s)
- Yi-Hui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Jia-Ru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiao-Qiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
12
|
Yeh SL, Deval P, Tsai WB. Fabrication of Transparent PEGylated Antifouling Coatings via One-Step Pyrogallol Deposition. Polymers (Basel) 2023; 15:2731. [PMID: 37376377 DOI: 10.3390/polym15122731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Antifouling coatings are critical for many biomedical devices. A simple and universal technique used to anchor antifouling polymers is important in order to expand its applications. In this study, we introduced the pyrogallol (PG)-assisted immobilization of poly(ethylene glycol) (PEG) to deposit a thin antifouling layer on biomaterials. Briefly, biomaterials were soaked in a PG/PEG solution and PEG was immobilized onto the biomaterial surfaces via PG polymerization and deposition. The kinetics of PG/PEG deposition started with the deposition of PG on the substrates, followed by the addition of a PEG-rich adlayer. However, prolonged coating added a top-most PG-rich layer, which deteriorated the antifouling efficacy. By controlling the amounts of PG and PEG and the coating time, the PG/PEG coating was able to reduce more than 99% of the adhesion of L929 cells and the adsorption of fibrinogen. The ultrathin (tens of nanometers) and smooth PG/PEG coating was easily deposited onto a wide variety of biomaterials, and the deposition was robust enough to survive harsh sterilization conditions. Furthermore, the coating was highly transparent and allowed most of the UV and Vis light to pass through. The technique has great potential to be applied to biomedical devices that need a transparent antifouling coating, such as intraocular lenses and biosensors.
Collapse
Affiliation(s)
- Shang-Lin Yeh
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Piyush Deval
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
13
|
Variation in the Optical Properties of PEO-Based Composites via a Green Metal Complex: Macroscopic Measurements to Explain Microscopic Quantum Transport from the Valence Band to the Conduction Band. Polymers (Basel) 2023; 15:polym15030771. [PMID: 36772071 PMCID: PMC9920557 DOI: 10.3390/polym15030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/07/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, a green chemistry method was used to synthesize polymer composites based on polyethylene oxide (PEO). The method of the remediation of metal complexes used in this study is an environmentally friendly procedure with a low cost. Zinc metal ion (Zn2+)-polyphenol (PPHNL) complexes were synthesized for two minutes via the combination of a black tea leaf (BTL) extract solution with dissolved Zn-acetate. Then, UV-Vis and FTIR were carried out for the Zn-PPHNL complexes in a liquid and solid. The FTIR spectra show that BTLs contain sufficient functional groups (O-H, C-H, C=O, C=C, C-O, C-N, and N-H), PPHNL, and conjugated double bonds to produce metal complexes by capturing the cations of Zn-acetate salt. Moreover, FTIR of the BTL and Zn-PPHNL complexes approves the formation of the Zn-PPHNL complex over the wide variation in the intensity of bands. The UV absorption spectra of BTL and Zn-PPHNL indicate complex formation among tea PPHNL and Zn cations, which enhances the absorption spectra of the Zn-PPHNL to 0.1 compared to the figure of 0.01 associated with the extracted tea solution. According to an XRD analysis, an amorphous Zn-PPHNL complex was created when Zn2+ ions and PPHNL interacted. Additionally, XRD shows that the structure of the PEO composite becomes a more amorphous structure as the concentration of Zn-PPHNL increases. Furthermore, morphological study via an optical microscope (OM) shows that by increasing the concentration of Zn-PPHNL in a PEO polymer composite the size of the spherulites ascribed to the crystalline phase dramatically decreases. The optical properties of PEO: Zn-PPHNL films, via UV-Vis spectroscopy, were rigorously studied. The Eg is calculated by examining the dielectric loss, which is reduced from 5.5 eV to 0.6 eV by increasing the concentration of Zn-PPHNL in the PEO samples. In addition, Tauc's form was used to specify the category of electronic transitions in the PEO: Zn-PPHNL films. The impact of crystalline structure and morphology on electronic transition types was discussed. Macroscopic measurable parameters, such as the refractive index and extinction coefficient, were used to determine optical dielectric loss. Fundamental optical dielectric functions were used to determine some key parameters. From the viewpoint of quantum transport, electron transitions were discussed. The merit of this work is that microscopic processes related to electron transition from the VB to the CB can be interpreted interms of measurable macroscopic quantities.
Collapse
|
14
|
Neuroprotective effects of fermented tea in MPTP-induced Parkinson's disease mouse model via MAPK signaling-mediated regulation of inflammation and antioxidant activity. Food Res Int 2023; 164:112133. [PMID: 36737888 DOI: 10.1016/j.foodres.2022.112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by dopaminergic neuronal damage. In this study, three tea extracts from Hadong, Korea, were evaluated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity damage model (C57BL/6 mice) for their therapeutic effects against PD: green tea (GT), semi-fermented tea (SFT), and fermented tea (FT). Theaflavin content in the teas increased but catechin content decreased with the degree of fermentation. In addition, SFT showed the highest theanine and γ-aminobutyric acid contents. SFT at a concentration of 25 μg/mL showed the highest activity in the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay among all samples. Furthermore, the 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activity of 25 μg/mL SFT was higher than that of l-ascorbic acid. Fermented tea suppressed the expression of inflammatory cytokines, such as interleukin-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, cyclooxygenase-2, and macrophage-1, as well as inhibited overexpression of apoptotic signals, including p-53, cleaved caspase-3, and poly (ADP-ribose) polymerase-1. Moreover, GT, SFT, and FT regulated the MPTP-induced oxidative stress-related factors, including superoxide dismutase, glutathione-S-transferase, and nicotinamide adenine dinucleotide phosphate oxidase 4. Fermented tea also alleviated MPTP-induced behavioral impairment and dopaminergic neuronal damage and reduced α-synuclein levels. These results indicate that fermented tea is effective for the treatment of neuro-inflammatory, neuro-apoptotic, and neuro-oxidative disorders.
Collapse
|
15
|
Di Pede G, Mena P, Bresciani L, Almutairi TM, Del Rio D, Clifford MN, Crozier A. Human colonic catabolism of dietary flavan-3-ol bioactives. Mol Aspects Med 2023; 89:101107. [PMID: 35931563 DOI: 10.1016/j.mam.2022.101107] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023]
Abstract
Understanding the fate of ingested polyphenols is crucial in elucidating the molecular mechanisms underlying the beneficial effects of a fruit and vegetable-based diet. This review focuses on the colon microbiota-mediated transformation of the flavan-3-ols and the structurally related procyanidins found in dietary plant foods and beverages, plus the flavan-3-ol-derived theaflavins of black tea, and the post-absorption phase II metabolism of the gut microbiota catabolites. Despite significant advances in the last decade major analytical challenges remain. Strategies to address them are presented.
Collapse
Affiliation(s)
- Giuseppe Di Pede
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125, Parma, Italy
| | - Tahani M Almutairi
- Department of Chemistry, King Saud University, Riyadh, 11363, Saudi Arabia
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK; Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Victoria, 3168, Australia
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, 11363, Saudi Arabia; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
16
|
Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics. J Colloid Interface Sci 2022; 617:409-421. [DOI: 10.1016/j.jcis.2022.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
|
17
|
Sajjadieh khajouui AR, Najafian J, Talebzadeh R, Nejati M, Behjati M. The relationship between regular tea drinking and calcification of the coronary arteries. J Cardiovasc Thorac Res 2022; 14:95-100. [PMID: 35935391 PMCID: PMC9339727 DOI: 10.34172/jcvtr.2022.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Introduction: Coronary Atherosclerosis is the leading cause of death and disability worldwide. Atherosclerosis could be detected noninvasively by coronary calcification, measured by calcium score in CT angiography. Dietary factors are influential in the evolution of coronary plaques, and one of the most prevalent drinks is black tea. We aimed to evaluate the effects of black tea on coronary calcium scores. Methods: This cross-sectional analytical descriptive study was conducted on 200 candidates for CT angiography referred by their physician because their symptoms were suggestive of ischemia. A questionnaire was filled out for every participant, and the habit of tea drinking was asked and marked as none drinker, 1-3 cups per day and >3 cups per day. Results: 89.5% of the participants consumed tea. The mean calcium score in patients who did not drink tea was 674.9±154.74 in those patients who drank 1-3 glasses per day, 269.5±46.9 and in those who drank more than three glasses of tea and was 261.1±45.2. There was a significant statistical relationship between calcium scores and tea intake, independent to other traditional risk factors (P= 0.001). Significant coronary artery plaques were also less prevalent in those who drank tea (36% and 41% in 1-3 and >3 cups, respectively) than non-drinkers (67%). Still, the number of involved vessels was not significantly different. Conclusion: Regular black tea consumption could have protective effects on coronary artery calcification.
Collapse
Affiliation(s)
| | - Jamshid Najafian
- Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Talebzadeh
- Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohaddeseh Behjati
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Effects of Fermentation Temperature and Time on the Color Attributes and Tea Pigments of Yunnan Congou Black Tea. Foods 2022; 11:foods11131845. [PMID: 35804663 PMCID: PMC9265920 DOI: 10.3390/foods11131845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Yunnan Congou black tea (YCBT) is a typical black tea in China, and is rich in theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). However, the influence of the fermentation temperature and time on the liquor and appearance color and the correlation between the tea pigments and its color attributes remain unclear. We investigated the effects of the fermentation temperature and time on the color attributes and tea pigments of YCBT. A low fermentation temperature was beneficial to maintain a bright orange-red liquor color and promote the accumulation of TFs and TRs. In contrast, a high temperature gave the liquor a glossy appearance and was beneficial for the formation of TBs. A correlation analysis showed that the 10TFRB index best represented the contribution of tea pigments to the quality of black tea. Moreover, TRs and TBs content prediction models were established based on the liquor L and H values, where the former value can be used as an important index to judge the fermentation process. This study will further enrich the theory of black tea processing chemistry and provide technical support for the precise and directional production of black tea.
Collapse
|
19
|
Tea phenolics as prebiotics. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhang XH, Zheng JJ, Qing XD, Lin F, Yuan YT, Yang KL, Zhang JZ, Gu HW. Extraction and determination of phenolic compounds in Chinese teas using a novel compound salt aqueous two-phase system coupled with multivariate chemometric methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Enzymatic treatment in black tea manufacturing processing: Impact on bioactive compounds, quality, and bioactivities of black tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Zha M, Lian L, Wen M, Ercisli S, Ren Y, Jiang Z, Ho CT, Zhang L. The Oxidation Mechanism of Flavan-3-ols by an Enzymatic Reaction Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics Combined with Captured o-Quinone Intermediates of Flavan-3-ols by o-Phenylenediamine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5715-5727. [PMID: 35475606 DOI: 10.1021/acs.jafc.2c01416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During the enzymatic oxidation of black tea, flavan-3-ols undergo a complicated chemical transformation and generate theaflavins and thearubigins. So far, the oxidation mechanism of flavan-3-ols has not been clarified. Liquid chromatography-tandem mass spectrometry-based metabolomics combined with o-quinone intermediates captured by o-phenylenediamine was developed and successfully applied in the liquid incubation of fresh tea homogenates. During the oxidation, the contents of catechins continuously decreased, while theaflavins increased first but decreased subsequently at the end of incubation. Meanwhile, the content of thearubigins greatly increased at the late stage of incubation. Dehydrotheasinensins were accumulated at the end of oxidation along with the decrease of theasinensins. Through o-phenylenediamine derivation, several adducts of (-)-epigallocatechin gallate, (-)-epigallocatechin, theasinensins A, B, C, and D, and corresponding dehydrotheasinensins were identified, which were considered as the substrates of thearubigins. These results suggested that theaflavins and these oxidation products contributed to the formation of thearubigins.
Collapse
Affiliation(s)
- Minyu Zha
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Li Lian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Yiyu Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Yin Z, Zheng T, Ho CT, Huang Q, Wu Q, Zhang M. Improving the stability and bioavailability of tea polyphenols by encapsulations: a review. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Ahmed KK, Hussen SA, Aziz SB. Transferring the Wide Band Gap Chitosan: POZ-based Polymer Blends to Small Optical Energy Band Gap Polymer Composites through the Inclusion of Green Synthesized Zn2+-PPL Metal Complex. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
25
|
Aziz SB, Nofal MM, Brza MA, Sadiq NM, Dannoun EMA, Ahmed KK, Al-Saeedi SI, Hussen SA, Hussein AM. Innovative Green Chemistry Approach to Synthesis of Sn 2+-Metal Complex and Design of Polymer Composites with Small Optical Band Gaps. Molecules 2022; 27:1965. [PMID: 35335328 PMCID: PMC8949699 DOI: 10.3390/molecules27061965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, the green method was used to synthesize Sn2+-metal complex by polyphenols (PPHs) of black tea (BT). The formation of Sn2+-PPHs metal complex was confirmed through UV-Vis and FTIR methods. The FTIR method shows that BT contains NH and OH functional groups, conjugated double bonds, and PPHs which are important to create the Sn2+-metal complexes. The synthesized Sn2+-PPHs metal complex was used successfully to decrease the optical energy band gap of PVA polymer. XRD method showed that the amorphous phase increased with increasing the metal complexes. The FTIR and XRD analysis show the complex formation between Sn2+-PPHs metal complex and PVA polymer. The enhancement in the optical properties of PVA was evidenced via UV-visible spectroscopy method. When Sn2+-PPHs metal complex was loaded to PVA, the refractive index and dielectric constant were improved. In addition, the absorption edge was also decreased to lower photon. The optical energy band gap decreases from 6.4 to 1.8 eV for PVAloaded with 30% (v/v) Sn2+-PPHs metal complex. The variations of dielectric constant versus wavelength of photon are examined to measure localized charge density (N/m*) and high frequency dielectric constant. By increasing Sn2+-PPHs metal complex, the N/m* are improved from 3.65 × 1055 to 13.38 × 1055 m-3 Kg-1. The oscillator dispersion energy (Ed) and average oscillator energy (Eo) are measured. The electronic transition natures in composite films are determined based on the Tauc's method, whereas close examinations of the dielectric loss parameter are also held to measure the energy band gap.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (N.M.S.); (K.K.A.); (S.A.H.); (A.M.H.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Mohamad A. Brza
- Medical Physics Department, College of Medicals & Applied Science, Charmo University, Chamchamal, Sulaimania 46023, Iraq;
| | - Niyaz M. Sadiq
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (N.M.S.); (K.K.A.); (S.A.H.); (A.M.H.)
| | - Elham M. A. Dannoun
- Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Khayal K. Ahmed
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (N.M.S.); (K.K.A.); (S.A.H.); (A.M.H.)
| | - Sameerah I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Sarkawt A. Hussen
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (N.M.S.); (K.K.A.); (S.A.H.); (A.M.H.)
| | - Ahang M. Hussein
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (N.M.S.); (K.K.A.); (S.A.H.); (A.M.H.)
| |
Collapse
|
26
|
Identification of 4-O-p-coumaroylquinic acid as astringent compound of Keemun black tea by efficient integrated approaches of mass spectrometry, turbidity analysis and sensory evaluation. Food Chem 2022; 368:130803. [PMID: 34403995 DOI: 10.1016/j.foodchem.2021.130803] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Hydroxycinnamoyl quinic acids are important phenolic acids in tea, particularly fermented teas. However, there have been fewer studies that have confirmed their taste properties. The aim of this study was to investigate the astringent compounds in Keemun congou black tea (KBT) using a combination of mass spectrometry, turbidity analysis, and sensory evaluation. Turbidity analysis determined that p-coumaroylquinic acids were the astringent contributing compounds in KBT. Moreover, the separated compound D16 was identified as trans-4-O-p-coumaroylquinic acid (trans-4-O-pCoQA) by nuclear magnetic resonance spectroscopy and first confirmed to be the astringent contributing compound in KBT by sensory evaluation. Its astringent threshold concentration was tested to be 38 µM. The trans-4-O-pCoQA content in eight KBT samples of various grades ranged from 40.20 ± 0.15 ~ 65.53 ± 0.22 µM. Turbidity analysis combined with sensory evaluation could be a powerful tool for identifying critical compounds responsible for the astringent taste.
Collapse
|
27
|
Abudureheman B, Yu X, Fang D, Zhang H. Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules 2022; 27:942. [PMID: 35164208 PMCID: PMC8840101 DOI: 10.3390/molecules27030942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tea (Camellia sinensis, Theaceae) is one of the most widely consumed beverages in the world. The three major types of tea, green tea, oolong tea, and black tea, differ in terms of the manufacture and chemical composition. Catechins, theaflavins, and thearubigins have been identified as the major components in tea. Other minor oligomers have also been found in tea. Different kinds of ring fission and formation elucidate the major transformed pathways of tea catechins to their dimers and polymers. The present review summarizes the data concerning the enzymatic oxidation of catechins, their dimers, and thearubigins in tea.
Collapse
Affiliation(s)
- Buhailiqiemu Abudureheman
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu 843000, China; (B.A.); (D.F.)
| | - Xiaochun Yu
- College of Food Science and Engineering, Tonghua Normal University, Tonghua 134002, China;
| | - Dandan Fang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu 843000, China; (B.A.); (D.F.)
| | - Henghui Zhang
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| |
Collapse
|
28
|
Hu B, Li M, He X, Wang H, Huang JA, Liu Z, Mezzenga R. Flavonoid-Amyloid Fibril Hybrid Hydrogels for Obesity Control via Construction of Gut Microbiota. Biomater Sci 2022; 10:3597-3611. [DOI: 10.1039/d2bm00366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Innovative precise clinical approaches to protect humans from the alarming global growth of epidemics of chronic diseases, such as metabolic syndrome (MetS), are urgently needed. Here, we introduce protein hydrogels...
Collapse
|
29
|
Luo T, Jiang JG. Anticancer Effects and Molecular Target of Theaflavins from Black Tea Fermentation in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15052-15065. [PMID: 34878780 DOI: 10.1021/acs.jafc.1c05313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black tea is one of the most popular beverages in the world, and numerous epidemiological studies have shown that drinking black tea is good for health. As a natural tea pigment formed during the fermentation of black tea, the content of theaflavins accounts for only 2-6% of the dry weight of black tea, but they have a great impact on the color and taste of black tea soup. Recently, a large number of studies have shown that theaflavins have a significant anticancer effect. In this Perspective, we first state the physical and chemical properties, separation and purification methods, and biological formation pathways of theaflavins and analyze their safety and oral bioavailability and the structure-activity relationship of their antioxidant and anticancer activities; then, we describe in detail their anticancer effect in vitro and in vivo and highlight their various molecular targets involved in cancer inhibition. The anticancer molecular targets of theaflavins are mainly cell-cycle regulatory proteins, apoptosis-related proteins, cell-migration-related proteins, and growth transcription factors. Finally, the possibility of developing new health-care food based on theaflavins is discussed. This Perspective is expected to provide a theoretical basis for the anticancer application of theaflavins in the future.
Collapse
Affiliation(s)
- Ting Luo
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Makhija P, Kathuria H, Sethi G, Grobben B. Polymeric Hydrogels for Controlled Release of Black Tea and Coffee Extracts for Topical Applications. Gels 2021; 7:174. [PMID: 34698154 PMCID: PMC8544385 DOI: 10.3390/gels7040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Tea and coffee are popular beverages. Both are also used in topical applications, such as ultraviolet (UV) protection, anti-aging, and wound healing. However, the impact of tea and coffee extract on skin cells is minimally explored. This study investigated the direct exposure of tea and coffee extract on skin cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. It was found that direct exposure of tea and coffee to skin cells can be toxic at a high dose on prolonged exposure (72 h). Therefore, it was hypothesized that a formulation providing a controlled release of tea and coffee could improve their skin compatibility. Thermally cross-linked poly(acrylic acid) hydrogels loaded with tea and coffee extracts (with and without milk) were formulated and optimized. The release profiles of these hydrogels were studied at varying loading efficiency. Milk addition with tea extract retarded the tea extract release from hydrogel while minimally affecting the coffee release. This effect was due to the molecular interaction of tea with milk components, showing changes in size, zeta potential, and polydispersity index. The release study best fitted the Korsmeyer-Peppas release model. Skin cells exposed to tea or coffee-loaded hydrogel showed normal skin cell morphology under fluorescence microscopic analysis. In conclusion, the hydrogels controlled the tea and coffee release and showed biocompatibility with skin cells. It can potentially be used for skin applications.
Collapse
Affiliation(s)
- Pooja Makhija
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore;
- Nusmetic Pvt Ltd., Makerspace, i4 Building, 3 Research Link, Singapore 117602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, Singapore 117600, Singapore;
| | - Bert Grobben
- Budding Innovations Pvt Ltd., 06-02 Jellicoe Rd, Singapore 208766, Singapore
| |
Collapse
|
31
|
Lv Z, Zhang C, Shao C, Liu B, Liu E, Yuan D, Zhou Y, Shen C. Research progress on the response of tea catechins to drought stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5305-5313. [PMID: 34031895 DOI: 10.1002/jsfa.11330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Drought stress (DS) is the most important abiotic stress affecting yield and quality of tea worldwide. DS causes oxidative stress to cells due to the accumulation of reactive oxygen species (ROS). As non-enzymatic antioxidants, tea catechins can scavenge excess ROS in response to DS. Further, catechin accumulation contributes to the formation of oxidative polymerization products (e.g. theaflavins and thearubigins) that improve the quality of black tea. However, there are no systematic reports on the response of tea catechins to DS. First, we reviewed the available literature on the response of tea plants to DS. Second, we summarized the current knowledge of ROS production in tea leaves under DS and typical antioxidant response mechanisms. Third, we conducted a detailed review of the changes in catechin levels in tea under different drought conditions. We found that the total amounts of catechin and o-quinone increased under DS conditions. We propose that the possible mechanisms underlying tea catechin accumulation under DS conditions include (i) autotrophic formation of o-quinone, (ii) polymerization of proanthocyanidins that directly scavenge excess ROS, and (iii) formation of metal ion complexes and by influencing the antioxidant systems that indirectly eliminate excess ROS. Finally, we discuss ways of potentially improving black tea quality using drought before picking in the summer/fall dry season. In summary, we mainly discuss the antioxidant mechanisms of tea catechins under DS and the possibility of using drought to improve black tea quality. Our review provides a theoretical basis for the production of high-quality black tea under DS conditions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Baogui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Enshuo Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Danni Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yuebing Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| |
Collapse
|
32
|
Wen M, Cui Y, Dong CX, Zhang L. Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing. Food Res Int 2021; 148:110588. [PMID: 34507733 DOI: 10.1016/j.foodres.2021.110588] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Monosaccharides of Keemun black tea were quantitatively determined by high performance liquid chromatography coupled with 3-methyl-1-phenyl-2-pyrazolin-5-one (PMP) pre-column derivatization. The methodology of developed analytical method was established with good linearity, recovery, repeatability and precision. The quantitative results showed that D-mannose, D-glucuronic acid, D-glucose, D-galactose and L-arabinose were detected in Keemun black tea samples. D-glucose was the predominant monosaccharide in black tea, and its concentration was continuously increased from fresh tea leaves to fermentation, but after drying its concentration was significantly decreased. Meanwhile, theaflavins' concentrations were obviously decreased after drying. When theaflavins were heated with D-glucose, the loss of theaflavins was increased. Correspondingly, theaflavins also prevented the caramelization of D-glucose and restored the loss of D-glucose during heating. Through the liquid chromatography/electrospray tandem mass spectrometry some theaflavins glucose adducts were identified.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
33
|
Sobolev AP, Di Lorenzo A, Circi S, Santarcangelo C, Ingallina C, Daglia M, Mannina L. NMR, RP-HPLC-PDA-ESI-MS n, and RP-HPLC-FD Characterization of Green and Oolong Teas ( Camellia sinensis L.). Molecules 2021; 26:molecules26175125. [PMID: 34500554 PMCID: PMC8434197 DOI: 10.3390/molecules26175125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Untargeted (NMR) and targeted (RP-HPLC-PDA-ESI-MSn, RP-HPLC-FD) analytical methodologies were used to determine the bioactive components of 19 tea samples, characterized by different production processes (common tea and GABA tea), degrees of fermentation (green and oolong teas), and harvesting season (autumn and spring). The combination of NMR data and a multivariate statistical approach led to a statistical model able to discriminate between GABA and non-GABA teas and green and oolong teas. Targeted analyses showed that green and GABA green teas had similar polyphenol and caffeine contents, but the GABA level was higher in GABA green teas than in regular green tea samples. GABA oolong teas showed lower contents of polyphenols, caffeine, and amino acids, and a higher content of GABA, in comparison with non-GABA oolong teas. In conclusion, the results of this study suggest that the healthy properties of teas, especially GABA teas, have to be evaluated via comprehensive metabolic profiling rather than only the GABA content.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Institute for Biological Systems, Magnetic Resonance Laboratory “Segre-Capitani”, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy;
| | - Arianna Di Lorenzo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Simone Circi
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
| | | | - Cinzia Ingallina
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
- Correspondence: (C.I.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (C.I.); (M.D.)
| | - Luisa Mannina
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
| |
Collapse
|
34
|
Kikkawa HS, Kobayashi M, Minamimoto A, Ono H, Tsuge K. Simultaneous determination of eight catechins and four theaflavins in bottled tea by liquid chromatography-tandem mass spectrometry for forensic analysis. J Forensic Sci 2021; 67:309-320. [PMID: 34405405 DOI: 10.1111/1556-4029.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Tea, and particularly bottled tea, is widely consumed worldwide and is often encountered at crime scenes in poisoning cases or used in place of urine in drug abuse monitoring. Tea is a rich source of polyphenols, such as catechins and theaflavins, and these compounds are useful for identification of trace quantities of tea samples. However, information on the contents of catechins and theaflavins in bottled tea is limited. In this study, a method was developed for simultaneous analysis of eight catechins and four theaflavins in tea using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The concentrations of these polyphenols were determined in bottled black, oolong, and green teas after a simple pretreatment process by the standard addition method. The developed LC-MS/MS method was rapid and all tested polyphenol compounds were separated within ~14 min. All tea types contained all the catechins, at varying concentrations, but not all the theaflavins were present in all the tea types. This indicates that the theaflavin composition reflects the degree of the fermentation and could be used for discrimination among different types of tea. All the green tea samples contained all eight catechins; however, the concentrations of these compounds varied among the tea samples. Principal component analysis and hierarchical cluster analysis were useful for discrimination of samples. It has been unclear whether the variations of chemical components are useful for forensic discrimination. Our results demonstrate that, in addition to identification of tea varieties, catechins and theaflavins can be used for the discrimination of bottled tea samples.
Collapse
Affiliation(s)
| | - Manami Kobayashi
- Shimadzu Corporation Global Application Development Center Analytical & Measuring Instruments Division, Hadano, Japan
| | - Ayaka Minamimoto
- Shimadzu Corporation Global Application Development Center Analytical & Measuring Instruments Division, Hadano, Japan
| | - Hiromi Ono
- Shimadzu Corporation Global Application Development Center Analytical & Measuring Instruments Division, Hadano, Japan
| | - Kouichiro Tsuge
- National Research Institute of Police Science, Kashiwa, Japan
| |
Collapse
|
35
|
Liu Z, Chen F, Sun J, Ni L. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui). Food Chem 2021; 367:130624. [PMID: 34339982 DOI: 10.1016/j.foodchem.2021.130624] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
Wuyi Rock tea (WRT), a top-ranking oolong tea, possesses characteristic woody, floral, nutty flavor. WRT flavor is mainly formed during the manufacturing process. However, details regarding its formation process are not fully understood yet. In this study, the dynamics of volatile and phenolic components over the whole manufacturing process of WRT were investigated. During withering, despite minor changes in volatile and phenolic components, the central vacuole shrunk remarkably, which reduced the cell mechanical performance and facilitated the subsequent enzymatic fermentation. During fermentation, approximately 78% of flavan-3-ols in fresh tea leaves were oxidized and converted to a diverse mixture of highly heterogeneous oxidation products, such as theaflavins, whereas flavonols, phenolic acids, and xanthine alkaloids remained stable throughout the manufacturing process. Aldehydes, ketones, and heterocyclic compounds, imparting woody, floral, and nutty scent, were mainly formed during the roasting steps. This detailed information can expand our understanding on the formation of WRT flavor.
Collapse
Affiliation(s)
- Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China
| | - Fuchen Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China
| | - Jinyuan Sun
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Li Ni
- Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
36
|
Abstract
Valorising green waste will greatly enhance and promote the sustainable management of this large volume resource. One potential way to achieve this is the extraction of high value human health promoting chemicals (e.g., polyphenols) from this material. Our primary aim was to identify the main polyphenols present in four contrasting green waste feedstocks, namely Smyrnium olusatrum, Urtica dioica, Allium ursinum and Ulex europaeus, using UPLC-HDMSE. Polyphenol-rich Camellia sinensis (green tea) was used as a reference material. Samples were extracted and analysed by UPLC-HDMSE, which was followed by data processing using Progenesis QI and EZ Info. A total of 77 high scoring polyphenolic compounds with reported benefits to human health were tentatively identified in the samples, with abundances varying across the plant types; A. ursinum was seen to be the least abundant in respect to the polyphenols identified, whereas U. europaeus was the most abundant. Important components with a diverse range of bioactivity, such as procyanidins, (−)-epigallocatechin, naringenin, eriodictyol and iso-liquiritigenin, were observed, plus a number of phytoestrogens such as daidzein, glycitin and genistein. This research provides a route to valorise green waste through the creation of nutritional supplements which may aid in the prevention of disease.
Collapse
|
37
|
Flemming J, Meyer-Probst CT, Speer K, Kölling-Speer I, Hannig C, Hannig M. Preventive Applications of Polyphenols in Dentistry-A Review. Int J Mol Sci 2021; 22:4892. [PMID: 34063086 PMCID: PMC8124254 DOI: 10.3390/ijms22094892] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Polyphenols are natural substances that have been shown to provide various health benefits. Antioxidant, anti-inflammatory, and anti-carcinogenic effects have been described. At the same time, they inhibit the actions of bacteria, viruses, and fungi. Thus, studies have also examined their effects within the oral cavity. This review provides an overview on the different polyphenols, and their structure and interactions with the tooth surface and the pellicle. In particular, the effects of various tea polyphenols on bioadhesion and erosion have been reviewed. The current research confirms that polyphenols can reduce the growth of cariogenic bacteria. Furthermore, they can decrease the adherence of bacteria to the tooth surface and improve the erosion-protective properties of the acquired enamel pellicle. Tea polyphenols, especially, have the potential to contribute to an oral health-related diet. However, in vitro studies have mainly been conducted. In situ studies and clinical studies need to be extended and supplemented in order to significantly contribute to additive prevention measures in caries prophylaxis.
Collapse
Affiliation(s)
- Jasmin Flemming
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Clara Theres Meyer-Probst
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Karl Speer
- Special Food Chemistry and Food Production, TU Dresden, Bergstraße 66, D-01069 Dresden, Germany; (K.S.); (I.K.-S.)
| | - Isabelle Kölling-Speer
- Special Food Chemistry and Food Production, TU Dresden, Bergstraße 66, D-01069 Dresden, Germany; (K.S.); (I.K.-S.)
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D-66421 Homburg, Germany;
| |
Collapse
|
38
|
Polyphenols in foods: Classification, methods of identification, and nutritional aspects in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:1-33. [PMID: 34507639 DOI: 10.1016/bs.afnr.2021.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polyphenols widely exists in various foods, including main crops, fruits, beverages and some wines. Famous representatives of polyphenols, such as resveratrol in red wine, (-)-epigallocatechin gallate in green tea, chlorogenic acid in coffee, anthocyanins in colored fruits, procyanidins in grape seed have become hot research topics in food science and nutrition. There have been thousands of papers on the biochemistry, chemistry, nutritional values and population-based investigations of dietary polyphenols. In this chapter, we reviewed the published articles and database of dietary polyphenols to draw a profile for the classification, structural identification, and biological activities mainly based on enzymes, cell bioassay and animal models, as well as the population-based investigation results. The typical compound and its health benefits for each category of polyphenols was also introduced. The identification of dietary polyphenols could be solved by combined spectroscopy methods, of which the liquid chromatography tandem mass spectrometry is highlighted to greatly increase the efficiency on structural identification. Although the population-based investigation showed some controversial results for health benefits, the multi-functions of dietary polyphenols on preventing metabolic syndromes, various cancers and neurodegenerative disease have attracted much attention.
Collapse
|
39
|
Behboodi-Sadabad F, Li S, Lei W, Liu Y, Sommer T, Friederich P, Sobek C, Messersmith PB, Levkin PA. High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines. Mater Today Bio 2021; 10:100108. [PMID: 33912825 PMCID: PMC8063910 DOI: 10.1016/j.mtbio.2021.100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 10/31/2022] Open
Abstract
Biomimetic surface coatings based on plant polyphenols and catecholamines have been used broadly in a variety of applications. However, the lack of a rational cost-effective platform for screening these coatings and their properties limits the true potential of these functional materials to be unleashed. Here, we investigated the oxidation behavior and coating formation ability of a library consisting of 45 phenolic compounds and catecholamines. UV-vis spectroscopy demonstrated significant acceleration of oxidation and polymerization under UV irradiation. We discovered that several binary mixtures resulted in non-additive behavior (synergistic or antagonistic effect) yielding much thicker or thinner coatings than individual compounds measured by ellipsometry. To investigate the properties of coatings derived from new combinations, we used a miniaturized high-throughput strategy to screen 2,532 spots coated with single, binary, and ternary combinations of coating precursors in one run. We evaluated the use of machine learning models to learn the relation between the chemical structure of the precursors and the thickness of the nanocoatings. Formation and stability of nanocoatings were investigated in a high-throughput manner via discontinuous dewetting. 30 stable combinations (hits) were used to tune the surface wettability and to form water droplet microarray and spot size gradients of water droplets on the coated surface. No toxicity was observed against eukaryotic HeLa cells and Pseudomonas aeruginosa (strain PA30) bacteria after 24 h incubation at 37 °C. The strategy introduced here for high-throughput screening of nanocoatings derived from combinations of coating precursors enables the discovery of new functional materials for various applications in science and technology in a cost-effective miniaturized manner.
Collapse
Affiliation(s)
- F Behboodi-Sadabad
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - S Li
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - W Lei
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - Y Liu
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - T Sommer
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe, 76131, Germany
| | - P Friederich
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe, 76131, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - C Sobek
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, CA, 94720-1760, USA
| | - P B Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, CA, 94720-1760, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - P A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
40
|
Liu Z, de Bruijn WJ, Sanders MG, Wang S, Bruins ME, Vincken JP. Insights in the Recalcitrance of Theasinensin A to Human Gut Microbial Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2477-2484. [PMID: 33619960 PMCID: PMC8028050 DOI: 10.1021/acs.jafc.1c00727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Due to low bioavailability of dietary phenolic compounds in small intestine, their metabolism by gut microbiota is gaining increasing attention. The microbial metabolism of theasinensin A (TSA), a bioactive catechin dimer found in black tea, has not been studied yet. Here, TSA was extracted and purified for in vitro fermentation by human fecal microbiota, and epigallocatechin gallate (EGCG) and procyanidin B2 (PCB2) were used for comparison. Despite the similarity in their flavan-3-ol skeletons, metabolic fate of TSA was distinctively different. After degalloylation, its core biphenyl-2,2',3,3',4,4'-hexaol structure remained intact during fermentation. Conversely, EGCG and PCB2 were promptly degraded into a series of hydroxylated phenylcarboxylic acids. Computational analyses comparing TSA and PCB2 revealed that TSA's stronger interflavanic bond and more compact stereo-configuration might underlie its lower fermentability. These insights in the recalcitrance of theasinensins to degradation by human gut microbiota are of key importance for a comprehensive understanding of its health benefits.
Collapse
Affiliation(s)
- Zhibin Liu
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
- Institute
of Food Science & Technology, Fuzhou
University, Fuzhou 350108, P.R. China
| | - Wouter J.C. de Bruijn
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
| | - Mark G. Sanders
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
| | - Sisi Wang
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
| | - Marieke E. Bruins
- Food
& Biobased Research, Wageningen University
& Research, P.O. Box 17, Wageningen 6700 AA, The
Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
| |
Collapse
|
41
|
Hua J, Wang H, Jiang Y, Li J, Wang J, Yuan H. Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103751] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Yeh SL, Wang TC, Yusa SI, Thissen H, Tsai WB. Conjugation of Polysulfobetaine via Poly(pyrogallol) Coatings for Improving the Antifouling Efficacy of Biomaterials. ACS OMEGA 2021; 6:3517-3524. [PMID: 33585736 PMCID: PMC7876691 DOI: 10.1021/acsomega.0c04643] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 05/18/2023]
Abstract
Antifouling treatment is critical to certain biomedical devices for their functions and patients' life. Facial, versatile, and universal coating methods to conjugate antifouling materials on a wide variety of biomaterials are beneficial for the fabrication of low-fouling biomedical devices. We developed a simple one-step coating method for surface conjugation of zwitterionic poly(sulfobetaine) via deposition of self-polymerized pyrogallol (PG). Poly(pyrogallol) could deposit copolymers of sulfobetaine methacrylate and aminoethyl methacrylate (pSBAE) on various biomaterials. pSBAE coatings inhibited as high as 99.8% of the adhesion of L929 cells and reduced protein adsorption significantly. The resistance against L929 cell adhesion was increased with increasing coating time and was positively correlated with the surface hydrophilicity and film thickness. Such a coating was robust to resist harsh sterilization conditions and stable for long-term storage in phosphate-buffered saline. We expect that the simple low-fouling pSBAE coating is applicable to the manufacture of medical devices.
Collapse
Affiliation(s)
- Shang-Lin Yeh
- Department
of Chemical Engineering, National Taiwan
University, 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Ting-Ching Wang
- Department
of Chemical Engineering, National Taiwan
University, 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Shin-ichi Yusa
- Department
of Materials Science and Chemistry, University
of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Helmut Thissen
- Commonwealth
Scientific and Industrial Research Organization (CSIRO), Materials
Science and Engineering, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Wei-Bor Tsai
- Department
of Chemical Engineering, National Taiwan
University, 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| |
Collapse
|
44
|
Kawazoe R, Matsuo Y, Saito Y, Tanaka T. Stereochemistry of a Cyclic Epicatechin Trimer with
C
3
Symmetry Produced by Oxidative Coupling. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rina Kawazoe
- Graduate School of Biomedical Sciences Nagasaki University 1-14 Bunkyo-machi 852-8521 Nagasaki Japan
| | - Yosuke Matsuo
- Graduate School of Biomedical Sciences Nagasaki University 1-14 Bunkyo-machi 852-8521 Nagasaki Japan
| | - Yoshinori Saito
- Graduate School of Biomedical Sciences Nagasaki University 1-14 Bunkyo-machi 852-8521 Nagasaki Japan
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences Nagasaki University 1-14 Bunkyo-machi 852-8521 Nagasaki Japan
| |
Collapse
|
45
|
Tawornchat P, Pattarakankul T, Palaga T, Intasanta V, Wanichwecharungruang S. Polymerized Luteolin Nanoparticles: Synthesis, Structure Elucidation, and Anti-Inflammatory Activity. ACS OMEGA 2021; 6:2846-2855. [PMID: 33553902 PMCID: PMC7860061 DOI: 10.1021/acsomega.0c05142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 05/22/2023]
Abstract
Luteolin is an anti-inflammatory flavonoid commonly found in many edible plants. The compound is popularly consumed as a supplement regardless of its poor water solubility (27.8 μg/mL at 25 °C) and low bioavailability. Here, mild one-pot polymerization of luteolin into water-dispersible nanospheres, with an average dry size of 234.8 ± 101.6 nm, an aqueous size distribution of 379.1 ± 220.5 nm (PDI = 0.338), an average ζ-potential of -36.2 ± 0.2 mV, and an 89.3 ± 4.8% yield, is described. The nanospheres consist of polymerized luteolin (polyluteolin) with a weight-average molecular mass of around 410000 Da. The chemical structure of polyluteolin is identified through 1H-1H correlated spectroscopy (COSY), 1H-13C heteronuclear single-quantum coherence (HSQC), and 1H-13C heteronuclear multiple-bond correlation (HMBC) NMR spectroscopic analyses of the oligomers, and a polymerization mechanism is proposed. Unlike luteolin that showed both dose-dependent anti-inflammatory activity and cytotoxicity when tested in lipopolysaccharide-stimulated macrophages, the polyluteolin nanoparticles possess dose-dependent anti-inflammatory activity without causing cell death even at high concentrations.
Collapse
Affiliation(s)
- Parichat Tawornchat
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Center
of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department
of Microbiology, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Varol Intasanta
- National
Nanotechnology Center, National Science
and Technology Development Agency, Pathumthani 12120, Thailand
| | - Supason Wanichwecharungruang
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
46
|
Liu Z, de Bruijn WJC, Bruins ME, Vincken JP. Microbial Metabolism of Theaflavin-3,3'-digallate and Its Gut Microbiota Composition Modulatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:232-245. [PMID: 33347309 PMCID: PMC7809692 DOI: 10.1021/acs.jafc.0c06622] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Theaflavin-3,3'-digallate (TFDG), a bioactive black tea phenolic, is poorly absorbed in the small intestine, and it has been suggested that gut microbiota metabolism plays a crucial role in its bioactivities. However, information on its metabolic fate and impact on gut microbiota is limited. Here, TFDG was anaerobically fermented in vitro by human fecal microbiota, and epigallocatechin gallate (EGCG) was used for comparison. Despite the similar flavan-3-ol skeletons, TFDG was more slowly degraded and yielded a distinctively different metabolic profile. The formation of theanaphthoquinone as the main metabolites was unique to TFDG. Additionally, a number of hydroxylated phenylcarboxylic acids were formed with low concentrations, when comparing to EGCG metabolism. Microbiome profiling demonstrated several similarities in gut microbiota modulatory effects, including growth-promoting effects on Bacteroides, Faecalibacterium, Parabacteroides, and Bifidobacterium, and inhibitory effects on Prevotella and Fusobacterium. In conclusion, TFDG and EGCG underwent significantly different microbial metabolic fates, yet their gut microbiota modulatory effects were similar.
Collapse
Affiliation(s)
- Zhibin Liu
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Institute
of Food Science & Technology, Fuzhou
University, Fuzhou 350108, P.R. China
| | - Wouter J. C. de Bruijn
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marieke E. Bruins
- Food
& Biobased Research, Wageningen University
& Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- . Tel.: +31-317482234
| |
Collapse
|
47
|
Niemeyer SH, Baumann T, Lussi A, Meyer-Lueckel H, Scaramucci T, Carvalho TS. Salivary pellicle modification with polyphenol-rich teas and natural extracts to improve protection against dental erosion. J Dent 2020; 105:103567. [PMID: 33387569 DOI: 10.1016/j.jdent.2020.103567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate the modification of the salivary pellicle with different polyphenol-rich teas and natural extracts for the protection against dental erosion. METHODS We performed two experiments: one with teas (Green tea, Black tea, Peppermint tea, Rosehip tea, negative control [NC]) and other with natural extracts (Grape seed, Grapefruit seed, Cranberry, Propolis, NC), where NC was deionized water. A total of 150 enamel specimens were used (n = 15/group). Both experiments followed the same design, consisting of 5 cycles of: salivary pellicle formation (30 min, 37 °C), modification with the solutions (30 min, 25 °C), further salivary pellicle formation (60 min, 37 °C) and erosive challenge (1 min, 1% citric acid, pH 3.6). Relative surface microhardness (rSMH), relative surface reflection intensity (rSRI) and amount of calcium release (CaR) were evaluated. Data were analysed with Kruskal-Wallis and Wilcoxon rank sum tests with Bonferroni correction (α = 0.05). RESULTS Regarding teas, Black and Green teas showed the best protection against dental erosion, presenting higher rSMH and lower CaR than NC. Peppermint tea was not different to NC and Rosehip tea caused erosion, showing the highest CaR and greatest loss of SMH and SRI. Regarding natural extracts, Grape seed and Grapefruit seed extracts presented the best protective effect, with significantly higher rSMH and lower CaR. Cranberry caused significantly more demineralization; and Propolis did not differ from NC. CONCLUSION Green tea, Black tea, Grape seed extract and Grapefruit seed extract were able to modify the salivary pellicle and improve its protective effect against enamel erosion, but Rosehip tea and Cranberry extract caused erosion. CLINICAL RELEVANCE Some some bio-products, such as teas and natural extracts, improve the protective effect of the salivary pellicle against enamel erosion. More studies should be performed in order to test the viability of their use as active ingredients for oral care products.
Collapse
Affiliation(s)
- Samira Helena Niemeyer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| | - Tommy Baumann
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| | - Adrian Lussi
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| | - Hendrik Meyer-Lueckel
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| | - Taís Scaramucci
- Department of Restorative Dentistry, University of São Paulo, School of Dentistry, Av. Prof. Lineu Prestes 2227, Cidade Universitária, São Paulo, SP, Zip code: 05508-000, Brazil.
| | - Thiago Saads Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| |
Collapse
|
48
|
Tan J, de Bruijn WJC, van Zadelhoff A, Lin Z, Vincken JP. Browning of Epicatechin (EC) and Epigallocatechin (EGC) by Auto-Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13879-13887. [PMID: 33171045 PMCID: PMC7705966 DOI: 10.1021/acs.jafc.0c05716] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 05/14/2023]
Abstract
Green tea catechins are well known for their health benefits. However, these compounds can easily be oxidized, resulting in brown color formation, even in the absence of active oxidative enzymes. Browning of catechin-rich beverages, such as green tea, during their shelf life is undesired. The mechanisms of auto-oxidation of catechins and the brown products formed are still largely unknown. Therefore, we studied auto-oxidative browning of epicatechin (EC) and epigallocatechin (EGC) in model systems. Products of EC and EGC auto-oxidation were analyzed by reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled to mass spectrometry (RP-UHPLC-PDA-MS). In the EC model system, 11 δ-type dehydrodicatechins (DhC2s) and 18 δ-type dehydrotricatechins (DhC3s) that were related to browning could be tentatively identified by their MS2 signature fragments. In the EGC model system, auto-oxidation led to the formation of 13 dihydro-indene-carboxylic acid derivatives and 2 theaflagallins that were related to browning. Based on the products formed, we propose mechanisms for the auto-oxidative browning of EC and EGC. Furthermore, our results indicate that dimers and oligomers that possess a combination of an extended conjugated system, fused rings, and carbonyl groups are responsible for the brown color formation in the absence of oxidative enzymes.
Collapse
Affiliation(s)
- Junfeng Tan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People’s Republic of China
- Laboratory of Food Chemistry, Wageningen
University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Wouter J. C. de Bruijn
- Laboratory of Food Chemistry, Wageningen
University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Annemiek van Zadelhoff
- Laboratory of Food Chemistry, Wageningen
University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Zhi Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People’s Republic of China
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen
University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
49
|
Brza MA, Aziz SB, Anuar H, Ali F, Dannoun EMA, Mohammed SJ, Abdulwahid RT, Al-Zangana S. Tea from the drinking to the synthesis of metal complexes and fabrication of PVA based polymer composites with controlled optical band gap. Sci Rep 2020; 10:18108. [PMID: 33093604 PMCID: PMC7581529 DOI: 10.1038/s41598-020-75138-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
In the present study black tea extract (BTE) solution which is familiar for drinking was used to prepare cerium metal-complexes (Ce(III)-complex). The prepared Ce(III)-complex was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV–Vis spectroscopy. The results indicate that BTE solution is a novel green coordination chemistry approach for the synthesis of metal complexes. The outcomes signify that coordination occurs between cerium cations and polyphenols. The synthesis of metal-complexes with superior absorption performance in the visible region is a challenge for optoelectronic device applications. The suspended Ce(III)-complex in distilled water was mixed with poly (vinyl alcohol) (PVA) polymer to fabricate PVA/ Ce(III)-complex composites with controlled optical properties. The PVA/Ce(III)-complexes composite films were characterized by FTIR, XRD, and UV–Vis spectroscopy. The XRD findings confirms the amorphous structure for the synthesized Ce(III)-complexes. The addition of Ce(III)-complex into the PVA host polymer led to the growth of polymer composites with controllable small optical band gaps. It is shown by the FTIR spectra of the composite films that the functional groups of the host PVA have a vigorous interaction with the Ce(III)-complex. The XRD deconvolution on PVA composites reveals the amorphous phase enlargement with increasing Ce(III)-complex concentration. It is indicated in the atomic force microscopy (AFM) that the surface roughness in the doped PVA films increases with the increase of the Ce(III)-complex. There is a decrease in absorption edge from 5.7 to 1.7 eV. It becomes possible to recognize the type of electron transition by studying both the Tauc's model and optical dielectric loss (ɛi) parameter.
Collapse
Affiliation(s)
- M A Brza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak, Malaysia
| | - Shujahadeen B Aziz
- Prof. Hameeds Advanced Polymeric Materials Research Lab, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq. .,Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani, 46001, Kurdistan Regional Government, Iraq.
| | - H Anuar
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak, Malaysia
| | - Fathilah Ali
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University of Malaysia, 53100, Kuala Lumpur, Gombak, Malaysia
| | - Elham M A Dannoun
- General Science Department, Woman Campus, Prince Sultan University, P. O. Box 66833, Riyadh, 11586, Saudi Arabia
| | - Sewara J Mohammed
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq
| | - Rebar T Abdulwahid
- Prof. Hameeds Advanced Polymeric Materials Research Lab, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq.,Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani, 46001, Kurdistan Regional Government, Iraq
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar, 46021, Kurdistan Regional Government, Iraq
| |
Collapse
|
50
|
Aziz SB, Brza MA, Nofal MM, Abdulwahid RT, Hussen SA, Hussein AM, Karim WO. A Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3675. [PMID: 32825367 PMCID: PMC7503865 DOI: 10.3390/ma13173675] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Polymer electrolytes and composites have prevailed in the high performance and mobile marketplace during recent years. Polymer-based solid electrolytes possess the benefits of low flammability, excellent flexibility, good thermal stability, as well as higher safety. Several researchers have paid attention to the optical properties of polymer electrolytes and their composites. In the present review paper, first, the characteristics, fundamentals, advantages and principles of various types of polymer electrolytes were discussed. Afterward, the characteristics and performance of various polymer hosts on the basis of specific essential and newly published works were described. New developments in various approaches to investigate the optical properties of polymer electrolytes were emphasized. The last part of the review devoted to the optical band gap study using two methods: Tauc's model and optical dielectric loss parameter. Based on recently published literature sufficient quantum mechanical backgrounds were provided to support the applicability of the optical dielectric loss parameter for the band gap study. In this review paper, it was demonstrated that both Tauc's model and optical dielectric loss should be studied to specify the type of electron transition and estimate the optical band gap accurately. Other parameters such as absorption coefficient, refractive index and optical dielectric constant were also explored.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (R.T.A.); (S.A.H.); (A.M.H.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - M. A. Brza
- Manufacturing and Material Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia;
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rebar T. Abdulwahid
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (R.T.A.); (S.A.H.); (A.M.H.)
- Department of Physics, College of Education, University of Sulaimani, Kurdistan Regional Government, Old Campus, Sulaimani 46001, Iraq
| | - Sarkawt A. Hussen
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (R.T.A.); (S.A.H.); (A.M.H.)
| | - Ahang M. Hussein
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (R.T.A.); (S.A.H.); (A.M.H.)
| | - Wrya O. Karim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| |
Collapse
|