1
|
De Angelis M, Maity-Kumar G, Schriever SC, Kozlova EV, Müller TD, Pfluger PT, Curras-Collazo MC, Schramm KW. Development and validation of an LC-MS/MS methodology for the quantification of thyroid hormones in dko MCT8/OATP1C1 mouse brain. J Pharm Biomed Anal 2022; 221:115038. [PMID: 36152487 PMCID: PMC7613747 DOI: 10.1016/j.jpba.2022.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
The Allan-Herndon Dudley Syndrome (AHDS) is a rare disease caused by the progressive loss of monocarboxylate transporter 8 (MCT8). In patients with AHDS, the absence of MCT8 impairs transport of thyroid hormones (TH) through the blood brain barrier, leading to a central state of TH deficiency. In mice, the AHDS is mimicked by simultaneous deletion of the TH transporters MCT8 and the solute carrier organic anion transporter family member 1c1 (OATP1C1). To support preclinical mouse studies, an analytical methodology was developed and successfully applied for quantifying selected thyroid hormones in mouse whole brain and in specific regions using liquid chromatography tandem mass-spectrometry (LC-MS/MS). An important requirement for the methodology was its high sensitivity since a very low concentration of THs was expected in MCT8/OATP1C1 double-knockout (dko) mouse brain. Seven THs were targeted: L-thyroxine (T4), 3,3,5-triiodo-L-thyronine-thy-ronine (T3), 3,3’,5’-triiodo-L-thyronine-thyronine (rT3), 3,3-diiodo-L-thyronine (3,3’-T2, T2), 3,5-diiodo-L-thyro-nine (rT2, 3,5-T2), 3-iodo-L-thyronine (T1), 3-iodothyronamine (T1AM). Isotope dilution liquid chromatography triple-quadrupole mass spectrometry methodology was applied for detection and quantification. The method was validated in wild-type animals for mouse whole brain and for five different brain regions (hypothalamus, hippocampus, prefrontal cortex, brainstem and cortex). Instrumental calibration curves ranged from 0.35 to 150 pg/μL with good linearity (r2 >0.996). The limit of quantification was from 0.08 to 0.6 pg/mg, with an intra- and inter-day precision of 4.2−14.02% and 0.4−17.9% respectively, and accuracies between 84.9% and 114.8% when the methodology was validated for the whole brain. In smaller, distinct brain regions, intra- and inter-day precision were 0.6−20.7% and 2.5−15.6% respectively, and accuracies were 80.2−128.6%. The new methodology was highly sensitive and allowed for the following quantification in wild-type mice: (i) for the first time, four distinct thyroid hormones (T4, T3, rT3 and 3,3’-T2) in only approximately 100 mg of mouse brain were detected; (ii) the quantification of T4 and T3 for the first time in distinct mouse brain regions were reported. Further, application of our method to MCT8/OATP1C1 dko mice revealed the expected, relative lack of T3 and T4 uptake into the brain, and confirmed the utility of our analytical method to study TH transport across the blood brain barrier in a preclinical model of central TH deficiency.
Collapse
Affiliation(s)
- Meri De Angelis
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, Neuherberg, Germany.
| | - Gandhari Maity-Kumar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany; TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany
| | | | - Karl-Werner Schramm
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, Neuherberg, Germany; Department für Biowissenschaftliche Grundlagen, Technische Universität München, Weihenstephaner Steig 23, Freising, Germany
| |
Collapse
|
2
|
T1AM Attenuates the Hypoxia/Reoxygenation-Induced Necroptosis of H9C2 Cardiomyocytes via RIPK1/RIPK3 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4833791. [PMID: 35265713 PMCID: PMC8901330 DOI: 10.1155/2022/4833791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
Abstract
Purpose To investigate the detailed mechanism of 3-iodothyronamine (T1AM) in cell apoptosis and programmed necrosis of hypoxia/reoxygenation- (H/R-) induced H9C2 injury. Materials and Methods Cardiomyocyte H9C2 cells were cultured in vitro for the establishment of cardiomyocyte H/R models. Cells were randomly divided into four groups: the control group, H/R group, T1AM pretreatment group, T1AM pretreatment and H/R (6 μm T1AM+H/R) group. The degree of myocardial injury was determined by the detection of the cardiomyocyte inhibition rate by CCK8 and the detection of lactic dehydrogenase (LDH) activity. Cell apoptosis was assessed through TUNEL assay and flow cytometry analysis. The protein level and mRNA level of RIPK1, RIPK3, and CAMKII were detected by western blotting and qRT-PCR. Results Compared with the control group, the cell inhibition rate was dramatically elevated in the H/R group. LDH release of cardiomyocytes was significantly increased. Protein and mRNA expressions of RIPK1, RIPK3, and CAMKII were significantly enhanced. Compared with the H/R group, the cell inhibition rate, LDH release, cardiomyocyte necroptosis rate, and protein and mRNA levels of RIPK1, RIPK3, and CAMKII of the T1AM+H/R group were significantly decreased. Conclusion Pretreatment with T1AM could alleviate cardiomyocytes' H/R injury and inhibit necroptosis of cardiomyocytes, which might exert a protective function upon activation of the RIPK1/RIPK3 pathway.
Collapse
|
3
|
la Cour JL, Christensen HM, Köhrle J, Lehmphul I, Kistorp C, Nygaard B, Faber J. Association Between 3-Iodothyronamine (T1am) Concentrations and Left Ventricular Function in Chronic Heart Failure. J Clin Endocrinol Metab 2019; 104:1232-1238. [PMID: 30383216 DOI: 10.1210/jc.2018-01466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Thyroid hormone metabolites might affect the heart. The endogenous aminergic metabolite 3-iodothyronamine (T1am) reduces left ventricular ejection fraction (LVEF) in rodents. OBJECTIVE To investigate concentration of T1am and its association with LVEF and biomarkers of heart function in patients with chronic heart failure (CHF) without thyroid disease, including patients with cardiac cachexia (nonedematous weight loss >5% over 6 months). METHODS Cross-sectional study. CHF was characterized by LVEF <45% and symptoms. Three groups were included (n = 19 in each group, matched on age, sex, and kidney function): patients with cachexia (CAC), patients without (non-CAC), and control (C) patients with prior myocardial infarction and LVEF >45%. T1am was measured by a monoclonal antibody-based chemiluminescence immunoassay. N-amino terminal pro-BNP (NT-proBNP) concentrations were also analyzed. RESULTS Mean (SD) LVEF: CAC, 32 ± 9%; non-CAC, 38 ± 8%; and C, 60 ± 8% (P < 0.0001). TSH, T4, and T3 levels did not differ between groups and did not correlate to T1am. Serum T1am (nmol/L) concentrations were higher in CHF: CAC (mean ± SD), 12.4 ± 6.6; non-CAC, 9.1 ± 5; and C, 7.3 ± 2.9. A negative association between T1am and LVEF was present after adjusting for sex, age, T3, and estimated glomerular filtration rate (P = 0.03). Further, serum T1am levels tended to be associated with NT-proBNP (P = 0.053). CONCLUSION Serum T1am levels were increased in patients with CHF and numerically highest (although nonsignificant) in patients with cardiac cachexia. Increasing T1am concentrations were independently associated with reduced LVEF, suggesting a direct effect on the human heart.
Collapse
Affiliation(s)
| | - Heidi M Christensen
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
- Department of Gynecology and Obstetrics, Herlev University Hospital, Herlev, Denmark
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ina Lehmphul
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Caroline Kistorp
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Birte Nygaard
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Jens Faber
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Köhrle J, Biebermann H. 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocr Rev 2019; 40:602-630. [PMID: 30649231 DOI: 10.1210/er.2018-00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
The rediscovery of the group of thyronamines (TAMs), especially the first detailed description of their most prominent congener 3-iodothyronamine (3T1AM) 14 years ago, boosted research on this thyroid hormone metabolite tremendously. TAMs exert actions partly opposite to and distinct from known functions of thyroid hormones. These fascinating metabolic, anapyrexic, cytoprotective, and brain effects quickly evoked the hope to use hormone-derived TAMs as a therapeutic option. The G protein-coupled receptor (GPCR) TAAR1, a member of the trace amine-associated receptor (TAAR) family, was identified as the first target and effector of TAM action. The initial enthusiasm on pharmacological actions of exogenous TAMs elicited many questions, such as sites of biosynthesis, analytics, modes of action, inactivation, and role of TAMs in (patho)physiology. Meanwhile, it became clear that TAMs not only interact with TAAR1 or other TAAR family members but also with several aminergic receptors and non-GPCR targets such as transient receptor potential channels, mitochondrial proteins, and the serum TAM-binding protein apolipoprotein B100, thus classifying 3T1AM as a multitarget ligand. The physiological mode of action of TAMs is still controversial because regulation of endogenous TAM production and the sites of its biosynthesis are not fully elucidated. Methods for 3T1AM analytics need further validation, as they revealed different blood and tissue concentrations depending on detection principles used such as monoclonal antibody-based immunoassay vs liquid chromatography- matrix-assisted laser desorption/ionization mass spectrometry or time-of-flight mass spectrometry. In this review, we comprehensively summarize and critically evaluate current basic, translational, and clinical knowledge on 3T1AM and its main metabolite 3-iodothyroacetic acid, focusing on endocrine-relevant aspects and open but highly challenging issues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
6
|
Kowalik MA, Columbano A, Perra A. Thyroid Hormones, Thyromimetics and Their Metabolites in the Treatment of Liver Disease. Front Endocrinol (Lausanne) 2018; 9:382. [PMID: 30042736 PMCID: PMC6048875 DOI: 10.3389/fendo.2018.00382] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022] Open
Abstract
The signaling pathways activated by thyroid hormone receptors (THR) are of fundamental importance for organogenesis, growth and differentiation, and significantly influence energy metabolism, lipid utilization and glucose homeostasis. Pharmacological control of these pathways would likely impact the treatment of several human diseases characterized by altered metabolism, growth or differentiation. Not surprisingly, biomedical research has been trying for the past decades to pharmacologically target the 3,5,3'-triiodothyronine (T3)/THR axis. In vitro and in vivo studies have provided evidence of the potential utility of the activation of the T3-dependent pathways in metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and in the treatment of hepatocellular carcinoma (HCC). Unfortunately, supra-physiological doses of the THR agonist T3 cause severe thyrotoxicosis thus hampering its therapeutic use. However, the observation that most of the desired beneficial effects of T3 are mediated by the activation of the beta isoform of THR (THRβ) in metabolically active organs has led to the synthesis of a number of THRβ-selective thyromimetics. Among these drugs, GC-1, GC-24, KB141, KB2115, and MB07344 displayed a promising therapeutic strategy for liver diseases. However, although these drugs exhibited encouraging results when tested in the treatment of experimentally-induced obesity, dyslipidemia, and HCC, significant adverse effects limited their use in clinical trials. More recently, evidence has been provided that some metabolites of thyroid hormones (TH), mono and diiodothyronines, could also play a role in the treatment of liver disease. These molecules, for a long time considered inactive byproducts of the metabolism of thyroid hormones, have now been proposed to be able to modulate and control lipid and cell energy metabolism. In this review, we will summarize the current knowledge regarding T3, its metabolites and analogs with reference to their possible clinical application in the treatment of liver disease. In particular, we will focus our attention on NAFLD, non-alcoholic steatohepatitis (NASH) and HCC. In addition, the possible therapeutic use of mono- and diiodothyronines in metabolic and/or neoplastic liver disease will be discussed.
Collapse
|
7
|
Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 2018; 1534:85-92. [DOI: 10.1016/j.chroma.2017.12.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023]
|
8
|
Chiellini G, Bellusci L, Sabatini M, Zucchi R. Thyronamines and Analogues - The Route from Rediscovery to Translational Research on Thyronergic Amines. Mol Cell Endocrinol 2017; 458:149-155. [PMID: 28069535 DOI: 10.1016/j.mce.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 11/18/2022]
Abstract
Thyronamines are a novel class of endogenous signaling compounds, structurally related to thyroid hormones (THs). Specific thyronamines, particularly 3-iodothyronamine (T1AM), stimulate with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor, and may also interact with other TAAR subtypes (particularly TAAR5), adrenergic receptors (particularly α2 receptors), amine transporters, and mitochondrial proteins. In addition to its structural similarities with THs, T1AM also contains the arylethylamine scaffold as in monoamine neurotransmitters, implicating an intriguing role for T1AM as both a neuromodulator and a hormone-like molecule constituting a part of thyroid hormone signaling. A large number of T1AM derivatives have already been synthesized. We discuss the different chemical strategies followed to obtain thyronamine analogues, their potency at TAAR1, and their structure-activity relationship. Preliminary characterization of the functional effects of these synthetic compounds is also provided.
Collapse
|
9
|
Liu K, Khan H, Geng X, Zhang J, Ding Y. Pharmacological hypothermia: a potential for future stroke therapy? Neurol Res 2017; 38:478-90. [PMID: 27320243 DOI: 10.1080/01616412.2016.1187826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mild physical hypothermia after stroke has been associated with positive outcomes. Despite the well-studied beneficial effects of hypothermia in the treatment of stroke, lack of precise temperature control, intolerance for the patient, and immunosuppression are some of the reasons which limit its clinical translation. Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models. Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives. Interestingly, drugs in the TRPV1, neurotensin, and thyroxine families have been shown to have effects in thermoregulatory control in decreasing the compensatory hypothermic response during cooling. This review will briefly present drugs in the eight classes by summarizing their proposed mechanisms of action as well as side effects. Reported thermoregulatory effects of the drugs will also be presented. This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.
Collapse
Affiliation(s)
- Kaiyin Liu
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Hajra Khan
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Jun Zhang
- c China-America Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
10
|
Selen Alpergin ES, Bolandnazar Z, Sabatini M, Rogowski M, Chiellini G, Zucchi R, Assadi-Porter FM. Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 2017; 5:e13097. [PMID: 28082426 PMCID: PMC5256158 DOI: 10.14814/phy2.13097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 01/16/2023] Open
Abstract
Complex diseases such as polycystic ovary syndrome (PCOS) are associated with intricate pathophysiological, hormonal, and metabolic feedbacks that make their early diagnosis challenging, thus increasing the prevalence risks for obesity, cardiovascular, and fatty liver diseases. To explore the crosstalk between endocrine and lipid metabolic pathways, we administered 3-iodothyronamine (T1AM), a natural analog of thyroid hormone, in a mouse model of PCOS and analyzed plasma and tissue extracts using multidisciplinary omics and biochemical approaches. T1AM administration induces a profound tissue-specific antilipogenic effect in liver and muscle by lowering gene expression of key regulators of lipid metabolism, PTP1B and PLIN2, significantly increasing metabolites (glucogenic, amino acids, carnitine, and citrate) levels, while enhancing protection against oxidative stress. In contrast, T1AM has an opposing effect on the regulation of estrogenic pathways in the ovary by upregulating STAR, CYP11A1, and CYP17A1. Biochemical measurements provide further evidence of significant reduction in liver cholesterol and triglycerides in post-T1AM treatment. Our results shed light onto tissue-specific metabolic vs. hormonal pathway interactions, thus illuminating the intricacies within the pathophysiology of PCOS This study opens up new avenues to design drugs for targeted therapeutics to improve quality of life in complex metabolic diseases.
Collapse
Affiliation(s)
- Ebru S Selen Alpergin
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zeinab Bolandnazar
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Martina Sabatini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Area Critica, Università di Pisa, Pisa, Italy
| | - Michael Rogowski
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Grazia Chiellini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Area Critica, Università di Pisa, Pisa, Italy
| | - Riccardo Zucchi
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Area Critica, Università di Pisa, Pisa, Italy
| | - Fariba M Assadi-Porter
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin
- Magnetic Resonance Facility at Madison, Madison, Wisconsin
| |
Collapse
|
11
|
Lee JH, Zhang J, Yu SP. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke. Neural Regen Res 2017; 12:341-350. [PMID: 28469636 PMCID: PMC5399699 DOI: 10.4103/1673-5374.202915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of disability and death, yet effective treatments for acute stroke has been very limited. Thus far, tissue plasminogen activator has been the only FDA-approved drug for thrombolytic treatment of ischemic stroke patients, yet its application is only applicable to less than 4–5% of stroke patients due to the narrow therapeutic window (< 4.5 hours after the onset of stroke) and the high risk of hemorrhagic transformation. Emerging evidence from basic and clinical studies has shown that therapeutic hypothermia, also known as targeted temperature management, can be a promising therapy for patients with different types of stroke. Moreover, the success in animal models using pharmacologically induced hypothermia (PIH) has gained increasing momentum for clinical translation of hypothermic therapy. This review provides an updated overview of the mechanisms and protective effects of therapeutic hypothermia, as well as the recent development and findings behind PIH treatment. It is expected that a safe and effective hypothermic therapy has a high translational potential for clinical treatment of patients with stroke and other CNS injuries.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - James Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| |
Collapse
|
12
|
Hoefig CS, Zucchi R, Köhrle J. Thyronamines and Derivatives: Physiological Relevance, Pharmacological Actions, and Future Research Directions. Thyroid 2016; 26:1656-1673. [PMID: 27650974 DOI: 10.1089/thy.2016.0178] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thyronamines (3-T1AM, T0AM) are endogenous compounds probably derived from L-thyroxine or its intermediate metabolites. Combined activities of intestinal deiodinases and ornithine decarboxylase generate 3-T1AM in vitro. Alternatively, 3-T1AM might be formed by the thyroid gland and secreted into the blood. 3-T1AM and T0AM concentrations have been determined by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) in tissues, serum, and cell lines. However, large variations of 3-T1AM concentrations in human serum were reported by LC-MS/MS compared with a monoclonal antibody-based immunoassay. These differences might be caused by strong binding of the highly hydrophobic 3-T1AM to apolipoprotein B100. Pharmacological administration of 3-T1AM results in dose-dependent reversible effects on body temperature, cardiac function, energy metabolism, and neurological functions. The physiological relevance of these actions is unclear, but may occur at tissue concentrations close to the estimated endogenous concentrations of 3-T1AM or its metabolites T0AM or thyroacetic acid (TA1). A number of putative receptors, binding sites, and cellular target molecules mediating actions of the multi-target ligand 3-T1AM have been proposed. Among those are members of the trace amine associated receptor family, the adrenergic receptor ADRα2a, and the thermosensitive transient receptor potential melastatin 8 channel. Preclinical studies employing various animal experimental models are in progress, and more stable receptor-selective agonistic and antagonistic analogues of 3-T1AM are now available for testing. The potent endogenous thyroid hormone-derived biogenic amine 3-T1AM exerts marked cryogenic, metabolic, cardiac and central actions and represents a valuable lead compound linking endocrine, metabolic, and neuroscience research to advance development of new drugs.
Collapse
Affiliation(s)
- Carolin Stephanie Hoefig
- 1 Institut für Experimentelle Endokrinologie Charité, Universitätsmedizin Berlin , Berlin, Germany
| | - Riccardo Zucchi
- 2 Laboratory of Biochemistry, Department of Pathology, University of Pisa , Pisa, Italy
| | - Josef Köhrle
- 1 Institut für Experimentelle Endokrinologie Charité, Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
13
|
Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U, Mittag J, Köhrle J. Biosynthesis of 3-Iodothyronamine From T4 in Murine Intestinal Tissue. Endocrinology 2015; 156:4356-64. [PMID: 26348473 DOI: 10.1210/en.2014-1499] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The endogenous metabolite 3-iodothyronamine (3-T1AM) induces strong hypothermia and bradycardia at pharmacological doses. Although its biosynthesis from thyroid hormone precursors appears likely, the sequence and sites of reactions are still controversial: studies in T4-substituted thyroid cancer patients lacking functional thyroid tissue suggested extrathyroidal 3-T1AM production, whereas studies using labeled T4 in mice indicated intrathyroidal formation. However, because the patients received T4 orally, whereas the mice were injected ip, we hypothesized that 3-T1AM synthesis requires the intestinal passage of T4. Using the everted gut sac model in combination with mass spectrometry, we demonstrate 3-T1AM production from T4 in mouse intestine via several deiodination and decarboxylation steps. Gene expression analysis confirmed the expression of all 3 deiodinases as well as ornithine decarboxylase (ODC) in intestine. Subsequent experiments employing purified human ODC revealed that this enzyme can in fact mediate decarboxylation of 3,5-T2 and T4 to the respective thyronamines (TAMs), demonstrating that the intestine expresses the entire molecular machinery required for 3-T1AM biosynthesis. Interestingly, TAM production was strongly affected by the antithyroid treatment methimazole and perchlorate independently of thyroid status, limiting the validity of the respective mouse models in this context. Taken together, our data demonstrate intestinal 3-T1AM biosynthesis from T4 involving decarboxylation through ODC with subsequent deiodination, and explain the apparent discrepancy between 3-T1AM serum levels in patients substituted orally and mice injected ip with T4. Identifying ODC as the first enzyme capable of decarboxylating thyroid hormone, our findings open the path to further investigations of TAM metabolism on molecular and cellular levels.
Collapse
Affiliation(s)
- Carolin S Hoefig
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Tilo Wuensch
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Ina Lehmphul
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Hannelore Daniel
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Ulrich Schweizer
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Jens Mittag
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
14
|
Zucchi R, Accorroni A, Chiellini G. Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol 2014; 5:402. [PMID: 25360120 PMCID: PMC4199266 DOI: 10.3389/fphys.2014.00402] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/28/2014] [Indexed: 11/23/2022] Open
Abstract
3-iodothyronamine (T1AM) is an endogenous amine, that has been detected in many rodent tissues, and in human blood. It has been hypothesized to derive from thyroid hormone metabolism, but this hypothesis still requires validation. T1AM is not a ligand for nuclear thyroid hormone receptors, but stimulates with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor. With a lower affinity it interacts with alpha2A adrenergic receptors. Additional targets are represented by apolipoprotein B100, mitochondrial ATP synthase, and membrane monoamine transporters, but the functional relevance of these interactions is still uncertain. Among the effects reported after administration of exogenous T1AM to experimental animals, metabolic and neurological responses deserve special attention, because they were obtained at low dosages, which increased endogenous tissue concentration by about one order of magnitude. Systemic T1AM administration favored fatty acid over glucose catabolism, increased ketogenesis and increased blood glucose. Similar responses were elicited by intracerebral infusion, which inhibited insulin secretion and stimulated glucagon secretion. However, T1AM administration increased ketogenesis and gluconeogenesis also in hepatic cell lines and in perfused liver preparations, providing evidence for a peripheral action, as well. In the central nervous system, T1AM behaved as a neuromodulator, affecting adrenergic and/or histaminergic neurons. Intracerebral T1AM administration favored learning and memory, modulated sleep and feeding, and decreased the pain threshold. In conclusion T1AM should be considered as a component of thyroid hormone signaling and might play a significant physiological and/or pathophysiological role. T1AM analogs have already been synthetized and their therapeutical potential is currently under investigation. 3-iodothyronamine (T1AM) is a biogenic amine whose structure is closely related to that of thyroid hormone (3,5,3′-triiodothyronine, or T3). The differences with T3 are the absence of the carboxylate group and the substitution of iodine with hydrogen in 5 and 3′ positions (Figure 1). In this paper we will review the evidence supporting the hypothesis that T1AM is a chemical messenger, namely that it is an endogenous substance able to interact with specific receptors producing significant functional effects. Special emphasis will be placed on neurological and metabolic effects, which are likely to have physiological and pathophysiological importance.
Collapse
Affiliation(s)
- Riccardo Zucchi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| | - Alice Accorroni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| | - Grazia Chiellini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| |
Collapse
|
15
|
Villanueva I, Alva-Sánchez C, Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:218145. [PMID: 24386502 PMCID: PMC3872098 DOI: 10.1155/2013/218145] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/08/2013] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- I. Villanueva
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - C. Alva-Sánchez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - J. Pacheco-Rosado
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| |
Collapse
|
16
|
Haviland JA, Reiland H, Butz DE, Tonelli M, Porter WP, Zucchi R, Scanlan TS, Chiellini G, Assadi-Porter FM. NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T(1)AM treatment. Obesity (Silver Spring) 2013; 21:2538-44. [PMID: 23512955 PMCID: PMC3692609 DOI: 10.1002/oby.20391] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/06/2022]
Abstract
OBJECTIVE 3-Iodothyronamine (T1 AM), an analog of thyroid hormone, is a recently discovered fast-acting endogenous metabolite. Single high-dose treatments of T1 AM have produced rapid short-term effects, including a reduction of body temperature, bradycardia, and hyperglycemia in mice. DESIGN AND METHODS The effect of daily low doses of T1 AM (10 mg/kg) for 8 days on weight loss and metabolism in spontaneously overweight mice was monitored. The experiments were repeated twice (n = 4). Nuclear magnetic resonance (NMR) spectroscopy of plasma and real-time analysis of exhaled (13) CO2 in breath by cavity ring down spectroscopy (CRDS) were used to detect T1 AM-induced lipolysis. RESULTS CRDS detected increased lipolysis in breath shortly after T1 AM administration that was associated with a significant weight loss but independent of food consumption. NMR spectroscopy revealed alterations in key metabolites in serum: valine, glycine, and 3-hydroxybutyrate, suggesting that the subchronic effects of T1 AM include both lipolysis and protein breakdown. After discontinuation of T1 AM treatment, mice regained only 1.8% of the lost weight in the following 2 weeks, indicating lasting effects of T1 AM on weight maintenance. CONCLUSIONS CRDS in combination with NMR and (13) C-metabolic tracing constitute a powerful method of investigation in obesity studies for identifying in vivo biochemical pathway shifts and unanticipated debilitating side effects.
Collapse
Affiliation(s)
- J. A. Haviland
- Department of Zoology, University of Wisconsin-Madison, 250 N. Mills Street, Madison, WI 53706, USA
| | - H. Reiland
- Department of Biochemistry, 433 Babcock Drive, Madison, WI 53706, USA
| | - D. E. Butz
- Department of Zoology, University of Wisconsin-Madison, 250 N. Mills Street, Madison, WI 53706, USA
| | - M. Tonelli
- National Magnetic Resonance Facility at Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - W. P. Porter
- Department of Zoology, University of Wisconsin-Madison, 250 N. Mills Street, Madison, WI 53706, USA
| | - R. Zucchi
- Dipartimento di Scienze dell’Uomo e dell’Ambiente, Università di Pisa, Pisa 56126, Italy
| | - T. S. Scanlan
- Department of Physiology & Pharmacology and Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - G. Chiellini
- Department of Biochemistry, 433 Babcock Drive, Madison, WI 53706, USA
- Dipartimento di Scienze dell’Uomo e dell’Ambiente, Università di Pisa, Pisa 56126, Italy
- Authors of correspondence: NMR and breath studies: Fariba Assadi-Porter, Department of Biochemistry, 433 Babcock Dr, Madison WI 53706. Phone: (608) 261-1167; Fax: (608) 262-3453; , Animal design: Grazia Chiellini, Department of Biochemistry, 433 Babcock Dr, Madison WI 53706. Phone: (608)-262-3268, ; Dipartimento di Scienze dell’Uomo e dell’Ambiente, Università di Pisa, via Roma, 55 Pisa 56126, Italy. Phone: +39 050 2218677,
| | - F. M. Assadi-Porter
- National Magnetic Resonance Facility at Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Biochemistry, 433 Babcock Drive, Madison, WI 53706, USA
- Authors of correspondence: NMR and breath studies: Fariba Assadi-Porter, Department of Biochemistry, 433 Babcock Dr, Madison WI 53706. Phone: (608) 261-1167; Fax: (608) 262-3453; , Animal design: Grazia Chiellini, Department of Biochemistry, 433 Babcock Dr, Madison WI 53706. Phone: (608)-262-3268, ; Dipartimento di Scienze dell’Uomo e dell’Ambiente, Università di Pisa, via Roma, 55 Pisa 56126, Italy. Phone: +39 050 2218677,
| |
Collapse
|
17
|
Abstract
Thyroid hormones (THs) are important in the development and maintenance of lipid and energy homeostasis. THs act through two closely related TH receptors (TRs α and β), which are conditional transcription factors. Recently, TH analogues or thyromimetics with varying degrees of TR subtype and liver uptake selectivity have been developed. These compounds exert beneficial effects of TH excess states without many undesirable TR-dependent side effects. Several selective TR modulators (STRMs) showed exceptionally promising results in lowering serum cholesterol in preclinical animal models and human clinical studies. Moreover, some first generation STRMs elicit other potentially beneficial effects on obesity, glucose metabolism, and nonalcoholic fatty liver disease (NAFLD). While it was initially thought that STRMs would be an effective long-term therapy to combat elevated cholesterol, possibly in conjunction with another cholesterol-lowering therapy, the statins, three major first generation STRMs failed to progress beyond early phase III human trials. The aim of this review is to discuss how STRMs work, their actions in preclinical animal models and human clinical trials, why they did not progress beyond clinical trials as cholesterol-lowering therapeutics, whether selective TR modulation continues to hold promise for dyslipidemias, and whether members of this drug class could be applied to the treatment of other aspects of metabolic syndrome and human genetic disease.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Center for Genomic Medicine, Houston Methodist Research Institute , Houston, Texas
| | | | | | | |
Collapse
|
18
|
Orsi G, Ghelardoni S, Saba A, Zucchi R, Vozzi G. Characterization of 3-Iodothyronamine In Vitro Dynamics by Mathematical Modeling. Cell Biochem Biophys 2013; 68:37-47. [DOI: 10.1007/s12013-013-9680-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S. Mitochondrial F(0) F(1) -ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone. Br J Pharmacol 2012; 166:2331-47. [PMID: 22452346 DOI: 10.1111/j.1476-5381.2012.01958.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE 3-iodothyronamine (T1AM) is a metabolite of thyroid hormone acting as a signalling molecule via non-genomic effectors and can reach intracellular targets. Because of the importance of mitochondrial F(0) F(1) -ATP synthase as a drug target, here we evaluated interactions of T1AM with this enzyme. EXPERIMENTAL APPROACH Kinetic analyses were performed on F(0) F(1) -ATP synthase in sub-mitochondrial particles and soluble F(1) -ATPase. Activity assays and immunodetection of the inhibitor protein IF(1) were used and combined with molecular docking analyses. Effects of T1AM on H9c2 cardiomyocytes were measured by in situ respirometric analysis. KEY RESULTS T1AM was a non-competitive inhibitor of F(0) F(1) -ATP synthase whose binding was mutually exclusive with that of the inhibitors IF(1) and aurovertin B. Both kinetic and docking analyses were consistent with two different binding sites for T1AM. At low nanomolar concentrations, T1AM bound to a high-affinity region most likely located within the IF(1) binding site, causing IF(1) release. At higher concentrations, T1AM bound to a low affinity-region probably located within the aurovertin binding cavity and inhibited enzyme activity. Low nanomolar concentrations of T1AM increased ADP-stimulated mitochondrial respiration in cardiomyocytes, indicating activation of F(0) F(1) -ATP synthase consistent with displacement of endogenous IF(1,) , reinforcing the in vitro results. CONCLUSIONS AND IMPLICATIONS Effects of T1AM on F(0) F(1) -ATP synthase were twofold: IF(1) displacement and enzyme inhibition. By targeting F(0) F(1) -ATP synthase within mitochondria, T1AM might affect cell bioenergetics with a positive effect on mitochondrial energy production at low, endogenous, concentrations. T1AM putative binding locations overlapping with IF(1) and aurovertin binding sites are described.
Collapse
Affiliation(s)
- S Cumero
- Department of Medical and Biological Sciences, MATI Centre of Excellence, University of Udine, Udine, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Hoefig CS, Köhrle J. LC-MS/MS detection of thyroid hormone metabolites in tissue samples. Expert Rev Endocrinol Metab 2012; 7:511-513. [PMID: 30780887 DOI: 10.1586/eem.12.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of: Ackermans MT, Kettelarij-Haas Y, Boelen A, Endert E. Determination of thyroid hormones and their metabolites in tissue using SPE UPLC-tandem MS. Biomed. Chromatogr. 26(4), 485-490 (2012). Liquid chromatography-tandem mass spectrometry is used in research laboratories as a gold standard for endocrine analytics. This technology provides a precise tool for the measurement of serum and tissue thyroid hormones (TH) and their deiodinated metabolites. The 'inactive pro-hormone' 3,3´,5,5´-tetraiodo-l-thyronine (T4) is synthesized in and secreted by the thyroid gland. Activation and inactivation of T4 in the brain, liver and other tissues is controlled by the iodothyronine deiodinases through the sequential removal of iodine atoms resulting in eight TH derivatives: tri- (T3, rT3), di- (3,5-T2, 3,3´-T2, 3´,5´-T2), monoiodothyronines (3-T1, 3´-T1) and the iodine-free l-thyronine (T0). This methodical article fits very well into the current line of research on analytics and local metabolism of TH.
Collapse
Affiliation(s)
- Carolin Stephanie Hoefig
- a Institut für Experimentelle Endokrinologie, Charité Universitätmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Josef Köhrle
- b Institut für Experimentelle Endokrinologie, Charité Universitätmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
21
|
Chiellini G, Erba P, Carnicelli V, Manfredi C, Frascarelli S, Ghelardoni S, Mariani G, Zucchi R. Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: relationship with trace amine-associated receptors. J Endocrinol 2012; 213:223-30. [PMID: 22442117 DOI: 10.1530/joe-12-0055] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
3-Iodothyronamine (T1AM) is a novel chemical messenger, structurally related to thyroid hormone, able to interact with G protein-coupled receptors known as trace amine-associated receptors (TAARs). Little is known about the physiological role of T1AM. In this prospective, we synthesized [125I]-T1AM and explored its distribution in mouse after injecting in the tail vein at a physiological concentration (0.3 nM). The expression of the nine TAAR subtypes was evaluated by quantitative real-time PCR. [125I]-T1AM was taken up by each organ. A significant increase in tissue vs blood concentration occurred in gallbladder, stomach, intestine, liver, and kidney. Tissue radioactivity decreased exponentially over time, consistent with biliary and urinary excretion, and after 24 h, 75% of the residual radioactivity was detected in liver, muscle, and adipose tissue. TAARs were expressed only at trace amounts in most of the tissues, the exceptions being TAAR1 in stomach and testis and TAAR8 in intestine, spleen, and testis. Thus, while T1AM has a systemic distribution, TAARs are only expressed in certain tissues suggesting that other high-affinity molecular targets besides TAARs exist.
Collapse
Affiliation(s)
- Grazia Chiellini
- Dipartimento di Scienze dell'Uomo e dell'Ambiente, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Galli E, Marchini M, Saba A, Berti S, Tonacchera M, Vitti P, Scanlan TS, Iervasi G, Zucchi R. Detection of 3-iodothyronamine in human patients: a preliminary study. J Clin Endocrinol Metab 2012; 97:E69-74. [PMID: 22031514 DOI: 10.1210/jc.2011-1115] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT AND OBJECTIVE The primary purpose of this study was to detect and quantify 3-iodothyronamine (T(1)AM), an endogenous biogenic amine related to thyroid hormone, in human blood. DESIGN T(1)AM, total T(3), and total T(4) were assayed in serum by a novel HPLC tandem mass spectrometry assay, which has already been validated in animal investigations, and the results were related to standard clinical and laboratory variables. SETTING AND PATIENTS The series included one healthy volunteer, 24 patients admitted to a cardiological ward, and 17 ambulatory patients suspected of thyroid disease, who underwent blood sampling at admission for routine diagnostic purposes. Seven patients were affected by type 2 diabetes, and six patients showed echocardiographic evidence of impaired left ventricular function. INTERVENTIONS No intervention or any patient selection was performed. MAIN OUTCOME MEASURES serum T(1)AM, total and free T(3) and T(4), routine chemistry, routine hematology, and echocardiographic parameters were measured. RESULTS T(1)AM was detected in all samples, and its concentration averaged 0.219 ± 0.012 pmol/ml. The T(1)AM concentration was significantly correlated to total T(4) (r = 0.654, P < 0.001), total T(3) (r = 0.705, P < 0.001), glycated hemoglobin (r = 0.508, P = 0.013), brain natriuretic peptide (r = 0.543, P = 0.016), and γ-glutamyl transpeptidase (r = 0.675, P < 0.001). In diabetic vs. nondiabetic patients T(1)AM concentration was significantly increased (0.232 ± 0.014 vs. 0.203 ± 0.006 pmol/ml, P = 0.044), whereas no significant difference was observed in patients with cardiac dysfunction. CONCLUSIONS T(1)AM is an endogenous messenger that can be assayed in human blood. Our results are consistent with the hypothesis that circulating T(1)AM is produced from thyroid hormones and encourage further investigations on the potential role of T(1)AM in insulin resistance and heart failure.
Collapse
|
23
|
Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists. PLoS One 2011; 6:e27073. [PMID: 22073124 PMCID: PMC3205048 DOI: 10.1371/journal.pone.0027073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/09/2011] [Indexed: 11/19/2022] Open
Abstract
Trace amine-associated receptors (TAAR) are rhodopsin-like G-protein-coupled receptors (GPCR). TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR), phenylethylamine (PEA), octopamine (OA), but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1) and 2 (ADRB2) have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR) octopamine (OAR), ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.
Collapse
|
24
|
Venditti P, Napolitano G, Di Stefano L, Chiellini G, Zucchi R, Scanlan TS, Di Meo S. Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol 2011; 341:55-62. [PMID: 21664427 PMCID: PMC5297583 DOI: 10.1016/j.mce.2011.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 11/17/2022]
Abstract
Thyronamines T(0)AM and T(1)AM are naturally occurring decarboxylated thyroid hormone derivatives. Their in vivo administration induces effects opposite to those induced by thyroid hormone, including lowering of body temperature. Since the mitochondrial energy-transduction apparatus is known to be a potential target of thyroid hormone and its derivatives, we investigated the in vitro effects of T(0)AM and T(1)AM on the rates of O(2) consumption and H(2)O(2) release by rat liver mitochondria. Hypothyroid animals were used because of the low levels of endogenous thyronamines. We found that both compounds are able to reduce mitochondrial O(2) consumption and increase H(2)O(2) release. The observed changes could be explained by a partial block, operated by thyronamines, at a site located near the site of action of antimycin A. This hypothesis was confirmed by the observation that thyronamines reduced the activity of Complex III where the site of antimycin action is located. Because thyronamines exerted their effects at concentrations comparable to those found in hepatic tissue, it is conceivable that they can affect in vivo mitochondrial O(2) consumption and H(2)O(2) production acting as modulators of thyroid hormone action.
Collapse
Affiliation(s)
- P Venditti
- Dipartimento delle Scienze Biologiche, Sezione di Fisiologia, Università di Napoli, I-80134 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|