1
|
Melnik E, Kurzhals S, Mutinati GC, Beni V, Hainberger R. Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels. SENSORS (BASEL, SWITZERLAND) 2024; 24:3678. [PMID: 38894467 PMCID: PMC11175328 DOI: 10.3390/s24113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Hydrogels are of great importance for functionalizing sensors and microfluidics, and poly(ethylene glycol) dimethacrylate (PEG-DMA) is often used as a viscosifier for printable hydrogel precursor inks. In this study, 1-10 kDa PEG-DMA based hydrogels were characterized by gravimetric and electrochemical methods to investigate the diffusivity of small molecules and proteins. Swelling ratios (SRs) of 14.43-9.24, as well as mesh sizes ξ of 3.58-6.91 nm were calculated, and it was found that the SR correlates with the molar concentration of PEG-DMA in the ink (MCI) (SR = 0.1127 × MCI + 8.3256, R2 = 0.9692) and ξ correlates with the molecular weight (Mw) (ξ = 0.3382 × Mw + 3.638, R2 = 0.9451). To investigate the sensing properties, methylene blue (MB) and MB-conjugated proteins were measured on electrochemical sensors with and without hydrogel coating. It was found that on sensors with 10 kDa PEG-DMA hydrogel modification, the DPV peak currents were reduced to 92 % for MB, 73 % for MB-BSA, and 23 % for MB-IgG. To investigate the diffusion properties of MB(-conjugates) in hydrogels with 1-10 kDa PEG-DMA, diffusivity was calculated from the current equation. It was found that diffusivity increases with increasing ξ. Finally, the release of MB-BSA was detected after drying the MB-BSA-containing hydrogel, which is a promising result for the development of hydrogel-based reagent reservoirs for biosensing.
Collapse
Affiliation(s)
- Eva Melnik
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Steffen Kurzhals
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Giorgio C. Mutinati
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Valerio Beni
- Bioelectronics and Organic Electronics, Smart Hardware, Digital Systems, RISE Research Institutes of Sweden, 60233 Norrköping, Sweden;
| | - Rainer Hainberger
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| |
Collapse
|
2
|
Ma S, Wan Z, Wang C, Song Z, Ding Y, Zhang D, Chan CLJ, Shu L, Huang L, Yang Z, Wang F, Bai J, Fan Z, Lin Y. Ultra-Sensitive and Stable Multiplexed Biosensors Array in Fully Printed and Integrated Platforms for Reliable Perspiration Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311106. [PMID: 38388858 DOI: 10.1002/adma.202311106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Electrochemical biosensors have emerged as one of the promising tools for tracking human body physiological dynamics via non-invasive perspiration analysis. However, it remains a key challenge to integrate multiplexed sensors in a highly controllable and reproducible manner to achieve long-term reliable biosensing, especially on flexible platforms. Herein, a fully inkjet printed and integrated multiplexed biosensing patch with remarkably high stability and sensitivity is reported for the first time. These desirable characteristics are enabled by the unique interpenetrating interface design and precise control over active materials mass loading, owing to the optimized ink formulations and droplet-assisted printing processes. The sensors deliver sensitivities of 313.28 µA mm-1 cm-2 for glucose and 0.87 µA mm-1 cm-2 for alcohol sensing with minimal drift over 30 h, which are among the best in the literature. The integrated patch can be used for reliable and wireless diet monitoring or medical intervention via epidermal analysis and would inspire the advances of wearable devices for intelligent healthcare applications.
Collapse
Affiliation(s)
- Suman Ma
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhu'an Wan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
| | - Zhilong Song
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
- Key Laboratory of Zhenjiang, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
| | - Daquan Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
| | - Lei Shu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
| | - Liting Huang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhensen Yang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fei Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 000000, China
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Mitrogiannopoulou AM, Tselepi V, Ellinas K. Polymeric and Paper-Based Lab-on-a-Chip Devices in Food Safety: A Review. MICROMACHINES 2023; 14:986. [PMID: 37241610 PMCID: PMC10223399 DOI: 10.3390/mi14050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Food quality and safety are important to protect consumers from foodborne illnesses. Currently, laboratory scale analysis, which takes several days to complete, is the main way to ensure the absence of pathogenic microorganisms in a wide range of food products. However, new methods such as PCR, ELISA, or even accelerated plate culture tests have been proposed for the rapid detection of pathogens. Lab-on-chip (LOC) devices and microfluidics are miniaturized devices that can enable faster, easier, and at the point of interest analysis. Nowadays, methods such as PCR are often coupled with microfluidics, providing new LOC devices that can replace or complement the standard methods by offering highly sensitive, fast, and on-site analysis. This review's objective is to present an overview of recent advances in LOCs used for the identification of the most prevalent foodborne and waterborne pathogens that put consumer health at risk. In particular, the paper is organized as follows: first, we discuss the main fabrication methods of microfluidics as well as the most popular materials used, and then we present recent literature examples for LOCs used for the detection of pathogenic bacteria found in water and other food samples. In the final section, we summarize our findings and also provide our point of view on the challenges and opportunities in the field.
Collapse
Affiliation(s)
| | | | - Kosmas Ellinas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou & Makrygianni St, GR 81400 Myrina, Greece
| |
Collapse
|
4
|
Kiran Raj G, Singh E, Hani U, Ramesh KVRNS, Talath S, Garg A, Savadatti K, Bhatt T, Madhuchandra K, Osmani RAM. Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm. J Control Release 2023; 355:709-729. [PMID: 36805872 DOI: 10.1016/j.jconrel.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Novel therapies and drug delivery systems (DDS) emphasis on localized, personalized, triggered, and regulated drug administration have heavily implicated electrically responsive DDS. An ideal DDS must deliver drugs to the target region at therapeutically effective concentrations to elicit a pharmacological response, resulting in better prophylaxis of the disease and the treatment. Biodegradable polymers are frequently employed for in-vivo long-term release; however, dose dumping can be anticipated. As a result, current DDSs can be tagged as dubbed "Smart Biomaterials" since they only focus on an on-demand cargo release in response to a trigger or stimulation. These organic materials have been recognized for their metal-like conductivity, as well as their mechanical stability and ease of production. These biomaterials can be programmed to respond to both internal and external stimuli. External pulsed triggers are required for extrinsic stimuli-responsive materials, whereas intrinsic stimuli-responsive materials rely on localized changes in the tissue environment. Furthermore, these materials have the ability to deliver active pharmaceutical agents at a varied concentration levels and across a broad spectrum of action. Drug delivery, biomedical implant technology, biosensor technology, and tissue engineering can be listed as a few prominent applications that have sparked immense interest for conductive polymers-based research and advancements in academia as well as in industry. This review comprehensively covers a cutting-edge collection of electrically conductive polymers and composites, and provide detailed insights of recent trends and advancements allied to conductive polymers for their potential applicability in an array of diverse meadows primarily focusing on drug delivery, biosensing and therapeutics. Furthermore, progressions in their synthesis, structural and functional properties have been presented in conjunction with futuristic directions for the smooth clinical translations.
Collapse
Affiliation(s)
- G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, United States; Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay (IITB), Mumbai 400076, Maharashtra, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Komal Savadatti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - K Madhuchandra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
5
|
Barandun G, Gonzalez-Macia L, Lee HS, Dincer C, Güder F. Challenges and Opportunities for Printed Electrical Gas Sensors. ACS Sens 2022; 7:2804-2822. [PMID: 36131601 PMCID: PMC9623589 DOI: 10.1021/acssensors.2c01086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Printed electrical gas sensors are a low-cost, lightweight, low-power, and potentially disposable alternative to gas sensors manufactured using conventional methods such as photolithography, etching, and chemical vapor deposition. The growing interest in Internet-of-Things, smart homes, wearable devices, and point-of-need sensors has been the main driver fueling the development of new classes of printed electrical gas sensors. In this Perspective, we provide an insight into the current research related to printed electrical gas sensors including materials, methods of fabrication, and applications in monitoring food quality, air quality, diagnosis of diseases, and detection of hazardous gases. We further describe the challenges and future opportunities for this emerging technology.
Collapse
Affiliation(s)
- Giandrin Barandun
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
- BlakBear,
Ltd, 7-8 Child’s
Place, SW5 9RX London, United Kingdom
| | - Laura Gonzalez-Macia
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| | - Hong Seok Lee
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| | - Can Dincer
- FIT
Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg 79110, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Freiburg 79110, Germany
| | - Firat Güder
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| |
Collapse
|
6
|
Bao F, Liang Z, Deng J, Lin Q, Li W, Peng Q, Fang Y. Toward intelligent food packaging of biosensor and film substrate for monitoring foodborne microorganisms: A review of recent advancements. Crit Rev Food Sci Nutr 2022; 64:3920-3931. [PMID: 36300845 DOI: 10.1080/10408398.2022.2137774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microorganisms in food do harms to human. They can cause serious adverse reactions and sometimes even death. So it is an urgent matter to find an effective method to control them. The research of intelligent- biosensor packaging is in the ascendant in recent years, which is mainly promoted by reflecting on food safety and reducing resource waste. Intelligent biosensor-packaging is an instant and efficient intelligent packaging technology, which can directly and scientifically manifest the quality of food without complex operation. In this review, the purposes of providing relevant information on intelligent biosensor-packaging are reviewed, such as types of biosensors for monitoring foodborne microorganism, the suitable material for intelligent biosensor-packaging and design and fabrication of intelligent biosensor-packaging. The potential of intelligent biosensor-packaging in the detection of foodborne microorganisms is emphasized. The challenges and directions of the intelligent biosensor-packaging in the detection of foodborne pathogens are discussed. With the development of science and technology in the future, the intelligent biosensor-packaging should be commercialized in a real sense. And it is expected that commercial products can be manufactured in the future, which will provide a far-reaching approach in food safety and food prevention. HighlightsSeveral biosensors are suitable for the detection of food microorganisms.Plastic polymer is an excellent choice for the construction of intelligent biosensor packaging.Design and fabrication can lay the foundation for intelligent-biosensor packaging.Intelligent biosensor-packaging can realize fast and real-time detection of microorganisms in food.
Collapse
Affiliation(s)
- Feng Bao
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City, P. R. China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Qiong Peng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| |
Collapse
|
7
|
Zhao H, Chen T, Wu T, Xie L, Ma Y, Sha J. Strategy based on multiplexed brush architectures for regulating the spatiotemporal immobilization of biomolecules. BIOMATERIALS ADVANCES 2022; 141:213092. [PMID: 36191539 DOI: 10.1016/j.bioadv.2022.213092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Functional surfaces that enable both spatial and temporal control of biomolecules immobilization have attracted enormous attention for various fields including smart biointerface materials, high-throughput bioarrays, and fundamental research in the biosciences. Here, a flexible and promising method was presented for regulating the spatiotemporal arrangement of multiple biomolecules by constructing the topographically and chemically diverse polymer brushes patterned surfaces. A series of polymer brushes patterned surfaces, including antifouling brushes patterned surface, epoxy-presenting brushes patterned surface without and with antifouling background layer, were fabricated to control the spatial distribution of protein and cell adhesion through specific and nonspecific means. The fluorescence measurements demonstrated the effectiveness of spatially regulating the density of surface-immobilized protein through controlling the areal thickness of the poly (glycidyl methacrylate) (PGMA) brush patterns, leading to various complex patterns featuring well-defined biomolecule concentration gradients. Furthermore, a multiplexed surface bearing epoxy groups and azido groups with various areal densities was fabricated for regulating the spatiotemporal arrangement of different proteins, enabling binary biomolecules patterns with higher degrees of functionality and complexity. The presented strategy for the spatiotemporal control of biomolecules immobilization would boost the development of dynamic and multifunctional biosystems.
Collapse
Affiliation(s)
- Haili Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tao Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tong Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsheng Xie
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulu Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Abstract
Printing technology promises a viable solution for the low-cost, rapid, flexible, and mass fabrication of biosensors. Among the vast number of printing techniques, screen printing and inkjet printing have been widely adopted for the fabrication of biosensors. Screen printing provides ease of operation and rapid processing; however, it is bound by the effects of viscous inks, high material waste, and the requirement for masks, to name a few. Inkjet printing, on the other hand, is well suited for mass fabrication that takes advantage of computer-aided design software for pattern modifications. Furthermore, being drop-on-demand, it prevents precious material waste and offers high-resolution patterning. To exploit the features of inkjet printing technology, scientists have been keen to use it for the development of biosensors since 1988. A vast number of fully and partially inkjet-printed biosensors have been developed ever since. This study presents a short introduction on the printing technology used for biosensor fabrication in general, and a brief review of the recent reports related to virus, enzymatic, and non-enzymatic biosensor fabrication, via inkjet printing technology in particular.
Collapse
|
9
|
Hariharan P, Sundarrajan S, Arthanareeswaran G, Seshan S, Das DB, Ismail AF. Advancements in modification of membrane materials over membrane separation for biomedical applications-Review. ENVIRONMENTAL RESEARCH 2022; 204:112045. [PMID: 34536369 DOI: 10.1016/j.envres.2021.112045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive overview of various modifications carried out on polymeric membranes for biomedical applications has been presented in this review paper. In particular, different methods of carrying out these modifications have been discussed. The uniqueness of the review lies in the sense that it discusses the surface modification techniques traversing the timeline from traditionally well-established technologies to emerging new techniques, thus giving an intuitive understanding of the evolution of surface modification techniques over time. A critical comparison of the advantages and pitfalls of commonly used traditional and emerging surface modification techniques have been discussed. The paper also highlights the tuning of specific properties of polymeric membranes that are critical for their increased applications in the biomedical industry specifically in drug delivery, along with current challenges faced and where the future potential of research in the field of surface modification of membranes.
Collapse
Affiliation(s)
- Pooja Hariharan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Sujithra Sundarrajan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Sunanda Seshan
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - A F Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
10
|
Castrovilli MC, Tempesta E, Cartoni A, Plescia P, Bolognesi P, Chiarinelli J, Calandra P, Cicco N, Verrastro MF, Centonze D, Gullo L, Del Giudice A, Galantini L, Avaldi L. Fabrication of a New, Low-Cost, and Environment-Friendly Laccase-Based Biosensor by Electrospray Immobilization with Unprecedented Reuse and Storage Performances. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:1888-1898. [PMID: 35154910 PMCID: PMC8830555 DOI: 10.1021/acssuschemeng.1c07604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The fabrication of enzyme-based biosensors has received much attention for their selectivity and sensitivity. In particular, laccase-based biosensors have attracted a lot of interest for their capacity to detect highly toxic molecules in the environment, becoming essential tools in the fields of white biotechnology and green chemistry. The manufacturing of a new, metal-free, laccase-based biosensor with unprecedented reuse and storage capabilities has been achieved in this work through the application of the electrospray deposition (ESD) methodology as the enzyme immobilization technique. Electrospray ionization (ESI) has been used for ambient soft-landing of laccase enzymes on a carbon substrate, employing sustainable chemistry. This study shows how the ESD technique can be successfully exploited for the fabrication of a new promising environment-friendly electrochemical amperometric laccase-based biosensor, with storage capability up to two months without any particular care and reuse performance up to 63 measurements on the same electrode just prepared and 20 measurements on the one-year-old electrode subjected to redeposition. The laccase-based biosensor has been tested for catechol detection in the linear range 2-100 μM, with a limit of detection of 1.7 μM, without interference from chrome, cadmium, arsenic, and zinc and without any memory effects.
Collapse
Affiliation(s)
- Mattea Carmen Castrovilli
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, Italy
| | - Emanuela Tempesta
- CNR-Institute
of Environmental Geology and Geoengineering (CNR-IGAG), Area della Ricerca Roma1, Via Salaria
km 29.300, 00015 Monterotondo, Italy
| | - Antonella Cartoni
- Department
of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Paolo Plescia
- CNR-Institute
of Environmental Geology and Geoengineering (CNR-IGAG), Area della Ricerca Roma1, Via Salaria
km 29.300, 00015 Monterotondo, Italy
| | - Paola Bolognesi
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, Italy
| | - Jacopo Chiarinelli
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, Italy
| | - Pietro Calandra
- CNR-Institute
for the Study of Nanostructured Materials (CNR-ISMN), Area della Ricerca Roma1, Via Salaria
km 29.300, 00015 Monterotondo, Italy
| | - Nunzia Cicco
- CNR-Institute
of Methodologies for Environmental Analysis (CNR-IMAA), Contrada Santa Loja, Tito Scalo, 85050 Potenza, Italy
| | - Maria Filomena Verrastro
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Contrada Santa Loja, Tito
Scalo 85050, Potenza, Italy
| | - Diego Centonze
- Dipartimento
di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università degli Studi di Foggia, via Napoli, 25, 71122 Foggia, Italy
| | - Ludovica Gullo
- Department
of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Roma, Italy
| | | | - Luciano Galantini
- Department
of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Lorenzo Avaldi
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, Italy
| |
Collapse
|
11
|
|
12
|
Pérez DJ, Patiño EB, Orozco J. Electrochemical Nanobiosensors as Point‐of‐Care Testing Solution to Cytokines Measurement Limitations. ELECTROANAL 2021. [DOI: 10.1002/elan.202100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David J. Pérez
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Edwin B. Patiño
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
| |
Collapse
|
13
|
|
14
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
15
|
Abstract
The use of fully printed electrochemical devices has gained more attention for the monitoring of clinical, food, and environmental analytes due to their low cost, great reproducibility, and versatility characteristics, serving as an important technology for commercial application. Therefore, a paper-based inkjet-printed electrochemical system is proposed as a cost-effective analytical detection tool for paraquat. Chromatographic paper was used as the printing substrate due its sustainable and disposable characteristics, and an inkjet-printing system deposited the conductive silver ink with no further modification on the paper surface, providing a three-electrode system. The printed electrodes were characterized with scanning electron microscopy, cyclic voltammetry, and chronopotentiometry. The proposed sensor exhibited a large surface area, providing a powerful tool for paraquat detection due to its higher analytical signal. For the detection of paraquat, square-wave voltammetry was used, and the results showed a linear response range of 3.0–100 μM and a detection limit of 0.80 µM, along with the high repeatability and disposability of the sensor. The prepared sensors were also sufficiently selective against interference, and high accuracy (recovery range = 96.7–113%) was obtained when applied to samples (water, human serum, and orange juice), showing the promising applicability of fully printed electrodes for electrochemical monitoring.
Collapse
|
16
|
Komkova MA, Andreeva KD, Zarochintsev AA, Karyakin AA. Nanozymes “Artificial Peroxidase”: Enzyme Oxidase Mixtures for Single‐Step Fabrication of Advanced Electrochemical Biosensors. ChemElectroChem 2021. [DOI: 10.1002/celc.202100275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maria A. Komkova
- Chemistry faculty M.V. Lomonosov Moscow State University Leninskie gory, 1, build. 3 119991 Moscow Russia
| | - Ksenia D. Andreeva
- Chemistry faculty M.V. Lomonosov Moscow State University Leninskie gory, 1, build. 3 119991 Moscow Russia
| | - Alexander A. Zarochintsev
- Chemistry faculty M.V. Lomonosov Moscow State University Leninskie gory, 1, build. 3 119991 Moscow Russia
| | - Arkady A. Karyakin
- Chemistry faculty M.V. Lomonosov Moscow State University Leninskie gory, 1, build. 3 119991 Moscow Russia
| |
Collapse
|
17
|
Ichimura Y, Kuritsubo T, Nagamine K, Nomura A, Shitanda I, Tokito S. A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis. Anal Bioanal Chem 2021; 413:1883-1891. [PMID: 33479820 DOI: 10.1007/s00216-021-03156-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
This is the first report demonstrating proof of concept for the passive, non-invasive extraction and in situ potentiometric detection of human sweat chloride ions (Cl- ions) using a stable printed planar liquid-junction reference electrode-integrated hydrogel-based touch-sensor pad without activities such as exercise to induce perspiration, environmental temperature control, or requiring cholinergic drug administration. The sensor pad was composed entirely of a screen-printed bare Ag/AgCl-based chloride ion-selective electrode and a planar liquid-junction Ag/AgCl reference electrode, which were fully covered by an agarose hydrogel in phosphate-buffered saline (PBS). When human skin contacted the hydrogel pad, sweat Cl- ions were continuously extracted into the gel, followed by in situ potentiometric detection. The planar liquid-junction Ag/AgCl reference electrode had a polymer-based KCl-saturated inner electrolyte layer to stabilize the potential of the Ag/AgCl electrode even with a substantial change in the chloride ion concentration in the hydrogel pad. We expect this fully screen-printed sensor to achieve the low-cost passive and non-invasive daily monitoring of human Cl- ions in sweat in the future.
Collapse
Affiliation(s)
- Yusuke Ichimura
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Takumi Kuritsubo
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Kuniaki Nagamine
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
- Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Ayako Nomura
- Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Isao Shitanda
- Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Shizuo Tokito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
- Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
18
|
Iwasaki Y, Bunuasunthon S, Hoven VP. Protein patterning with antifouling polymer gel platforms generated using visible light irradiation. Chem Commun (Camb) 2021; 56:5472-5475. [PMID: 32356533 DOI: 10.1039/d0cc02092c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Visible light-assisted protein patterning on a solid surface was performed with phosphorylcholine (PC) polymers bearing tyrosine residues. Because of the antifouling nature of PC polymers, protein immobilisation was regiospecifically controlled, thus enabling the microfabricated surfaces to be used as immunoassay platforms.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
| | - Sukulya Bunuasunthon
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand and Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Idumah CI. Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1857384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
20
|
Non-enzymatic electrochemical sensor to detect γ-aminobutyric acid with ligand-based on graphene oxide modified gold electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020; 15:3788-3816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.
Collapse
|
22
|
Elgiddawy N, Ren S, Yassar A, Louis-Joseph A, Sauriat-Dorizon H, El Rouby WMA, El-Gendy AO, Farghali AA, Korri-Youssoufi H. Dispersible Conjugated Polymer Nanoparticles as Biointerface Materials for Label-Free Bacteria Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39979-39990. [PMID: 32805819 DOI: 10.1021/acsami.0c08305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fast and efficient identification of bacterial pathogens in water and biological fluids is an important issue in medical, food safety, and public health concerns that requires low-cost and efficient sensing strategies. Impedimetric sensors are promising tools for monitoring bacteria detection because of their reliability and ease-of-use. We herein report a study on new biointerface-based amphiphilic poly(3-hexylthiophene)-b-poly(3-triethylene-glycol-thiophene), P3HT-b-P3TEGT, for label-free impedimetric detection of Escherichia coli (E. coli). This biointerface is fabricated by the self-assembly of P3HT-b-P3TEGT into core-shell nanoparticles, which was further decorated with mannose, leading to an easy-to-use solution-processable nanoparticle material for biosensing. The hydrophilic block P3TEGT promotes antifouling and prevents nonspecific interactions, while improving the ionic and electronic transport properties, thus enhancing the electrochemical-sensing capability in aqueous solution. Self-assembly and micelle formation of P3HT-b-P3TEGT were analyzed by 2D-NMR, Fourier transform infrared, dynamic light scattering, contact angle, and microscopy characterizations. Detection of E. coli was characterized and evaluated using electrochemical impedance spectroscopy and optical and scanning electron microscopy techniques. The sensing layer based on the mannose-functionalized P3HT-b-P3TEGT nanoparticles demonstrates targeting ability toward E. coli pili protein with a detection range from 103 to 107 cfu/mL, and its selectivity was studied with Gram(+) bacteria. Application to real samples was performed by detection of bacteria in tap and the Nile water. The approach developed here shows that water/alcohol-processable-functionalized conjugated polymer nanoparticles are suitable for use as electrode materials, which have potential application in fabrication of a low-cost, label-free impedimetric biosensor for the detection of bacteria in water.
Collapse
Affiliation(s)
- Nada Elgiddawy
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62 511 Beni-Suef, Egypt
| | - Shiwei Ren
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Abderrahim Yassar
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Alain Louis-Joseph
- PMC, CNRS, UMR 7643, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Hélène Sauriat-Dorizon
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France
| | - Waleed M A El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62 511 Beni-Suef, Egypt
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, 62 511 Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62 511 Beni-Suef, Egypt
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France
| |
Collapse
|
23
|
Matzeu G, Mogas-Soldevila L, Li W, Naidu A, Turner TH, Gu R, Blumeris PR, Song P, Pascal DG, Guidetti G, Li M, Omenetto FG. Large-Scale Patterning of Reactive Surfaces for Wearable and Environmentally Deployable Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001258. [PMID: 32462737 DOI: 10.1002/adma.202001258] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 05/20/2023]
Abstract
Wearable interfaces are central to multiple healthcare and wellness strategies encompassing diet and nutrition, personalized health monitoring, and performance optimization. Specifically, the advent of flexible electronic formats coupled with microfluidic interfaces has resulted in sophisticated conformal devices for biofluid sampling and quantification. Here, a complementary approach is presented to wearable sensing by using a large-scale, conformal, distributed format that relies on the use of biomaterial-based inks to print and stabilize deterministic patterns of biochemical reporters with high resolution. Colorimetric devices can vary in size and a sensing T-shirt based on a colorimetric pattern is developed to illustrate the utility that such formats can add to the wearable interface space. Image analysis allows parameter variation to be tracked in real-time, yielding a map-like format of distributed biophysical response.
Collapse
Affiliation(s)
- Giusy Matzeu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Center for Applied Brain and Cognitive Science, Tufts University, Medford, MA, 02155, USA
| | - Laia Mogas-Soldevila
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenyi Li
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Arin Naidu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Trent H Turner
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Roger Gu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Patricia R Blumeris
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Patrick Song
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Daniel G Pascal
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Giulia Guidetti
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Meng Li
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Center for Applied Brain and Cognitive Science, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Physics, Tufts University, Medford, MA, 02155, USA
- Laboratory for Living Devices, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
24
|
Polymeric Composites Based on Carboxymethyl Cellulose Cryogel and Conductive Polymers: Synthesis and Characterization. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, a super porous polymeric network prepared from a natural polymer, carboxymethyl cellulose (CMC), was used as a scaffold in the preparation of conductive polymers such as poly(Aniline) (PANi), poly(Pyrrole) (PPy), and poly(Thiophene) (PTh). CMC–conductive polymer composites were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) techniques, and conductivity measurements. The highest conductivity was observed as 4.36 × 10−4 ± 4.63 × 10−5 S·cm−1 for CMC–PANi cryogel composite. The changes in conductivity of prepared CMC cryogel and its corresponding PAN, PPy, and PTh composites were tested against HCl and NH3 vapor. The changes in conductivity values of CMC cryogel upon HCl and NH3 vapor treatment were found to increase 1.5- and 2-fold, respectively, whereas CMC–PANi composites showed a 143-fold increase in conductivity upon HCl and a 12-fold decrease in conductivity upon NH3 treatment, suggesting the use of natural polymer–conductive polymer composites as sensor for these gases.
Collapse
|
25
|
Nagamine K, Nomura A, Ichimura Y, Izawa R, Sasaki S, Furusawa H, Matsui H, Tokito S. Printed Organic Transistor-based Biosensors for Non-invasive Sweat Analysis. ANAL SCI 2020; 36:291-302. [PMID: 31904007 DOI: 10.2116/analsci.19r007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/25/2019] [Indexed: 08/09/2023]
Abstract
This review describes recent advances in biosensors for non-invasive human healthcare applications, especially focusing on sweat analysis, along with approaches for fabricating these biosensors based on printed electronics technology. Human sweat contains various kinds of biomarkers. The relationship between a trace amount of sweat biomarkers partially partitioned from blood and diseases has been investigated by omic analysis. Recent progress in wearable or portable biosensors has enabled periodic or continuous monitoring of some sweat biomarkers while supporting the results of the omic analysis. In this review, we particularly focused on a transistor-based biosensor that is highly sensitive in quantitatively detecting the low level of sweat biomarkers. Furthermore, we showed a new approach of flexible hybrid electronics that has been applied to advanced sweat biosensors to realize fully integrated biosensing systems wirelessly connected to a networked IoT system. These technologies are based on uniquely advanced printing techniques that will facilitate mass fabrication of high-performance biosensors at low cost for future smart healthcare.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Ayako Nomura
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yusuke Ichimura
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Ryota Izawa
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shiori Sasaki
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Furusawa
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
26
|
Naserifar N, Yerneni SS, Weiss LE, Fedder GK. Inkjet Printing of Curing Agent on Thin PDMS for Local Tailoring of Mechanical Properties. Macromol Rapid Commun 2020; 41:e1900569. [PMID: 31994812 DOI: 10.1002/marc.201900569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/15/2019] [Indexed: 11/07/2022]
Abstract
Rapid prototyping of thin, stretchable substrates with engineered stiffness gradients at desired locations has potential impact in the robustness of skin-wearable electronics, as the gradients can inhibit cracking of interconnect and delamination of embedded electronic chips. Drop-on-demand inkjetting of thinned polydimethylsiloxane (PDMS) curing agent onto a spin-cast 80 µm-thick 20:1 (base: curing agent) PDMS substrate sets the elastic modulus of the subsequently cured film with sub-millimeter accuracy. The inkjet process creates digitally defined stiffness gradient spans as small as 100 µm for single droplets. Varying the drop density results in differences in elastic modulus of up to 80%. In jetting tests of curing agent into pure base PDMS, a continuous droplet spacing of 100 µm results in smooth lines with total widths of 1 mm and a curing agent gradient span of ≈300 µm. Release of freeform mesh elastomer microstructures by removing the uncured base after selective jetting of curing agent into pure base PDMS results in structural line width resolution down to 500 µm.
Collapse
Affiliation(s)
- Naser Naserifar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | - Lee E Weiss
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Gary K Fedder
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
27
|
Abstract
Living cell microarrays in microfluidic chips allow the non-invasive multiplexed molecular analysis of single cells. Here, we developed a simple and affordable perfusion microfluidic chip containing a living yeast cell array composed of a population of cell variants (green fluorescent protein (GFP)-tagged Saccharomyces cerevisiae clones). We combined mechanical patterning in 102 microwells and robotic piezoelectric cell dispensing in the microwells to construct the cell arrays. Robotic yeast cell dispensing of a yeast collection from a multiwell plate to the microfluidic chip microwells was optimized. The developed microfluidic chip and procedure were validated by observing the growth of GFP-tagged yeast clones that are linked to the cell cycle by time-lapse fluorescence microscopy over a few generations. The developed microfluidic technology has the potential to be easily upscaled to a high-density cell array allowing us to perform dynamic proteomics and localizomics experiments.
Collapse
|
28
|
da Costa TH, Choi JW. Low-cost and customizable inkjet printing for microelectrodes fabrication. MICRO AND NANO SYSTEMS LETTERS 2020. [DOI: 10.1186/s40486-020-0104-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMicroelectrodes for detection of chemicals present several advantages over conventional sized electrodes. However, rapid and low-cost fabrication of microelectrodes is challenging due to high complexity of patterning equipment. We present the development of a low-cost, customizable inkjet printer for printing nanomaterials including carbon nanotubes for the fabrication of microelectrodes. The achieved spatial resolution of the inkjet printer is less than 20 µm, which is comparable to advanced commercially available inkjet printers, with the advantage of being low-cost and easily replicated.
Collapse
|
29
|
Maleki H, Bertola V. Recent advances and prospects of inkjet printing in heterogeneous catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00040j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review provides an insight into inkjet printing technology in the context of heterogeneous catalysis.
Collapse
Affiliation(s)
- Hesam Maleki
- Laboratory of Technical Physics
- University of Liverpool
- Liverpool
- UK
| | - Volfango Bertola
- Laboratory of Technical Physics
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
30
|
Schultz J, Uddin Z, Singh G, Howlader MMR. Glutamate sensing in biofluids: recent advances and research challenges of electrochemical sensors. Analyst 2020; 145:321-347. [DOI: 10.1039/c9an01609k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical sensing guidelines for glutamate in biofluids, associated with different diseases, providing knowledge translation among science, engineering, and medical professionals.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Electrical and Computer Engineering
- McMaster University
- Hamilton
- Canada
| | - Zakir Uddin
- School of Rehabilitation Science
- McMaster University
- Hamilton
- Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine
- McMaster University
- Hamilton
- Canada
| | | |
Collapse
|
31
|
|
32
|
Lin Z, Wu G, Zhao L, Lai KWC. Carbon Nanomaterial-Based Biosensors: A Review of Design and Applications. IEEE NANOTECHNOLOGY MAGAZINE 2019. [DOI: 10.1109/mnano.2019.2927774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Zips S, Grob L, Rinklin P, Terkan K, Adly NY, Weiß LJK, Mayer D, Wolfrum B. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32778-32786. [PMID: 31424902 DOI: 10.1021/acsami.9b11774] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microelectrode arrays (MEAs) are widely used platforms in bioelectronics to study electrogenic cells. In recent years, the processing of conductive polymers for the fabrication of three-dimensional electrode arrays has gained increasing interest for the development of novel sensor designs. Here, additive manufacturing techniques are promising tools for the production of MEAs with three-dimensional electrodes. In this work, a facile additive manufacturing process for the fabrication of MEAs that feature needle-like electrode tips, so-called μ-needles, is presented. To this end, an aerosol-jet compatible PEDOT:PSS and multiwalled carbon nanotube composite ink with a conductivity of 323 ± 75 S m-1 is developed and used in a combined inkjet and aerosol-jet printing process to produce the μ-needle electrode features. The μ-needles are fabricated with a diameter of 10 ± 2 μm and a height of 33 ± 4 μm. They penetrate an inkjet-printed dielectric layer to a height of 12 ± 3 μm. After successful printing, the electrochemical properties of the devices are assessed via cyclic voltammetry and impedance spectroscopy. The μ-needles show a capacitance of 242 ± 70 nF at a scan rate of 5 mV s-1 and an impedance of 128 ± 22 kΩ at 1 kHz frequency. The stability of the μ-needle MEAs in aqueous electrolyte is demonstrated and the devices are used to record extracellular signals from cardiomyocyte-like HL-1 cells. This proof-of-principle experiment shows the μ-needle MEAs' cell-culture compatibility and functional integrity to investigate electrophysiological signals from living cells.
Collapse
Affiliation(s)
- Sabine Zips
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Leroy Grob
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Korkut Terkan
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Nouran Yehia Adly
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Lennart Jakob Konstantin Weiß
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Dirk Mayer
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52425 Jülich , Germany
| |
Collapse
|
34
|
Yoon KJ, Han JW, Moon DI, Seol ML, Meyyappan M, Kim HJ, Hwang CS. Electrically-generated memristor based on inkjet printed silver nanoparticles. NANOSCALE ADVANCES 2019; 1:2990-2998. [PMID: 36133608 PMCID: PMC9417570 DOI: 10.1039/c9na00329k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/15/2019] [Indexed: 05/03/2023]
Abstract
A method to electrically induce memristor performance from inkjet-printed silver (Ag) nanoparticles is presented, which is effective on a specifically designed hourglass-shaped Ag metal device. Joule heating-induced oxidation in the bottleneck region, when applying a high current to the device, results in a metal-electrolyte-metal structure produced from just a single metal ink for the memristor operation. This electrically induced memristor shows a nonuniform dispersion of the Ag nanoparticles within the oxide electrolyte layer, depending on the bias polarity adopted during the initial metal rupture process. A versatile and useful range of controllable memristor behaviors, from volatile threshold switching to nonvolatile unipolar as well as bipolar resistive switching, are observed based on the reversible rejuvenation and rupture of the Ag nanofilaments according to the Ag cation migration within the oxide electrolyte. The interplay between the electric field induced redox reaction and thermal diffusion of the Ag nanoparticles constitutes the primary reason for the different switching behaviors, further supported by thermo-field simulation results. The bipolar switching memristor demonstrates reliable endurance even under harsh DC switching conditions with low power consumption compared with its unipolar switching operation. The observed range of controllable switching behavior can be exploited for future low power flexible memory, as a selector in crossbar memory architecture, synaptic learning, and others.
Collapse
Affiliation(s)
- Kyung Jean Yoon
- Center for Nanotechnology, NASA Ames Research Center Moffett Field CA 94035 USA
- Department of Materials Science and Engineering, Inter-University Semiconductor Research Center, Seoul National University Gwanak-ro 1, Daehag-dong, Gwanak-gu Seoul 151-744 Republic of Korea
| | - Jin-Woo Han
- Center for Nanotechnology, NASA Ames Research Center Moffett Field CA 94035 USA
| | - Dong-Il Moon
- Center for Nanotechnology, NASA Ames Research Center Moffett Field CA 94035 USA
| | - Myeong Lok Seol
- Center for Nanotechnology, NASA Ames Research Center Moffett Field CA 94035 USA
| | - M Meyyappan
- Center for Nanotechnology, NASA Ames Research Center Moffett Field CA 94035 USA
| | - Han Joon Kim
- Department of Materials Science and Engineering, Inter-University Semiconductor Research Center, Seoul National University Gwanak-ro 1, Daehag-dong, Gwanak-gu Seoul 151-744 Republic of Korea
| | - Cheol Seong Hwang
- Department of Materials Science and Engineering, Inter-University Semiconductor Research Center, Seoul National University Gwanak-ro 1, Daehag-dong, Gwanak-gu Seoul 151-744 Republic of Korea
| |
Collapse
|
35
|
Machairioti F, Petrou P, Oh HT, Lee JK, Kakabakos S, Argitis P, Chatzichristidi M. Bio-orthogonal fluorinated resist for biomolecules patterning applications. Colloids Surf B Biointerfaces 2019; 178:208-213. [PMID: 30856590 DOI: 10.1016/j.colsurfb.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/20/2019] [Accepted: 03/03/2019] [Indexed: 12/17/2022]
Abstract
The patterning of organic materials on solid substrate surfaces has been demonstrated by several methods, such as photolithography, soft lithography, imprint lithography and ink-jet printing. Fluorinated polymers and solvents provide attractive material systems to develop new patterning approaches, as they are chemically orthogonal to non-fluorinated organic molecules, allowing their efficient incorporation in different devices and systems. Moreover, fluorinated polymers are soluble in hydrofluoroether solvents, benign to biomolecules, and can be properly engineered to enable efficient photolithographic patterning. In this work, we report the development of a new photolithographic process for patterning biomolecules on any kind of surfaces either by physical adsorption or covalent bonding. The photoresist is based on a fluorinated material and hydrofluoroether solvents that have minimum interactions with biomolecules and thus they can be characterized as orthogonal to the biomolecules (bio-orthogonal). In both cases, the creation of patterns with dimensions down to 2 μm was achieved. The implementation of the developed photolithographic procedure for the creation of a multi-protein microarray is demonstrated.
Collapse
Affiliation(s)
- Fotini Machairioti
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece; Immunoassay/Immunosensors Lab, INRaSTES, NCSR Demokritos, Aghia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassay/Immunosensors Lab, INRaSTES, NCSR Demokritos, Aghia Paraskevi, Greece
| | - Hyun-Taek Oh
- Department of Polymer Science & Engineering, Inha University, Incheon, 22212, South Korea
| | - Jin-Kyun Lee
- Department of Polymer Science & Engineering, Inha University, Incheon, 22212, South Korea
| | - Sotirios Kakabakos
- Immunoassay/Immunosensors Lab, INRaSTES, NCSR Demokritos, Aghia Paraskevi, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Aghia Paraskevi, Greece
| | | |
Collapse
|
36
|
Deshpande TD, Singh YRG, Patil S, Joshi YM, Sharma A. To study surface and sub-surface nanomechanical properties of electrospun polyacrylonitrile (PAN) nanofibers/polydimethylsiloxane (PDMS) composites. SOFT MATTER 2018; 14:7829-7838. [PMID: 30191946 DOI: 10.1039/c8sm01271g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate surface and sub-surface nanomechanical properties of nanocomposites based on a crosslinked polydimethylsiloxane (PDMS) elastomer and electrospun polyacrylonitrile (PAN) nanofibers. Fabrication of PDMS substrates with anisotropy with respect to surface elasticity and their characterization in terms of local nanomechanical properties are important for many areas of adhesion applications. PDMS nanocomposite substrates with variations in surface elasticity over large areas are prepared by controllably embedding electrospun PAN nanofibers (∼600 nm) in a PDMS matrix using the solution casting technique. Variations of local surface stiffness properties of prepared composites are measured using force spectroscopy and force mapping modes of atomic force microscopy and compared with their macroscopic (bulk) mechanical properties. Since the surface of the prepared nanocomposite is elastically non-homogeneous, our studies are mainly focused on the investigation of the hysteresis (plasticity index) between loading and unloading curves which is a measure of energy dissipation in AFM indentation experiments. The distribution of the local plasticity index in the PAN/PDMS composites is related to the specific organization of electrospun nanofibers at the surface and sub-surface layers of the PDMS matrix. We observed that embedding 0.1-1% PAN nanofibers induces anti-plasticization effects for lower (0.1%) and higher (1%) concentrations of PAN nanofibers which represent the formation of interpenetrating networks and mat-like blended structures of PAN nanofibers within the PDMS matrix.
Collapse
Affiliation(s)
- Tushar D Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India.
| | | | | | | | | |
Collapse
|
37
|
Nawaz MH, Catanante G, Marty JL, Hayat A. One step growth of electro-assisted BSA functionalized screen-printed carbon interface with improved antifouling characteristics. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Biocatalytic membranes prepared by inkjet printing functionalized yeast cells onto microfiltration substrates. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Li N, Larin EM, Kerman K. A Miniaturized Impedimetric Immunosensor for the Competitive Detection of Adrenocorticotropic Hormone. SENSORS 2017; 17:s17122836. [PMID: 29215565 PMCID: PMC5751679 DOI: 10.3390/s17122836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 01/12/2023]
Abstract
Adrenocorticotropic hormone (ACTH) plays an essential role in regulating corticosteroid hormone production, which has important functions in a myriad of critical physiological functions. In this proof-of-concept study, a miniaturized immunosensor was developed for the highly sensitive detection of ACTH using electrochemical impedance spectroscopy (EIS) in connection with disposable screen-printed gold electrodes (SPGEs). A film of 3,3′-dithiobis[sulfosuccinimidylpropionate] (DTSSP) was prepared to immobilize anti-ACTH antibodies covalently on the nanostructured SPGE surface. The surface-immobilized anti-ACTH antibodies captured the biotinylated ACTH (biotin-ACTH) and non-labelled ACTH for the competitive immunoassay. After coupling of a streptavidin-alkaline phosphatase conjugate (Streptavidin-ALP), the bio-catalysed precipitation of an insoluble and insulating product onto the sensing interface changed the charge transfer resistance (Rct) characteristics significantly. The detection limit of 100 fg/mL was determined for ACTH in a 5 μL sample volume, which indicated that this versatile platform can be easily adapted for miniaturized electrochemical immunosensing of cancer marker biomolecules. High selectivity and sensitivity of our immunoassay to detect ACTH in real samples demonstrated its promising potential for future development and applications using clinical samples.
Collapse
Affiliation(s)
- Nan Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Egor M Larin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
40
|
|
41
|
Yoon J, Shin JW, Lim J, Mohammadniaei M, Bharate Bapurao G, Lee T, Choi JW. Electrochemical nitric oxide biosensor based on amine-modified MoS 2/graphene oxide/myoglobin hybrid. Colloids Surf B Biointerfaces 2017; 159:729-736. [PMID: 28886511 DOI: 10.1016/j.colsurfb.2017.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/28/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is one of the most important molecules in living things due to its role as a signaling molecule in influencing pathological and physiological mechanisms including neurotransmission. In this study, the electrochemical biosensor based on the amine-modified molybdenum disulfide nanoparticles (MoS2), graphene oxide (GO) and myoglobin (Mb) hybrid material (amine-modified MoS2/GO/Mb hybrid) is developed to achieve the accurate detection of NO with electrochemical signal improvement. For the first time, the synthesis of MoS2 accompanying the amine-modification of the surface of MoS2 is done to hybridize with GO efficiently through the short linkage. After the amine-modification of MoS2, it is enclosed with GO directly (amine-modified MoS2/GO). Then, Mb which can induce the reduction of NO is immobilized on the amine-modified MoS2/GO to fabricate the amine-modified MoS2/GO/Mb hybrid for NO detection. The prepared hybrid shows the signal improved redox properties relative to the result of the electrode prepared without hybrid. Furthermore, upon addition of NO, the electrode prepared with hybrid shows the improved amperometric response compared with that of the electrode without hybrid. This amine-modified MoS2/GO/Mb hybrid can be used in the development of the biosensor platform accompanying the electrochemical signal improvement and accurate detection of target materials.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Jae-Wook Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Mohsen Mohammadniaei
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - G Bharate Bapurao
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
42
|
Raczkowska J, Awsiuk K, Prauzner-Bechcicki S, Pabijan J, Zemła J, Budkowski A, Lekka M. Patterning of cancerous cells driven by a combined modification of mechanical and chemical properties of the substrate. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Bilatto SER, Adly NY, Correa DS, Wolfrum B, Offenhäusser A, Yakushenko A. Printed microfluidic filter for heparinized blood. BIOMICROFLUIDICS 2017; 11:034101. [PMID: 28798855 PMCID: PMC5533500 DOI: 10.1063/1.4982963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 05/25/2023]
Abstract
A simple lab-on-a-chip method for blood plasma separation was developed by combining stereolithographic 3D printing with inkjet printing, creating a completely sealed microfluidic device. In some approaches, one dilutes the blood sample before separation, reducing the concentration of a target analyte and increasing a contamination risk. In this work, a single drop (8 μl) of heparinized whole blood could be efficiently filtered using a capillary effect without any external driving forces and without dilution. The blood storage in heparin tubes during 24 h at 4 °C initiated the formation of small crystals that formed auto-filtration structures in the sample upon entering the 3D-printed device, with pores smaller than the red blood cells, separating plasma from the cellular content. The total filtration process took less than 10 s. The presented printed plasma filtration microfluidics fabricated with a rapid prototyping approach is a miniaturized, fast and easy-to-operate device that can be integrated into healthcare/portable systems for point-of-care diagnostics.
Collapse
Affiliation(s)
| | - Nouran Y Adly
- Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexey Yakushenko
- Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
44
|
Raczkowska J, Prauzner-Bechcicki S, Dąbczyński P, Szydlak R. Elasticity patterns induced by phase-separation in polymer blend films. THIN SOLID FILMS 2017; 624:181-186. [PMID: 29681664 PMCID: PMC5909711 DOI: 10.1016/j.tsf.2017.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Systematical studies on the impact of the thickness of thin films composed of polystyrene (PS) or poly(ethylene oxide) (PEO) on the effective elasticity of polymer-decorated soft polydimethylsiloxane substrate were performed. For both investigated polymer films, elasticity parameter was determined from force-displacement curves recorded using atomic force microscopy. Effective stiffness of supported film grows monotonically with film thickness, starting from the value comparable to the elasticity of soft support and reaching plateau for polymer layers thicker than 200 nm. In contrary, for films cast on hard support no significant thickness dependence of elasticity was observed and the value of elasticity parameter was similar to the one of the substrate. Based on these results, non-conventional method to produce elasticity patterns of various shapes and dimensions induced by phase-separation process in symmetric and asymmetric PS:PEO blend films on soft support was demonstrated. Elevated PS domains were characterized by elasticity parameter 2 times higher than lower PEO matrix. In contrary, adhesion force was increased more than 3 times for PEO regions, as compared to PS areas.
Collapse
Affiliation(s)
- Joanna Raczkowska
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków, Poland
| | - Szymon Prauzner-Bechcicki
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Paweł Dąbczyński
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków, Poland
| | - Renata Szydlak
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| |
Collapse
|
45
|
Anany H, Chou Y, Cucic S, Derda R, Evoy S, Griffiths M. From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages. Annu Rev Food Sci Technol 2017; 8:305-329. [DOI: 10.1146/annurev-food-041715-033235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- H. Anany
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt 11566
| | - Y. Chou
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - S. Cucic
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
| | - R. Derda
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - S. Evoy
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - M.W. Griffiths
- Canadian Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1;, ,
| |
Collapse
|
46
|
Lee DH, Cho HS, Han D, Chand R, Yoon TJ, Kim YS. Highly selective organic transistor biosensor with inkjet printed graphene oxide support system. J Mater Chem B 2017; 5:3580-3585. [DOI: 10.1039/c6tb03357a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesized graphene oxide ink was printed on FET biosensor for specific bio-sensing of DNA and CTCs.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- School of Electronic and Electrical Engineering
- Sungkyunkwan University
- Suwon
- South Korea
| | - Hee-Sang Cho
- Nano-bio Materials Chemistry Lab
- College of Pharmacy
- Ajou University
- Suwon
- South Korea
| | - Dawoon Han
- School of Electronic and Electrical Engineering
- Sungkyunkwan University
- Suwon
- South Korea
| | - Rohit Chand
- School of Electronic and Electrical Engineering
- Sungkyunkwan University
- Suwon
- South Korea
| | - Tae-Jong Yoon
- Nano-bio Materials Chemistry Lab
- College of Pharmacy
- Ajou University
- Suwon
- South Korea
| | - Yong-Sang Kim
- School of Electronic and Electrical Engineering
- Sungkyunkwan University
- Suwon
- South Korea
| |
Collapse
|
47
|
Meshram JV, Koli VB, Phadatare MR, Pawar SH. Anti-microbial surfaces: An approach for deposition of ZnO nanoparticles on PVA-Gelatin composite film by screen printing technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:257-266. [PMID: 28183607 DOI: 10.1016/j.msec.2016.12.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/18/2016] [Accepted: 12/04/2016] [Indexed: 12/14/2022]
Abstract
Initially micro-organisms get exposed to the surfaces, this demands development of anti-microbial surfaces to inhibit their proliferation. Therefore, herein, we attempt screen printing technique for development of PVA-GE/ZnO nanocomposite (PG/ZnO) films. The synthesis of PG/ZnO nanocomposite includes two steps as: (i) Coating of Zinc Oxide nanoparticles (ZnO NPs) by poly ethylene glycol in order to be compatible with organic counterparts. (ii) Deposition of coated nanoparticles on the PG film surface. The results suggest the enhancement in anti-microbial activity of PG/ZnO nanocomposite over pure ZnO NPs against both Gram positive Bacillus subtilis and Gram negative Escherichia coli from zone of inhibition. The uniformity in deposition is further confirmed by scanning electron microscopy (SEM) images. The phase identification of ZnO NPs and formation of PG/ZnO nanocomposite has been confirmed by X-ray diffraction (XRD) analysis and UV-vis spectroscopy (UV-vis). The Attenuated total reflection Spectroscopy (ATR) analysis indicates the ester bond between PVA and gelatin molecules. The thermal stability of nanocomposite is studied by thermogravimetric analysis (TGA) revealing increase in crystallinity due to ZnO NPs which could be utilized to inhibit the growth of micro-organisms. The tensile strength is found to be higher and percent elongation is double of PG/ZnO nanocomposite than PG composite film.
Collapse
Affiliation(s)
- J V Meshram
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416006, Maharashtra, India
| | - V B Koli
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416006, Maharashtra, India
| | - M R Phadatare
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416006, Maharashtra, India
| | - S H Pawar
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416006, Maharashtra, India.
| |
Collapse
|
48
|
Yadav H, Sinha N, Goel S, Hussain A, Kumar B. Growth and structural and physical properties of diisopropylammonium bromide molecular single crystals. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716014552] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Large single crystals of the promising molecular organic ferroelectric diisopropylammonium bromide (DIPAB) have been grown by the solution technique. A structural study was performed using single-crystal X-ray diffraction analysis. The twin element of a selected DIPAB crystal was identified by a morphological study. Intermolecular interactions present in the grown crystal were explored by Hirshfeld surface (three-dimensional) and fingerprint plot (two-dimensional) studies. In UV–vis spectroscopy, the DIPAB crystal has shown high transparency with a wide direct band gap of 5.65 eV. In the photoluminescence spectrum, sharp UV and blue emissions were observed at 370, 392, 417 and 432 nm. The electrical properties were investigated by measuring the dielectric constant (∊) and loss (tanδ) of the grown crystal. The DIPAB crystal exhibits a promising piezoelectric charge coefficient (d33) value of 18 pC N−1, which makes it suitable for transducer applications. A high ferroelectric Curie temperature (Tc≃ 425 K) with high remnant polarization (20.52 µC cm−2) and high coercive field (12.25 kV cm−1) were observed in the as-grown crystal. Vickers microhardness analysis shows that the value of Meyer's index (n= 7.27) belongs to the soft material range, which was also confirmed by void analysis along three crystallographic axes. It is shown that the DIPAB crystal has potential for optical, ferroelectric and piezoelectric applications.
Collapse
|
49
|
Wang Y, Wang Y, Chen JJ, Guo H, Liang K, Marcus K, Peng QL, Zhang J, Feng ZS. A facile process combined with inkjet printing, surface modification and electroless deposition to fabricate adhesion-enhanced copper patterns on flexible polymer substrates for functional flexible electronics. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
|