1
|
Faheem S, Hameed H, Paiva-Santos AC, Khan MA, Ghumman SA, Hameed A. The role of chondroitin sulphate as a potential biomaterial for hepatic tissue regeneration: A comprehensive review. Int J Biol Macromol 2024; 280:136332. [PMID: 39482129 DOI: 10.1016/j.ijbiomac.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Chondroitin sulphate is an anionic hetero-polysaccharide, having numerous structural affinities for building the bio-active components. In addition to biodegradable/biocompatible activities, chondroitin sulphate also possesses anti-coagulant/anti-thrombogenic, anti-inflammatory, anti-oxidant as well as anti-tumor activities. Chondroitin sulphate has an inherited affinity for glycosylation enzymes and receptors, which are overexpressed over degenerated cells and organelles. Because of this affinity, chondroitin sulphate is nominated as an active cellular/subcellular targeted biological macromolecule to assist in site-specific delivery. Chondroitin sulphate is mainly considered a promising biomaterial for drug targeting and tissue engineering due to its specific physicochemical, mechanical, bio-degradation, and biological characteristics. In this review, the fundamental applications of chondroitin sulphate in hepatic tissue engineering are discussed. Chondroitin sulphate along with mesenchymal stem cells (MSCs) based scaffold and hydrogels for biopharmaceuticals' delivery in hepatic tissue engineering are critically discussed. In addition, the manuscript also describes leading features and markers involved in hepatic damage, and the potential role of chondroitin sulphate-based delivery systems in hepatic tissue engineering.
Collapse
Affiliation(s)
- Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | | | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan.
| |
Collapse
|
2
|
Jain S, Sharma JG. Unconventional strategies for liver tissue engineering: plant, paper, silk and nanomaterial-based scaffolds. Regen Med 2024; 19:421-437. [PMID: 39101556 PMCID: PMC11370909 DOI: 10.1080/17460751.2024.2378615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
The paper highlights how significant characteristics of liver can be modeled in tissue-engineered constructs using unconventional scaffolds. Hepatic lobular organization and metabolic zonation can be mimicked with decellularized plant structures with vasculature resembling a native-hepatic lobule vascular arrangement or silk blend scaffolds meticulously designed for guided cellular arrangement as hepatic patches or metabolic activities. The functionality of hepatocytes can be enhanced and maintained for long periods in naturally fibrous structures paving way for bioartificial liver development. The phase I enzymatic activity in hepatic models can be raised exploiting the microfibrillar structure of paper to allow cellular stacking creating hypoxic conditions to induce in vivo-like xenobiotic metabolism. Lastly, the paper introduces amalgamation of carbon-based nanomaterials into existing scaffolds in liver tissue engineering.
Collapse
Affiliation(s)
- Sanyam Jain
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
3
|
Esmaeili J, Jalise SZ, Pisani S, Rochefort GY, Ghobadinezhad F, Mirzaei Z, Mohammed RUR, Fathi M, Tebyani A, Nejad ZM. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: A review. Int J Biol Macromol 2024; 272:132941. [PMID: 38848842 DOI: 10.1016/j.ijbiomac.2024.132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Research in creating 3D structures mirroring the extracellular matrix (ECM) with accurate environmental cues holds paramount significance in biological applications.Biomaterials that replicate ECM properties-mechanical, physicochemical, and biological-emerge as pivotal tools in mimicking ECM behavior.Incorporating synthetic and natural biomaterials is widely used to produce scaffolds suitable for the intended organs.Polycaprolactone (PCL), a synthetic biomaterial, boasts commendable mechanical properties, albeit with relatively modest biological attributes due to its hydrophobic nature.Chitosan (CTS) exhibits strong biological traits but lacks mechanical resilience for complex tissue regeneration.Notably, both PCL and CTS have demonstrated their application in tissue engineering for diverse types of tissues.Their combination across varying PCL:CTS ratios has increased the likelihood of fabricating scaffolds to address defects in sturdy and pliable tissues.This comprehensive analysis aspires to accentuate their distinct attributes within tissue engineering across different organs.The central focus resides in the role of PCL:CTS-based scaffolds, elucidating their contribution to the evolution of advanced functional 3D frameworks tailored for tissue engineering across diverse organs.Moreover, this discourse delves into the considerations pertinent to each organ.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran; Department of Tissue Engineering, TISSUEHUB Co., Tehran, Iran; Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12,27100 Pavia, Italy
| | - Gaël Y Rochefort
- Bioengineering Biomodulation and Imaging of the Orofacial Sphere, 2BIOS, faculty of dentistry, tours university, France; UMR 1253, iBrain, Tours University, France
| | | | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy e.V.INAM, Forchheim, Germany
| | | | - Mehdi Fathi
- Department of Esthetic and Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Tebyani
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Zohreh Mousavi Nejad
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland; Centre for medical engineering research, school of mechanical and manufacturing engineering, Dublin city university, D09 Y074 Dublin, Ireland
| |
Collapse
|
4
|
Sun L, Bian F, Xu D, Luo Y, Wang Y, Zhao Y. Tailoring biomaterials for biomimetic organs-on-chips. MATERIALS HORIZONS 2023; 10:4724-4745. [PMID: 37697735 DOI: 10.1039/d3mh00755c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Organs-on-chips are microengineered microfluidic living cell culture devices with continuously perfused chambers penetrating to cells. By mimicking the biological features of the multicellular constructions, interactions among organs, vascular perfusion, physicochemical microenvironments, and so on, these devices are imparted with some key pathophysiological function levels of living organs that are difficult to be achieved in conventional 2D or 3D culture systems. In this technology, biomaterials are extremely important because they affect the microstructures and functionalities of the organ cells and the development of the organs-on-chip functions. Thus, herein, we provide an overview on the advances of biomaterials for the construction of organs-on-chips. After introducing the general components, structures, and fabrication techniques of the biomaterials, we focus on the studies of the functions and applications of these biomaterials in the organs-on-chips systems. Applications of the biomaterial-based organs-on-chips as alternative animal models for pharmaceutical, chemical, and environmental tests are described and highlighted. The prospects for exciting future directions and the challenges of biomaterials for realizing the further functionalization of organs-on-chips are also presented.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
5
|
Maji S, Lee M, Lee J, Lee J, Lee H. Development of lumen-based perfusable 3D liver in vitro model using single-step bioprinting with composite bioinks. Mater Today Bio 2023; 21:100723. [PMID: 37502830 PMCID: PMC10368928 DOI: 10.1016/j.mtbio.2023.100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatic sinusoids are uniquely organized structures that help maintain a spectrum of hepatic functions. Although several in vitro liver models have been developed to replicate liver sinusoids, most of these platforms require complex, multi-step fabrication methods making it difficult to achieve truly three-dimensional (3D) channel geometries. In this study, a single-step bioprinting technique was demonstrated to simultaneously print a chip platform and develop a perfusable vascularized liver sinusoid in vitro model. The integrated system uses a co-axial-based bioprinting approach to develop a liver sinusoid-like model that consists of a sacrificial core compartment containing a perfusable pre-vascular structure and an alginate-collagen-based shell compartment containing hepatocytes. The lumen-based perfusable 3D liver sinusoid-on-a-chip (LSOC-P) demonstrated significantly better hepatocyte viability, proliferation, and liver-specific gene and protein expression compared to a 3D hepatocyte-based core/shell model with static media and the standard hepatocyte-based 2D sandwich culture system. A drug toxicity evaluation of hepatotoxins highlighted the comparatively higher sensitivity of the LSOC system with a close estimation of the therapeutic range of safe drug concentrations for humans. In conclusion, the current findings indicate that the combinatorial single-step co-axial bioprinting technique is a promising fabrication approach for the development of a perfusable LSOC platform for drug screening applications.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Minkyoung Lee
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jooyoung Lee
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jaehee Lee
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
6
|
Rosellini E, Cascone MG. Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review. Biomimetics (Basel) 2023; 8:biomimetics8010074. [PMID: 36810405 PMCID: PMC9944883 DOI: 10.3390/biomimetics8010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Natural polymers, thanks to their intrinsic biocompatibility and biomimicry, have been largely investigated as scaffold materials for tissue engineering applications. Traditional scaffold fabrication methods present several limitations, such as the use of organic solvents, the obtainment of a non-homogeneous structure, the variability in pore size and the lack of pore interconnectivity. These drawbacks can be overcome using innovative and more advanced production techniques based on the use of microfluidic platforms. Droplet microfluidics and microfluidic spinning techniques have recently found applications in the field of tissue engineering to produce microparticles and microfibers that can be used as scaffolds or as building blocks for three-dimensional structures. Compared to standard fabrication technologies, microfluidics-based ones offer several advantages, such as the possibility of obtaining particles and fibers with uniform dimensions. Thus, scaffolds with extremely precise geometry, pore distribution, pore interconnectivity and a uniform pores size can be obtained. Microfluidics can also represent a cheaper manufacturing technique. In this review, the microfluidic fabrication of microparticles, microfibers and three-dimensional scaffolds based on natural polymers will be illustrated. An overview of their applications in different tissue engineering fields will also be provided.
Collapse
|
7
|
Makkar H, Zhou Y, Tan KS, Lim CT, Sriram G. Modeling Crevicular Fluid Flow and Host-Oral Microbiome Interactions in a Gingival Crevice-on-Chip. Adv Healthc Mater 2023; 12:e2202376. [PMID: 36398428 DOI: 10.1002/adhm.202202376] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Gingival crevice and gingival crevicular fluid (GCF) flow play a crucial role at the gingiva-oral microbiome interface which contributes toward maintaining the balance between gingival health and periodontal disease. Interstitial flow of GCF strongly impacts the host-microbiome interactions and tissue responses. However, currently available in vitro preclinical models largely disregard the dynamic nature of gingival crevicular microenvironment, thus limiting the progress in the development of periodontal therapeutics. Here, a proof-of-principle "gingival crevice-on-chip" microfluidic platform to culture gingival connective tissue equivalent (CTE) under dynamic interstitial fluid flow mimicking the GCF is described. On-chip co-culture using oral symbiont (Streptococcus oralis) shows the potential to recapitulate microbial colonization, formation of biofilm-like structures at the tissue-microbiome interface, long-term co-culture, and bacterial clearance secondary to simulated GCF (s-GCF) flow. Further, on-chip exposure of the gingival CTEs to the toll-like receptor-2 (TLR-2) agonist or periodontal pathogen Fusobacterium nucleatum demonstrates the potential to mimic early gingival inflammation. In contrast to direct exposure, the induction of s-GCF flow toward the bacterial front attenuates the secretion of inflammatory mediators demonstrating the protective effect of GCF flow. This proposed in vitro platform offers the potential to study complex host-microbe interactions in periodontal disease and the development of periodontal therapeutics under near-microphysiological conditions.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Ying Zhou
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| |
Collapse
|
8
|
Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater 2023; 19:328-347. [PMID: 35892003 PMCID: PMC9301605 DOI: 10.1016/j.bioactmat.2022.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Nano/micro fibers have evoked much attention of scientists and have been researched as cutting edge and hotspot in the area of fiber science in recent years due to the rapid development of various advanced manufacturing technologies, and the appearance of fascinating and special functions and properties, such as the enhanced mechanical strength, high surface area to volume ratio and special functionalities shown in the surface, triggered by the nano or micro-scale dimensions. In addition, these outstanding and special characteristics of the nano/micro fibers impart fiber-based materials with wide applications, such as environmental engineering, electronic and biomedical fields. This review mainly focuses on the recent development in the various nano/micro fibers fabrication strategies and corresponding applications in the biomedical fields, including tissue engineering scaffolds, drug delivery, wound healing, and biosensors. Moreover, the challenges for the fabrications and applications and future perspectives are presented.
Collapse
Affiliation(s)
- Bin Kong
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Rui Liu
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Jiahui Guo
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yuanjin Zhao
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
| |
Collapse
|
9
|
Yun C, Kim SH, Jung YS. Current Research Trends in the Application of In Vitro Three-Dimensional Models of Liver Cells. Pharmaceutics 2022; 15:pharmaceutics15010054. [PMID: 36678683 PMCID: PMC9866911 DOI: 10.3390/pharmaceutics15010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The liver produces and stores various nutrients that are necessary for the body and serves as a chemical plant, metabolizing carbohydrates, fats, hormones, vitamins, and minerals. It is also a vital organ for detoxifying drugs and exogenous harmful substances. Culturing liver cells in vitro under three-dimensional (3D) conditions is considered a primary mechanism for liver tissue engineering. The 3D cell culture system is designed to allow cells to interact in an artificially created environment and has the advantage of mimicking the physiological characteristics of cells in vivo. This system facilitates contact between the cells and the extracellular matrix. Several technically different approaches have been proposed, including bioreactors, chips, and plate-based systems in fluid or static media composed of chemically diverse materials. Compared to conventional two-dimensional monolayer culture in vitro models, the ability to predict the function of the tissues, including the drug metabolism and chemical toxicity, has been enhanced by developing three-dimensional liver culture models. This review discussed the methodology of 3D cell cultures and summarized the advantages of an in vitro liver platform using 3D culture technology.
Collapse
|
10
|
Navaei-Nigjeh M, Mirzababaei S, Ghiass MA, Roshanbinfar K, Gholami M, Abdollahi M. Microfluidically fabricated fibers containing pancreatic islets and mesenchymal stromal cells improve longevity and sustained normoglycemia in diabetic rats. Biofabrication 2022; 15. [PMID: 36279872 DOI: 10.1088/1758-5090/ac9d04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease characterized by the loss of pancreatic isletβcells. Insulin injections and pancreas transplants are currently available therapies. The former requires daily insulin injections, while the latter is constrained by donor organ availability. Islet transplantation is a promising alternative treatment for type 1 diabetes mellitus that may overcome the limitations of previous techniques. Two challenges, however, must be addressed: limited cell retention as a result of the immune response and limited function of the transplanted cells that survive. To address these problems, we developed a microfluidic technology for a one-step generation of islet-laden fibers to protect them from the immune response. This approach enables continuous generation of microfibers with a diameter suitable for islet encapsulation (275µm). We, then, transplanted islet-laden fibers into diabetic Wistar rats. While islet-laden fibers alone were unable to restore normoglycemia in diabetic rats, adding mesenchymal stromal cells (MSCs) restored normoglycemia for an extended time. It increased the animals' lifespan by up to 75 d. Additionally, it improved the glucose-stimulated response of islets to the point where there was no significant difference between the treatment group and the healthy animals. Additionally, the presence of MSCs suppressed the immune response, as seen by decreased levels of pro-inflammatory cytokines such as tumor necrosis factor-α. Taken together, these fibers including islet and MSCs provide a versatile platform for concurrently improving cell preservation and functioning followingin vivotransplantation.
Collapse
Affiliation(s)
- Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Mahdi Gholami
- School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: Potentials, limitations, and prospects. BIOMICROFLUIDICS 2022; 16:061504. [PMID: 36406340 PMCID: PMC9674390 DOI: 10.1063/5.0129108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as well as the latest developments and achievements of microfluidic-based techniques for fiber production, are introduced. Specifically, microfluidic platforms made of glass, polymers, and/or metals, including but not limited to microfluidic chips, capillary-based devices, and three-dimensional printed devices are summarized. Then, fiber production from various materials, such as alginate, gelatin, silk, collagen, and chitosan, using different microfluidic platforms with a broad range of cross-linking agents and mechanisms is described. Therefore, microfluidic spun fibers with diverse diameters ranging from submicrometer scales to hundreds of micrometers and structures, such as cylindrical, hollow, grooved, flat, core-shell, heterogeneous, helical, and peapod-like morphologies, with tunable sizes and mechanical properties are discussed in detail. Subsequently, the practical applications of microfluidic spun fibers are highlighted in sensors for biomedical or optical purposes, scaffolds for culture or encapsulation of cells in tissue engineering, and drug delivery. Finally, different limitations and challenges of the current microfluidic technologies, as well as the future perspectives and concluding remarks, are presented.
Collapse
Affiliation(s)
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 11155-9465 Tehran, Iran
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, 67144-14971 Kermanshah, Iran
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg1, 8049 Zurich, Switzerland
| |
Collapse
|
12
|
Chimerad M, Barazesh A, Zandi M, Zarkesh I, Moghaddam A, Borjian P, Chimehrad R, Asghari A, Akbarnejad Z, Khonakdar HA, Bagher Z. Tissue engineered scaffold fabrication methods for medical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mohammadreza Chimerad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Alireza Barazesh
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mojgan Zandi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armaghan Moghaddam
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Pouya Borjian
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Rojan Chimehrad
- Department of Biological Sciences, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head and Neck Research Center and Department, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. BIOMICROFLUIDICS 2022; 16:041501. [PMID: 35992641 PMCID: PMC9385224 DOI: 10.1063/5.0087852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This review provides a detailed literature survey on microfluidics and its road map toward kidney-on-chip technology. The whole review has been tailored with a clear description of crucial milestones in regenerative medicine, such as bioengineering, tissue engineering, microfluidics, microfluidic applications in biomedical engineering, capabilities of microfluidics in biomimetics, organ-on-chip, kidney-on-chip for disease modeling, drug toxicity, and implantable devices. This paper also presents future scope for research in the bio-microfluidics domain and biomimetics domain.
Collapse
Affiliation(s)
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Arindam Dutta
- Urologist, RG Stone Urology and Laparoscopic Hospital, Kolkata, West Bengal, India
| | | | | | - Nanda Sai Donepudi
- Medical Interns, Government Siddhartha Medical College, Vijayawada, India
| | - M. Surya Manoj
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Sk. Shahrukh Sohail
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| |
Collapse
|
14
|
Kovacevic B, Ionescu CM, Jones M, Wagle SR, Lewkowicz M, Đanić M, Mikov M, Mooranian A, Al-Salami H. The Effect of Deoxycholic Acid on Chitosan-Enabled Matrices for Tissue Scaffolding and Injectable Nanogels. Gels 2022; 8:gels8060358. [PMID: 35735702 PMCID: PMC9222767 DOI: 10.3390/gels8060358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of a multitude of diseases is influenced by bioenergetic dysfunction. Healthy mitochondria are presented as essential for the regulation and function of multiple cell types, including the cells of relevance for this research: pancreatic beta cells, muscle cells, and liver cells. Hence, effects of hydrogels (particularly nanogels) on bioenergetics needs to be taken into account when designing optimum delivery matrices. Several polymers have been suggested for use in hydrogels and nanogels, with focus on chitosan due to its range of beneficial properties. Bile acids have emerged as beneficial excipients, including deoxycholic acid, which can increase membrane permeability of cells. Nanogels were manufactured containing various concentrations of chitosan and deoxycholic acid in addition to the staple sodium alginate. Nanogels then underwent an array of analysis including rheological studies and in vitro cell work assessing viability, hypoxia, and the bioenergetic profiles. Overall, deoxycholic acid showed enhanced gel strength although this resulted in slightly lower cell viability and impacted bioenergetic profiles. Results from this study showed the benefits of deoxycholic acid; however, this was found to be less suitable for cell delivery matrices and is perhaps more beneficial for drug-delivery systems.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Michael Lewkowicz
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia; (M.Đ.); (M.M.)
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia; (M.Đ.); (M.M.)
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
- Correspondence: (A.M.); (H.A.-S.)
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
- Correspondence: (A.M.); (H.A.-S.)
| |
Collapse
|
15
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
16
|
Jo B, Nie M, Takeuchi S. Manufacturing of animal products by the assembly of microfabricated tissues. Essays Biochem 2021; 65:611-623. [PMID: 34156065 PMCID: PMC8365324 DOI: 10.1042/ebc20200092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
With the current rapidly growing global population, the animal product industry faces challenges which not only demand drastically increased amounts of animal products but also have to limit the emission of greenhouse gases and animal waste. These issues can be solved by the combination of microfabrication and tissue engineering techniques, which utilize the microtissue as a building component for larger tissue assembly to fabricate animal products. Various methods for the assembly of microtissue have been proposed such as spinning, cell layering, and 3D bioprinting to mimic the intricate morphology and function of the in vivo animal tissues. Some of the demonstrations on cultured meat and leather-like materials present promising outlooks on the emerging field of in vitro production of animal products.
Collapse
Affiliation(s)
- Byeongwook Jo
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Minghao Nie
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
17
|
Magnani JS, Montazami R, Hashemi NN. Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:185-205. [PMID: 33940929 DOI: 10.1146/annurev-anchem-090420-101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, the unique and tunable properties of microfluidically spun microfibers have led to tremendous advancements for the field of biomedical engineering, which have been applied to areas such as tissue engineering, wound dressing, and drug delivery, as well as cell encapsulation and cell seeding. In this article, we analyze the most recent advances in microfluidics and microfluidically spun microfibers, with an emphasis on biomedical applications. We explore in detail these new and innovative experiments, how microfibers are made, the experimental purpose of making microfibers, and the future work that can be done as a result of these new types of microfibers. We also focus on the applications of various materials used to fabricate microfibers, as well as their many promises and limitations.
Collapse
Affiliation(s)
- Joseph Scott Magnani
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
18
|
Wang L, Wu J, Chen J, Dou W, Zhao Q, Han J, Liu J, Su W, Li A, Liu P, An Z, Xu C, Sun Y. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip. Talanta 2021; 226:122097. [PMID: 33676654 DOI: 10.1016/j.talanta.2021.122097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Standard two/three dimensional (2D/3D)-cell culture platforms have facilitated the understanding of the communications between various cell types and their microenvironments. However, they are still limited in recapitulating the complex functionalities in vivo, such as tissue formation, tissue-tissue interface, and mechanical/biochemical microenvironments of tissues and organs. Intestine-on-a-chip platforms offer a new way to mimic intestinal behaviors and functionalities by constructing in vitro intestinal models in microfluidic devices. This review summarizes the advances and limitations of the state-of-the-art 2D/3D-cell culture platforms, animal models, intestine chips, and the combined multi-organ chips related with intestines. Their applications to studying intestinal functions, drug testing, and disease modeling are introduced. Different intestinal cell sources are compared in terms of gene expression abilities and the recapitulated intestinal morphologies. Among these cells, cells isolated form human intestinal tissues and derived from pluripotent stem cells appear to be more suitable for in vitro reconstruction of intestinal organs. Key challenges of current intestine-on-a-chip platforms and future directions are also discussed.
Collapse
Affiliation(s)
- Li Wang
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jian Wu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jun Chen
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin, 300350, China
| | - Junlei Han
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jinliang Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Weiguang Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Anqing Li
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Pengbo Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhao An
- Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chonghai Xu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada
| |
Collapse
|
19
|
Gao Y, Ma Q, Cao J, Wang Y, Yang X, Xu Q, Liang Q, Sun Y. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. Int J Pharm 2021; 600:120465. [PMID: 33711469 DOI: 10.1016/j.ijpharm.2021.120465] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
Chitosan-based biomaterials has shown great advantages in a broad range of applications, including drug delivery, clinical diagnosis, cell culture and tissue engineering. However, due to the lack of control over the fabrication processes by conventional techniques, the wide application of chitosan-based biomaterials has been hampered. Recently, microfluidics has been demonstrated as one of the most promising platforms to fabricate high-performance chitosan-based multifunctional materials with monodisperse size distribution and accurately controlled morphology and microstructures, which show great promising for biomedical applications. Here, we review recent progress of the fabrication of chitosan-based biomaterials with different structures and integrated functions by microfluidic technology. A comprehensive and in-depth depiction of critical microfluidic formation mechanism and process of various chitosan-based materials are first interpreted, with particular descriptions about the microfluidic-mediated control over the morphology and microstructures. Afterwards, recently emerging representative applications of chitosan-based multifunctional materials in various fields, are systematically summarized. Finally, the conclusions and perspectives on further advancing the microfluidic-aided chitosan-based multifunctional materials toward potential and versatile development for fundamental researches and biomedicine are proposed.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yiwen Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Yang
- Hangzhou Huadong Medicine Group Biotechnology Institute Company, Hangzhou, China
| | - Qiulong Xu
- Jiangsu Seven Continent Institute of Green Technology, Suzhou, China
| | - Qing Liang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci 2021; 22:ijms22031195. [PMID: 33530487 PMCID: PMC7865724 DOI: 10.3390/ijms22031195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
A hot topic in biomedical science is the implementation of more predictive in vitro models of human tissues to significantly improve the knowledge of physiological or pathological process, drugs discovery and screening. Bidimensional (2D) culture systems still represent good high-throughput options for basic research. Unfortunately, these systems are not able to recapitulate the in vivo three-dimensional (3D) environment of native tissues, resulting in a poor in vitro–in vivo translation. In addition, intra-species differences limited the use of animal data for predicting human responses, increasing in vivo preclinical failures and ethical concerns. Dealing with these challenges, in vitro 3D technological approaches were recently bioengineered as promising platforms able to closely capture the complexity of in vivo normal/pathological tissues. Potentially, such systems could resemble tissue-specific extracellular matrix (ECM), cell–cell and cell–ECM interactions and specific cell biological responses to mechanical and physical/chemical properties of the matrix. In this context, this review presents the state of the art of the most advanced progresses of the last years. A special attention to the emerging technologies for the development of human 3D disease-relevant and physiological models, varying from cell self-assembly (i.e., multicellular spheroids and organoids) to the use of biomaterials and microfluidic devices has been given.
Collapse
|
21
|
Lu B, Li M, Fang Y, Liu Z, Zhang T, Xiong Z. Rapid Fabrication of Cell-Laden Microfibers for Construction of Aligned Biomimetic Tissue. Front Bioeng Biotechnol 2021; 8:610249. [PMID: 33585412 PMCID: PMC7873948 DOI: 10.3389/fbioe.2020.610249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Bottom-up engineering of tissue constructs is being rapidly developed and broadly applied in biomanufacturing. As one type of building block, cell-laden microfibers are promising for reconstruction of oriented structures and functions of linear tissues, such as skeletal muscles, myocardia, and spinal cord tissues. Herein, we propose wet-spinning method with agitating collection, wherein alginate-based material is extruded into an agitated CaCl2 bath with a magnetic rotor acting as the microfiber collector. By applying this method, we achieve rapid fabrication and oriented collection of hydrogel microfibers with diameters ranging from 100 to 400 μm. In addition, we encapsulate myoblasts in the hydrogel to form cell-laden microfibers, which show a high viability (more than 94%) during in vitro culture. Moreover, the method allows to fabricate of cell-laden core-sheath microfibers and hollow microfibers. We also fabricate 3D constructs using various methods of microfiber assembly like weaving and braiding. The assembling results suggest that the proposed method is a promising technology for bottom-up engineering of aligned biomimetic tissue constructs.
Collapse
Affiliation(s)
- Bingchuan Lu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Mingfeng Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Zibo Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| |
Collapse
|
22
|
Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nat Protoc 2020; 16:937-964. [PMID: 33318693 DOI: 10.1038/s41596-020-00442-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous microfluidic approaches for producing perfusable hydrogel microtubes with diverse biomimetic sizes and shapes. Here, we provide a detailed protocol describing the construction of the microtube spinning platforms, the assembly of microfluidic devices, and the fabrication and characterization of various perfusable hydrogel microtubes. The hydrogel microtubes can be continuously generated from microfluidic devices due to the crosslinking of alginate by calcium in the coaxial flows and collecting bath. Owing to the mild all-aqueous spinning process, cells can be loaded into the alginate prepolymer for microtube spinning, which enables the direct production of cell-laden hydrogel microtubes. By manipulating the fluid dynamics at the microscale, the composable microfluidic devices and platforms can be used for the facile generation of six types of biomimetic perfusable microtubes. The microfluidic platforms and devices can be set up within 3 h from commonly available and inexpensive materials. After 10-20 min required to adjust the platform and fluids, perfusable hydrogel microtubes can be generated continuously. We describe how to characterize the microtubes using scanning electron or confocal microscopy. As an example application, we describe how the microtubes can be used for the preparation of a vascular lumen and how to perform barrier permeability tests of the vascular lumen.
Collapse
|
23
|
Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater 2020; 116:67-83. [PMID: 32890749 DOI: 10.1016/j.actbio.2020.08.041] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023]
Abstract
The liver is the largest internal organ of the body with complex microarchitecture and function that plays critical roles in drug metabolism. Hepatotoxicity and drug-induced liver injury (DILI) caused by various drugs is the main reason for late-stage drug failures. Moreover, liver diseases are among the leading causes of death in the world, with the number of new cases arising each year. Although animal models have been used to understand human drug metabolism and toxicity before clinical trials, tridimensional microphysiological systems, such as liver-on-a-chip (Liver Chip) platforms, could better recapitulate features of human liver physiology and pathophysiology and thus, are often more predictive of human outcome. Liver Chip devices have shown promising results in mimicking in vivo condition by recapitulating the sinusoidal structure of the liver, maintaining high cell viability and cellular phenotypes, and emulating native liver functions. Here, we first review the cellular constituents and physiology of the liver and then critically discuss the state-of-the-art chip-based liver models and their applications in drug screening, disease modeling, and regenerative medicine. We finally address the pending issues of existing platforms and touch upon future directions for developing new, advanced on-chip models.
Collapse
Affiliation(s)
- Ehsanollah Moradi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Mehran Solati-Hashjin
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| |
Collapse
|
24
|
Huang Q, Li Y, Fan L, Xin JH, Yu H, Ye D. Polymorphic calcium alginate microfibers assembled using a programmable microfluidic field for cell regulation. LAB ON A CHIP 2020; 20:3158-3166. [PMID: 32696776 DOI: 10.1039/d0lc00517g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effectively guiding and accurately controlling cell adhesion and growth on the surfaces of specific morphological materials are key issues and hot research topics for optimizing biomaterials. Herein, novel polymorphic alginate microfibers formed through microfluidic spinning technology in a single microchip are presented. Through programming the flow and reaction kinetics in microchannels, other than self-modified micromorphic channel geometry, polymorphic microfibers with precisely tuned curvature-adjustable morphology can be obtained. Finite element (FE) simulations of the flow field (unidirectional fluid-solid coupling) proved the efficacy of the proposed control strategy. Moreover, the specific disordered-ordered cell arrangements showed a linear relationship between bioinspired alginate microfibers with different curvatures and the orientation angle of L929 cells, and diversified growth morphologies, including oblate ellipse, star, tree and strip shapes, occurred on the customizable interface curvature of the calcium alginate microfibers, providing a paradigm for using specific structured natural biomedical materials for cell regulation. This work represents a new design concept for manufacturing polymorphic fibrous biomedical materials through a unique marriage of the fields of green chemistry, hydromechanics, and biomaterials, which should be very useful for guiding the controllable construction of alginate materials for use in structural materials for biomedical and engineering purposes.
Collapse
Affiliation(s)
- Qiwei Huang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Yingyi Li
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Longfei Fan
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - John H Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Dongdong Ye
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
25
|
Brüggemann D, Michel J, Suter N, Grande de Aguiar M, Maas M. Wet-spinning of magneto-responsive helical chitosan microfibers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:991-999. [PMID: 32704461 PMCID: PMC7356321 DOI: 10.3762/bjnano.11.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 05/02/2023]
Abstract
Helical structures can be found in nature at various length scales ranging from the molecular level to the macroscale. Due to their ability to store mechanical energy and to optimize the accessible surface area, helical shapes contribute particularly to motion-driven processes and structural reinforcement. Due to these special features, helical fibers have become highly attractive for biotechnological and tissue engineering applications. However, there are only a few methods available for the production of biocompatible helical microfibers. Given that, we present here a simple technique for the fabrication of helical chitosan microfibers with embedded magnetic nanoparticles. Composite fibers were prepared by wet-spinning and coagulation in an ethanol bath. Thereby, no toxic components were introduced into the wet-spun chitosan fibers. After drying, the helical fibers had a diameter of approximately 130 µm. Scanning electron microscopy analysis of wet-spun helices revealed that the magnetic nanoparticles agglomerated into clusters inside the fiber matrix. The helical constructs exhibited a diameter of approximately 500 µm with one to two windings per millimeter. Due to their ferromagnetic properties they are easily attracted to a permanent magnet. The results from the tensile testing show that the helical chitosan microfibers exhibited an average Young's modulus of 14 MPa. By taking advantage of the magnetic properties of the feedstock solution, the production of the helical fibers could be automated. The fabrication of the helical fibers was achieved by utilizing the magnetic properties of the feedstock solution and winding the emerging fiber around a rotating magnetic collector needle upon coagulation. In summary, our helical chitosan microfibers are very attractive for future use in magnetic tissue engineering or for the development of biocompatible actuator systems.
Collapse
Affiliation(s)
- Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Johanna Michel
- Department of Biomimetics, Hochschule Bremen - City University of Applied Sciences, Neustadtswall 30, 28199 Bremen, Germany
| | - Naiana Suter
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | | | - Michael Maas
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| |
Collapse
|
26
|
Wang J, Yu Y, Guo J, Lu W, Wei Q, Zhao Y. The Construction and Application of Three-Dimensional Biomaterials. ACTA ACUST UNITED AC 2020; 4:e1900238. [PMID: 32293130 DOI: 10.1002/adbi.201900238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely explored and applied in many areas, especially in the field of tissue engineering. The interface of biomaterials and cells has been deeply investigated. However, it has been demonstrated that conventional 2D biomaterials fail to maintain the 3D structures and phenotypes of cells, which is the result of their limited ability to mimic the latter's complex extracellular matrix. To overcome this challenge, cell cultivation dependent on 3D biomaterials has emerged as an alternative strategy to make the recovery of 3D structures and functions of cells possible. Thus, with the thriving development of 3D cell culture in tissue engineering, a holistic review of the construction and application of 3D biomaterials is desired. Here, recent developments in 3D biomaterials for tissue engineering are reviewed. An overview of various approaches to construct 3D biomaterials, such as electro-jetting/-spinning, micro-molding, microfluidics, and 3D bio-printing, is first presented. Their typical applications in constructing cell sheets, vascular structures, cell spheroids, and macroscopic cellular constructs are described as well. Following these two sections, the current status and challenges are analyzed, as well as the future outlook of 3D biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Jie Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
27
|
Wang YL, Zhou YN, Li XY, Huang J, Wahid F, Zhong C, Chu LQ. Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. Int J Biol Macromol 2020; 156:252-261. [PMID: 32289407 DOI: 10.1016/j.ijbiomac.2020.04.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/08/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Large-scale production of an antibacterial hydrogel is of critical importance for its practical application in biomedical field. In this regard, herein we report on the construction of a double-syringe injection device by using all the commercial parts and its use for continuous production of carboxymethyl chitosan-zinc (CMCh-Zn) supramolecular hydrogel fiber. The resultant CMCh-Zn hydrogel fibers exhibit good stretchability and knittability. The Zn loading into the hydrogel fibers can be easily controlled by adjusting the concentration of Zn2+ solution. Scanning electron microscope measurements indicate that the CMCh-Zn hydrogel fibers have a relatively smooth and thin skin layer, as well as, a 3-dimensional interconnected microporous interior architecture. Antibacterial activities of the CMCh-Zn hydrogel fibers against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are also investigated. The results show that the intrinsic blue fluorescence of the as-prepared CMCh-Zn hydrogel fibers can be employed as optical indicator of their antibacterial effectiveness.
Collapse
Affiliation(s)
- Yu-Long Wang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ya-Ning Zhou
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xin-Yu Li
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ju Huang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Fazli Wahid
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Li-Qiang Chu
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
28
|
Gursoy A, Iranshahi K, Wei K, Tello A, Armagan E, Boesel LF, Sorin F, Rossi RM, Defraeye T, Toncelli C. Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers. Polymers (Basel) 2020; 12:E633. [PMID: 32164361 PMCID: PMC7182802 DOI: 10.3390/polym12030633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/24/2022] Open
Abstract
Microfluidic wet spinning has gained increasing interest in recent years as an alternative to conventional wet spinning by offering higher control in fiber morphology and a gateway for the development of multi-material fibers. Conventionally, microfluidic chips used to create such fibers are fabricated by soft lithography, a method that requires both time and investment in necessary cleanroom facilities. Recently, additive manufacturing techniques were investigated for rapid and cost-efficient prototyping. However, these microfluidic devices are not yet matching the resolutions and tolerances offered by soft lithography. Herein, we report a facile and rapid method using selected arrays of hypodermic needles as templates within a silicone elastomer matrix. The produced microfluidic spinnerets display co-axially aligned circular channels. By simulation and flow experiments, we prove that these devices can maintain laminar flow conditions and achieve precise 3D hydrodynamic focusing. The devices were tested with a commercial polyurethane formulation to demonstrate that fibers with desired morphologies can be produced by varying the degree of hydrodynamic focusing. Thanks to the adaptability of this concept to different microfluidic spinneret designs-as well as to its transparency, ease of fabrication, and cost-efficient procedure-this device sets the ground for transferring microfluidic wet spinning towards industrial textile settings.
Collapse
Affiliation(s)
- Akin Gursoy
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Kamran Iranshahi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Alexis Tello
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Efe Armagan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Luciano F. Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Fabien Sorin
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Thijs Defraeye
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| | - Claudio Toncelli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St.Gallen; Switzerland; (A.G.); (K.I.); (K.W.); (A.T.); (E.A.); (L.F.B.); (R.M.R.); (T.D.)
| |
Collapse
|
29
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
30
|
da Silva Morais A, Oliveira JM, Reis RL. Biomaterials and Microfluidics for Liver Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:65-86. [DOI: 10.1007/978-3-030-36588-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Du XY, Li Q, Wu G, Chen S. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903733. [PMID: 31573714 DOI: 10.1002/adma.201903733] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Indexed: 05/28/2023]
Abstract
Superfine multifunctional micro/nanoscale fibrous materials with high surface area and ordered structure have attracted intensive attention for widespread applications in recent years. Microfluidic spinning technology (MST) has emerged as a powerful and versatile platform because of its various advantages such as high surface-area-to-volume ratio, effective heat transfer, and enhanced reaction rate. The resultant well-defined micro/nanoscale fibers exhibit controllable compositions, advanced structures, and new physical/chemical properties. The latest developments and achievements in microfluidic spun fiber materials are summarized in terms of the underlying preparation principles, geometric configurations, and functionalization. Variously architected structures and shapes by MST, including cylindrical, grooved, flat, anisotropic, hollow, core-shell, Janus, heterogeneous, helical, and knotted fibers, are emphasized. In particular, fiber-spinning chemistry in MST for achieving functionalization of fiber materials by in situ chemical reactions inside fibers is introduced. Additionally, the applications of the fabricated functional fibers are highlighted in sensors, microactuators, photoelectric devices, flexible electronics, tissue engineering, drug delivery, and water collection. Finally, recent progress, challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
32
|
Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K. Hydrogels for Liver Tissue Engineering. Bioengineering (Basel) 2019; 6:E59. [PMID: 31284412 PMCID: PMC6784004 DOI: 10.3390/bioengineering6030059] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Bioengineered livers are promising in vitro models for drug testing, toxicological studies, and as disease models, and might in the future be an alternative for donor organs to treat end-stage liver diseases. Liver tissue engineering (LTE) aims to construct liver models that are physiologically relevant. To make bioengineered livers, the two most important ingredients are hepatic cells and supportive materials such as hydrogels. In the past decades, dozens of hydrogels have been developed to act as supportive materials, and some have been used for in vitro models and formed functional liver constructs. However, currently none of the used hydrogels are suitable for in vivo transplantation. Here, the histology of the human liver and its relationship with LTE is introduced. After that, significant characteristics of hydrogels are described focusing on LTE. Then, both natural and synthetic materials utilized in hydrogels for LTE are reviewed individually. Finally, a conclusion is drawn on a comparison of the different hydrogels and their characteristics and ideal hydrogels are proposed to promote LTE.
Collapse
Affiliation(s)
- Shicheng Ye
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Jochem W B Boeter
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
33
|
Jia L, Han F, Yang H, Turnbull G, Wang J, Clarke J, Shu W, Guo M, Li B. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications. Adv Healthc Mater 2019; 8:e1900435. [PMID: 31081247 DOI: 10.1002/adhm.201900435] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/22/2019] [Indexed: 01/23/2023]
Abstract
Nature has created many perfect helical microstructures, including DNA, collagen fibrils, and helical blood vessels, to achieve unique physiological functions. While previous studies have developed a number of microfabrication strategies, the preparation of complex helical structures and cell-laden helical structures for biomimetic applications remains challenging. In this study, a one-step microfluidics-based methodology is presented for preparing complex helical hydrogel microfibers and cell-laden helical hydrogel microfibers. Several types of complex helical structures, including multilayer helical microfibers and superhelical hollow microfibers with helical channels, are prepared by simply tuning the flow rates or modifying the geometry of microfluidic device. With the decent perfusability, the hollow microfibers may simulate the structural characteristics of helical blood vessels and create swirling blood flow in a blood-vessel-on-chip setup. Such hydrogel-based helical microstructures may potentially be used in areas such as blood vessel tissue engineering, organ-on-chips, drug screening, and biological actuators.
Collapse
Affiliation(s)
- Luanluan Jia
- College of ChemistryChemical Engineering and Material ScienceOrthopaedic InstituteSoochow University Suzhou Jiangsu 215006 China
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSoochow University Suzhou Jiangsu 215006 China
| | - Fengxuan Han
- College of ChemistryChemical Engineering and Material ScienceOrthopaedic InstituteSoochow University Suzhou Jiangsu 215006 China
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSoochow University Suzhou Jiangsu 215006 China
| | - Huili Yang
- College of ChemistryChemical Engineering and Material ScienceOrthopaedic InstituteSoochow University Suzhou Jiangsu 215006 China
| | - Gareth Turnbull
- Department of Biomedical EngineeringUniversity of Strathclyde Glasgow G1 1QE UK
- Department of OrthopaedicsGolden Jubilee National Hospital Clydebank G81 4DY UK
| | - Jiayuan Wang
- College of ChemistryChemical Engineering and Material ScienceOrthopaedic InstituteSoochow University Suzhou Jiangsu 215006 China
| | - Jon Clarke
- Department of OrthopaedicsGolden Jubilee National Hospital Clydebank G81 4DY UK
| | - Wenmiao Shu
- Department of Biomedical EngineeringUniversity of Strathclyde Glasgow G1 1QE UK
| | - Mingyu Guo
- College of ChemistryChemical Engineering and Material ScienceOrthopaedic InstituteSoochow University Suzhou Jiangsu 215006 China
| | - Bin Li
- College of ChemistryChemical Engineering and Material ScienceOrthopaedic InstituteSoochow University Suzhou Jiangsu 215006 China
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSoochow University Suzhou Jiangsu 215006 China
- China Orthopaedic Regenerative Medicine Group (CORMed) Hangzhou Zhejiang 310000 China
| |
Collapse
|
34
|
Yokomizo A, Morimoto Y, Nishimura K, Takeuchi S. Temporal Observation of Adipocyte Microfiber Using Anchoring Device. MICROMACHINES 2019; 10:E358. [PMID: 31146491 PMCID: PMC6631712 DOI: 10.3390/mi10060358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
In this paper, we propose an anchoring device with pillars to immobilize an adipocyte microfiber that has a fiber-shaped adipocyte tissue covered by an alginate gel shell. Because the device enabled the immobilization of the microfiber in a culture dish even after its transportation and the exchange of the culture medium, we can easily track the specific positions of the microfiber for a long period. Owing to the characteristics of the anchoring device, we successfully performed temporal observations of the microfiber on the device for a month to investigate the function and morphology of three-dimensional cultured adipocytes. Furthermore, to demonstrate the applicability of the anchoring device to drug testing, we evaluated the lipolysis of the microfiber's adipocytes by applying reagents with an anti-obesity effect. Therefore, we believe that the anchoring device with the microfiber will be a useful tool for temporal biochemical analyses.
Collapse
Affiliation(s)
- Akiyo Yokomizo
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Yuya Morimoto
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Keigo Nishimura
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shoji Takeuchi
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
35
|
Lee H, Chae S, Kim JY, Han W, Kim J, Choi Y, Cho DW. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication 2019; 11:025001. [PMID: 30566930 DOI: 10.1088/1758-5090/aaf9fa] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To overcome the drawbacks of in vitro liver testing during drug development, numerous liver-on-a-chip models have been developed. However, current liver-on-a-chip technologies are labor-intensive, lack extracellular matrix (ECM) essential for liver cells, and lack a biliary system essential for excreting bile acids, which contribute to intestinal digestion but are known to be toxic to hepatocytes. Therefore, fabrication methods for development of liver-on-a-chip models that overcome the above limitations are required. Cell-printing technology enables construction of complex 3D structures with multiple cell types and biomaterials. We used cell-printing to develop a 3D liver-on-a-chip with multiple cell types for co-culture of liver cells, liver decellularized ECM bioink for a 3D microenvironment, and vascular/biliary fluidic channels for creating vascular and biliary systems. A chip with a biliary fluidic channel induced better biliary system creation and liver-specific gene expression and functions compared to a chip without a biliary system. Further, the 3D liver-on-a-chip showed better functionalities than 2D or 3D cultures. The chip was evaluated using acetaminophen and it showed an effective drug response. In summary, our results demonstrate that the 3D liver-on-a-chip we developed is promising in vitro liver test platform for drug discovery.
Collapse
Affiliation(s)
- Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Morimoto Y, Mori N, Takeuchi S. In Vitro Tissue Construction for Organ-on-a-Chip Applications. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Park SM, Lee SJ, Lim J, Kim BC, Han SJ, Kim DS. Versatile Fabrication of Size- and Shape-Controllable Nanofibrous Concave Microwells for Cell Spheroid Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37878-37885. [PMID: 30360112 DOI: 10.1021/acsami.8b15821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although the microfabrication techniques for microwells enabled to guide physiologically relevant three-dimensional cell spheroid formation, there have been substantial interests to more closely mimic nano/microtopographies of in vivo cellular microenvironment. Here, we developed a versatile fabrication process for nanofibrous concave microwells (NCMs) with a controllable size and shape. The key to the fabrication process was the use of an array of hemispherical convex electrolyte solution drops as the grounded collector for electrospinning, which greatly improved the degree of freedom of the size, shape, and curvature of an NCM. A polymer substrate with through-holes was prepared for the electrolyte solution to come out through the hole and to naturally form a convex shape because of surface tension. Subsequent electrolyte-assisted electrospinning process enabled to achieve various arrays of NCMs of triangular, rectangular, and circular shapes with sizes ranging from 1000 μm down to 250 μm. As one example of biomedical applications, the formation of human hepatoma cell line (HepG2) spheroids was demonstrated on the NCMs. The results indicated that the NCM enabled uniform, size-controllable spheroid formation of HepG2 cells, resulting in 1.5 times higher secretion of albumin from HepG2 cells on the NCM on day 14 compared with those on a nanofibrous flat microwell as a control.
Collapse
Affiliation(s)
- Sang Min Park
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Pohang , Gyeongbuk 37673 , South Korea
| | - Seong Jin Lee
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Pohang , Gyeongbuk 37673 , South Korea
| | - Jiwon Lim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Pohang , Gyeongbuk 37673 , South Korea
| | - Bum Chang Kim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Pohang , Gyeongbuk 37673 , South Korea
| | - Seon Jin Han
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Pohang , Gyeongbuk 37673 , South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Pohang , Gyeongbuk 37673 , South Korea
| |
Collapse
|
38
|
Barati G, Nadri S, Hajian R, Rahmani A, Mostafavi H, Mortazavi Y, Taromchi AH. Differentiation of microfluidic‐encapsulated trabecular meshwork mesenchymal stem cells into insulin producing cells and their impact on diabetic rats. J Cell Physiol 2018; 234:6801-6809. [DOI: 10.1002/jcp.27426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ghasem Barati
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| | - Samad Nadri
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences Zanjan Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences Zanjan Iran
| | - Ramin Hajian
- Novel Fluidic Systems Pioneers Co., Innovation & Entrepreneurship Center of Amirkabir University of Technology Tehran Iran
| | - Ali Rahmani
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| | - Hossein Mostafavi
- Department of Physiology and Pharmacology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences Zanjan Iran
| | - Amir Hossein Taromchi
- Department of Medical Biotechnology and Nanotechnology School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
39
|
Tong XF, Zhao FQ, Ren YZ, Zhang Y, Cui YL, Wang QS. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J Biomed Mater Res A 2018; 106:3292-3302. [DOI: 10.1002/jbm.a.36528] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/23/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Xiao-Fang Tong
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Fa-Quan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Ying-Zong Ren
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Yuan-Lu Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin 300193 China
| | - Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials; Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College; Tianjin 300192 China
| |
Collapse
|
40
|
Iijima K, Ohyama S, Yuyama K, Shono A, Hashizume M. Selective fabrication of hollow and solid polysaccharide composite fibers using a microfluidic device by controlling polyion complex formation. Polym J 2018. [DOI: 10.1038/s41428-018-0105-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Wang X, Liu J, Wang P, deMello A, Feng L, Zhu X, Wen W, Kodzius R, Gong X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel) 2018; 9:E283. [PMID: 29874840 PMCID: PMC6027171 DOI: 10.3390/genes9060283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Peizhou Wang
- Advanced Placement of Chemistry Program, International Department, Huzhou New Century Foreign Language School, Huzhou 313100, China.
| | | | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| | - Rimantas Kodzius
- Mathematics and Natural Sciences Department, the American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
- Faculty of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai 201800, China.
| |
Collapse
|
42
|
Microfluidic fabrication of highly stretchable and fast electro-responsive graphene oxide/polyacrylamide/alginate hydrogel fibers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Xing Y, Dittrich PS. One-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices. SENSORS 2018; 18:s18010134. [PMID: 29303990 PMCID: PMC5795670 DOI: 10.3390/s18010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed.
Collapse
Affiliation(s)
- Yanlong Xing
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e. V, 12489 Berlin, Germany.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
44
|
Han D, Steckl AJ. Selective pH-Responsive Core-Sheath Nanofiber Membranes for Chem/Bio/Med Applications: Targeted Delivery of Functional Molecules. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42653-42660. [PMID: 29148700 DOI: 10.1021/acsami.7b16080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core-sheath fibers using different Eudragit materials were successfully produced, and their controlled multi-pH responses have been demonstrated. Core-sheath fibers made of Eudragit L 100 (EL100) core and Eudragit S 100 (ES100) sheath provide protection and/or controlled release of core material at pH 6 by adjusting the sheath thickness (controlled by the flow rate of source polymer solution). The thickest sheath (∼250 nm) provides the least core release ∼1.25%/h, while the thinnest sheath (∼140 nm) provides much quicker release ∼16.75%/h. Furthermore, switching core and sheath material dramatically altered the pH response. Core-sheath fibers made of ES100 core and EL100 sheath can provide a consistent core release rate, while the sheath release rate becomes higher as the sheath layer becomes thinner. For example, the thinnest sheath (∼120 nm) provides a core and sheath release ratio of 1:2.5, while the thickest sheath (∼200 nm) shows only a ratio of 1:1.7. All core-sheath Eudragit fibers show no noticeable release at pH 5, while they are completely dissolved at pH 7. Extremely high surface area in the porous network of the fiber membranes provides much faster (>30 times) response to external pH changes as compared to that of equivalent cast films.
Collapse
Affiliation(s)
- Daewoo Han
- Nanoelectronics Laboratory, Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Andrew J Steckl
- Nanoelectronics Laboratory, Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, United States
| |
Collapse
|
45
|
Bradner SA, Partlow BP, Cebe P, Omenetto FG, Kaplan DL. Fabrication of elastomeric silk fibers. Biopolymers 2017; 107:10.1002/bip.23030. [PMID: 28555880 PMCID: PMC5524596 DOI: 10.1002/bip.23030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Abstract
Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications.
Collapse
Affiliation(s)
- Sarah A Bradner
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
46
|
Ma J, Wang Y, Liu J. Biomaterials Meet Microfluidics: From Synthesis Technologies to Biological Applications. MICROMACHINES 2017; 8:E255. [PMID: 30400445 PMCID: PMC6190052 DOI: 10.3390/mi8080255] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Microfluidics is characterized by laminar flow at micro-scale dimension, high surface to volume ratio, and markedly improved heat/mass transfer. In addition, together with advantages of large-scale integration and flexible manipulation, microfluidic technology has been rapidly developed as one of the most important platforms in the field of functional biomaterial synthesis. Compared to biomaterials assisted by conventional strategies, functional biomaterials synthesized by microfluidics are with superior properties and performances, due to their controllable morphology and composition, which have shown great advantages and potential in the field of biomedicine, biosensing, and tissue engineering. Take the significance of microfluidic engineered biomaterials into consideration; this review highlights the microfluidic synthesis technologies and biomedical applications of materials. We divide microfluidic based biomaterials into four kinds. According to the material dimensionality, it includes: 0D (particulate materials), 1D (fibrous materials), 2D (sheet materials), and 3D (construct forms of materials). In particular, micro/nano-particles and micro/nano-fibers are introduced respectively. This classification standard could include all of the microfluidic biomaterials, and we envision introducing a comprehensive and overall evaluation and presentation of microfluidic based biomaterials and their applications.
Collapse
Affiliation(s)
- Jingyun Ma
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yachen Wang
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jing Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
47
|
Dastjerdi R, Sharafi M, Kabiri K, Mivehi L, Samadikuchaksaraei A. An acid-free water-born quaternized chitosan/montmorillonite loaded into an innovative ultra-fine bead-free water-born nanocomposite nanofibrous scaffold;
in vitro
and
in vivo
approaches. Biomed Mater 2017; 12:045014. [DOI: 10.1088/1748-605x/aa7608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Pessoa ACSN, Sipoli CC, de la Torre LG. Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles. LAB ON A CHIP 2017; 17:2281-2293. [PMID: 28608886 DOI: 10.1039/c7lc00291b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chitosan (CHI) nanoparticles present promising applications in pharmaceutical and biomedical fields, including drug and gene delivery. Among different approaches, microfluidics emerges as a resourceful tool for nanoparticle production in low-cost, reproducible processes with predictable fluid dynamics. However, microfluidic-assisted synthesis of CHI nanoparticles has not been widely explored in the literature. In this context, we systematically investigated different process parameters that influence the synthesis of CHI/ATP nanoparticles. We highlight the effects and limitations of diffusion and distinct mixing patterns developed through the microchannels on the final physicochemical characteristics of CHI/ATP nanoparticles produced. To address these hurdles, here we describe a simple, feasible, and reproducible method for the production of CHI/ATP nanoparticles. This strategy enables the development of a continuous and homogeneous production process for CHI nanoparticles to be applied in the most varied fields of research.
Collapse
Affiliation(s)
- Amanda C S N Pessoa
- University of Campinas, UNICAMP, School of Chemical Engineering, PO BOX 6066 13083-852, Campinas, SP, Brazil.
| | | | | |
Collapse
|
49
|
Controllable fabrication of polyethersulfone hollow fiber membranes with a facile double co-axial microfluidic device. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Continuous Jetting of Alginate Microfiber in Atmosphere Based on a Microfluidic Chip. MICROMACHINES 2017. [PMCID: PMC6190460 DOI: 10.3390/mi8010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|