1
|
Fang P, Pang WK, Xuan S, Chan WL, Leung KCF. Recent advances in peptide macrocyclization strategies. Chem Soc Rev 2024; 53:11725-11771. [PMID: 39560122 DOI: 10.1039/d3cs01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (e.g., native chemical ligation and transition metal catalysis), biological (e.g., post-translational enzymatic modification and genetic code reprogramming), and supramolecular (e.g., mechanically interlocked, metal-directed folding and self-assembly via noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.
Collapse
Affiliation(s)
- Pengyuan Fang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
| | - Wing-Ka Pang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Wai-Lun Chan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
2
|
Dayanara NL, Froelich J, Roome P, Perrin DM. Chemoselective, regioselective, and positionally selective fluorogenic stapling of unprotected peptides for cellular uptake and direct cell imaging. Chem Sci 2024:d4sc04839c. [PMID: 39620082 PMCID: PMC11605703 DOI: 10.1039/d4sc04839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Peptide stapling reactions represent powerful methods for structuring native α-helices to improve their bioactivity in targeting protein-protein interactions (PPIs). In light of a growing need for regio- and positionally selective stapling methods involving natural amino acid residues in their unprotected states, we report a rapid, mild, and highly chemoselective three-component stapling reation using a class of molecular linchpins based on 2-arylketobenzaldehydes (ArKBCHOs) that create a fluorescent staple, hereafter referred to as a Fluorescent Isoindole Crosslink (FlICk). This methodology offers positional selectivity favouring i, i + 4 helical staples comprising a lysine and cysteine, in the presence of competing nucleophiles on unprotected peptides. In our efforts to further validate this chemistry, we have successfully shown in vitro cytotoxicity of a FlICk-ed peptide (IC50 = 5.10 ± 1.27 μM), equipotent to an olefin-stapled congener. In harnessing the innate fluorescence of the thiol-isoindole, we report new blue-green fluorophores, which arise as a consequence of stapling, with appreciable quantum yields that enable direct cellular imaging in the assessment of cell permeability, thus bridging therapeutic potential with cytological probe development.
Collapse
Affiliation(s)
- Naysilla L Dayanara
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - Juliette Froelich
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - Pascale Roome
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T1Z1 Canada
| |
Collapse
|
3
|
Halder M, Chawla V, Singh Y. Ceria nanoparticles immobilized with self-assembling peptide for biocatalytic applications. NANOSCALE 2024; 16:16887-16899. [PMID: 39175360 DOI: 10.1039/d4nr02672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Peptide-based artificial enzymes exhibit structure and catalytic mechanisms comparable to natural enzymes but they suffer from limited reusability due to their existence in homogenous solutions. Immobilization of self-assembling peptides on the surface of nanoparticles can be used to overcome limitations associated with artificial enzymes. A high, local density of peptides can be obtained on nanoparticles to exert cooperative or synergistic effects, resulting in an accelerated rate of reaction, distinct catalytic properties, and excellent biocompatibility. In this work, we have immobilized a branched, self-assembled, and nanofibrous catalytic peptide, (C12-SHD)2KK(Alloc)-NH2, onto thiolated ceria nanoparticles to generate a heterogeneous catalyst with an enhanced number of catalytic sites. This artificial enzyme mimics the activities of esterase, phosphatase, and haloperoxidase enzymes and the catalytic efficiency remains nearly unaltered when reused. The enzyme-mimicking property is investigated for pesticide detection, bone regeneration, and antibiofouling applications. Overall, this work presents a facile approach to develop a multifunctional heterogeneous biocatalyst that addresses the challenges associated with unstable peptide-based homogeneous catalysts and, thus, shows a strong potential for industrial applications.
Collapse
Affiliation(s)
- Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| |
Collapse
|
4
|
Das S, Pradhan TK, Samanta R. Recent Progress on Transition Metal Catalyzed Macrocyclizations Based on C-H Bond Activation at Heterocyclic Scaffolds. Chem Asian J 2024; 19:e202400397. [PMID: 38924294 DOI: 10.1002/asia.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Macrocycles are essential in protein-protein interactions and the preferential intake of bioactive scaffolds. Macrocycles are commonly synthesized by late-stage macrolactonizations, macrolactamizations, transition metal-catalyzed ring-closing metathesis, S-S bond-forming reactions, and copper-catalyzed alkyne-azide cycloaddition. Recently, transition metal-catalyzed C-H activation strategies have gained significant interest among chemists to synthesize macrocycles. This article provides a comprehensive overview of the transition metal-catalyzed macrocyclization via C-H bond functionalization of heterocycle-containing peptides, annulations, and heterocycle-ring construction through direct C-H bond functionalization. In the first part, palladium salt catalyzed coupling with indolyl C(sp3)-H and C(sp2)-H bonds for macrocyclization is reported. The second part summarizes rhodium-catalyzed macrocyclizations via site-selective C-H bond functionalization. Earth-abundant, less toxic 3d metal salt Mn-catalyzed cyclizations are reported in the latter part. This summary is expected to spark interest in emerging methods of macrocycle production among organic synthesis and chemical biology practitioners, helping to develop the discipline. We hope that this mini-review will also inspire synthetic chemists to explore new and broadly applicable C-C bond-forming strategies for macrocyclization via intramolecular C-H activation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapan Kumar Pradhan
- Department of Chemistry, Krishnath College Berhampore, Murshidabad, West Bengal, 742101
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
5
|
Benny A, Scanlan EM. Synthesis of macrocyclic thiolactone peptides via photochemical intramolecular radical acyl thiol-ene ligation. Chem Commun (Camb) 2024; 60:7950-7953. [PMID: 38985027 DOI: 10.1039/d4cc02442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A photochemical acyl thiol-ene reaction can be used to rapidly cyclise fully unprotected peptides bearing both a thioacid and alkene to form peptide thiolactones. This strategy represents the first reported synthesis of peptide thiolactones under radical-mediated conditions.
Collapse
Affiliation(s)
- Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
6
|
Das S, Nag A. Tetrazine cyclized peptides for one-bead-one-compound library: Synthesis and sequencing. Methods Enzymol 2024; 698:141-167. [PMID: 38886030 DOI: 10.1016/bs.mie.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
While most FDA-approved peptide drugs are cyclic, robust cyclization chemistry of peptides and the deconvolution of the cyclic peptide sequences using tandem mass spectrometry render cyclic peptide drug discovery difficult. In this chapter, the protocol for the successful synthesis of tetrazine-linked cyclic peptide library in solid phase, which shows both robust cyclization and easy sequence deconvolution, is described. The protocol for the linearization and cleavage of cyclic peptides from the solid phase by simple UV light irradiation, followed by accurate sequencing using tandem mass spectrometry, is described. We describe the troubleshooting for this dithiol bis-arylation reaction and for the successful cleavage of the aryl cyclic peptide into linear form. This method for efficient solid-phase macrocyclization can be used for the rapid production of loop-based peptides and screening for inhibition of protein-protein interactions, by using the covalent inverse electron-demand Diels Alder reaction to supplement the non-covalent interaction between a protein and its peptide binder, isolating highly selective peptides in the process.
Collapse
Affiliation(s)
- Samir Das
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States.
| |
Collapse
|
7
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
8
|
Photocatalyzed Oxidative Decarboxylation Forming Aminovinylcysteine Containing Peptides. Catalysts 2022. [DOI: 10.3390/catal12121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The formation of (2S,3S)-S-[(Z)-aminovinyl]-3-methyl-D-cysteine (AviMeCys) substructures was developed based on the photocatalyzed-oxidative decarboxylation of lanthionine-bearing peptides. The decarboxylative selenoetherification of the N-hydroxyphthalimide ester, generated in situ, proceeded under mild conditions at −40 °C in the presence of 1 mol% of eosin Y-Na2 as a photocatalyst and the Hantzsch ester. The following β-elimination of the corresponding N,Se-acetal was operated in a one-pot operation, led to AviMeCys substructures found in natural products in moderate to good yields. The sulfide-bridged motif, and also the carbamate-type protecting groups, such as Cbz, Teoc, Boc and Fmoc groups, were tolerant under the reaction conditions.
Collapse
|
9
|
Cheekatla SR, Thurakkal L, Jose A, Barik D, Porel M. Aza-Oxa-Triazole Based Macrocycles with Tunable Properties: Design, Synthesis, and Bioactivity. Molecules 2022; 27:3409. [PMID: 35684347 PMCID: PMC9182012 DOI: 10.3390/molecules27113409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
A modular platform for the synthesis of tunable aza-oxa-based macrocycles was established. Modulations in the backbone and the side-chain functional groups have been rendered to achieve the tunable property. These aza-oxa-based macrocycles can also differ in the number of heteroatoms in the backbone and the ring size of the macrocycles. For the proof of concept, a library of macrocycles was synthesized with various hanging functional groups, different combinations of heteroatoms, and ring sizes in the range of 17-27 atoms and was characterized by NMR and mass spectrometry. In light of the importance of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and the significance of triazole groups for various applications, we employed the click-reaction-based macrocyclization. The competence of the synthesized macrocycles in various biomedical applications was proven by studying the interactions with the serum albumin proteins; bovine serum albumin and human serum albumin. It was observed that some candidates, based on their hanging functional groups and specific backbone atoms, could interact well with the protein, thus improving the bioactive properties. On the whole, this work is a proof-of-concept to explore the backbone- and side-chain-tunable macrocycle for different properties and applications.
Collapse
Affiliation(s)
- Subba Rao Cheekatla
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India; (S.R.C.); (L.T.); (A.J.); (D.B.)
| | - Liya Thurakkal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India; (S.R.C.); (L.T.); (A.J.); (D.B.)
| | - Anna Jose
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India; (S.R.C.); (L.T.); (A.J.); (D.B.)
| | - Debashis Barik
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India; (S.R.C.); (L.T.); (A.J.); (D.B.)
| | - Mintu Porel
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India; (S.R.C.); (L.T.); (A.J.); (D.B.)
- Environmental Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Palakkad 678557, India
| |
Collapse
|
10
|
Li J, Lai W, Pang A, Liu L, Ye L, Xiong XF. On-Resin Synthesis of Linear Aryl Thioether Containing Peptides and in-Solution Cyclization via Cysteine S NAr Reaction. Org Lett 2022; 24:1673-1677. [PMID: 35195423 DOI: 10.1021/acs.orglett.2c00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic peptides represent one of the most promising therapeutic agents in drug discovery due to their good affinity and selectivity. Herein, an on-resin synthesis of aryl thioether containing peptides and a concise cyclization strategy via chemoselective cysteine SNAr reaction was developed. The arylation group could be incorporated into a series of amino acids and used for standard SPPS and peptides cyclization. Constructed cyclic peptides showed increased cellular uptakes compared to their linear peptides.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Weihong Lai
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Ao Pang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
11
|
Sun D. Recent Advances in Macrocyclic Drugs and Microwave-Assisted and/or Solid-Supported Synthesis of Macrocycles. Molecules 2022; 27:1012. [PMID: 35164274 PMCID: PMC8839925 DOI: 10.3390/molecules27031012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022] Open
Abstract
Macrocycles represent attractive candidates in organic synthesis and drug discovery. Since 2014, nineteen macrocyclic drugs, including three radiopharmaceuticals, have been approved by FDA for the treatment of bacterial and viral infections, cancer, obesity, immunosuppression, etc. As such, new synthetic methodologies and high throughput chemistry (e.g., microwave-assisted and/or solid-phase synthesis) to access various macrocycle entities have attracted great interest in this chemical space. This article serves as an update on our previous review related to macrocyclic drugs and new synthetic strategies toward macrocycles (Molecules, 2013, 18, 6230). In this work, I first reviewed recent FDA-approved macrocyclic drugs since 2014, followed by new advances in macrocycle synthesis using high throughput chemistry, including microwave-assisted and/or solid-supported macrocyclization strategies. Examples and highlights of macrocyclization include macrolactonization and macrolactamization, transition-metal catalyzed olefin ring-closure metathesis, intramolecular C-C and C-heteroatom cross-coupling, copper- or ruthenium-catalyzed azide-alkyne cycloaddition, intramolecular SNAr or SN2 nucleophilic substitution, condensation reaction, and multi-component reaction-mediated macrocyclization, and covering the literature since 2010.
Collapse
Affiliation(s)
- Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| |
Collapse
|
12
|
Nolan MD, Shine C, Scanlan EM, Petracca R. Thioether analogues of the pituitary neuropeptide oxytocin via thiol–ene macrocyclisation of unprotected peptides. Org Biomol Chem 2022; 20:8192-8196. [DOI: 10.1039/d2ob01688e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A radical mediated approach to macrocyclisation of unprotected peptides via Thiol-Ene Click for synthesis of disulfide analogues is reported.
Collapse
Affiliation(s)
- Mark D. Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, D05 R590, Ireland
| | - Conor Shine
- Trinity Biomedical Sciences Institute, Trinity College Dublin, D05 R590, Ireland
| | - Eoin M. Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, D05 R590, Ireland
| | - Rita Petracca
- Utrecht University, Utrecht Institute for Pharmaceutical Sciences (UIPS), Chemical Biology and Drug Discovery, Netherlands
| |
Collapse
|
13
|
Cao Y, Bi X. Butelase-1 as the Prototypical Peptide Asparaginyl Ligase and Its Applications: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
15
|
Diels-Alder Cycloadditions for Peptide Macrocycle Formation. Methods Mol Biol 2021. [PMID: 34596848 DOI: 10.1007/978-1-0716-1689-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Macrocyclization can confer enhanced stability, target affinity, and membrane permeability to peptide scaffolds, all of which are desirable properties for chemical probes and therapeutics. A wide array of macrocyclization chemistries have been reported over the last few decades; however, these often have limited compatibility with each other and across chemical environments, thus restricting access to specific molecular properties. In an effort to address some of these limitations, we recently described the use of Diels-Alder [4 + 2] cycloadditions for peptide macrocyclization. Among the attributes of this chemistry, we demonstrated that Diels-Alder cyclization can template diverse peptide secondary structures, proceed in organic or aqueous environments, and endow improved pharmacologic properties on cyclized peptides. Here, we present synthetic processes and characterization methods for the synthesis of Diels-Alder cyclized peptides.
Collapse
|
16
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
17
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
18
|
Sutherland BP, Kabra M, Kloxin CJ. Expanding the Thiol-X Toolbox: Photoinitiation and Materials Application of the Acid-Catalyzed Thiol-ene (ACT) Reaction. Polym Chem 2021; 12:1562-1570. [PMID: 33815572 PMCID: PMC8011277 DOI: 10.1039/d0py01593h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The acid-catalyzed thiol-ene reaction (ACT) is a unique thiol-X conjugation strategy that produces S,X-acetal conjugates. Unlike the well-known radical-mediated thiol-ene and anion-mediated thiol-Michael reactions that produce static thioether bonds, acetals provide unique function for various fields such as drug delivery and protecting group chemistries; however, this reaction is relatively underutilized for creating new and unique materials owing to the unexplored reactivity over a broad set of substrates and potential side reactions. Solution-phase studies using a range of thiol and alkene substrates were conducted to evaluate the ACT reaction as a conjugation strategy. Substrates that efficiently undergo cationic polymerizations, such as those containing vinyl functional groups, were found to be highly reactive to thiols in the presence of catalytic amounts of acid. Additionally, sequential initiation of three separate thiol-X reactions (thiol-Michael, ACT, and thiol-ene) was achieved in a one-pot scheme simply by the addition of the appropriate catalyst demonstrating substrate selectivity. Furthermore, photoinitiation of the ACT reaction was achieved for the first time under 470 nm blue light using a novel photochromic photoacid. Finally, using multifunctional monomers, solid-state polymer networks were formed using the ACT reaction producing acetal crosslinks. The presence of S,X-acetal bonds results in an increased glass transition temperature of 20 °C as compared with the same polymeric film polymerized through the radical thiol-ene mechanism. This investigation demonstrates the broad impact of the ACT reaction and expands upon the diverse thiol-X library of conjugation strategies towards the development of novel materials systems.
Collapse
Affiliation(s)
- Bryan P Sutherland
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Mukund Kabra
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| |
Collapse
|
19
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
20
|
Raynal L, Rose NC, Donald JR, Spicer CD. Photochemical Methods for Peptide Macrocyclisation. Chemistry 2021; 27:69-88. [PMID: 32914455 PMCID: PMC7821122 DOI: 10.1002/chem.202003779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Photochemical reactions have been the subject of renewed interest over the last two decades, leading to the development of many new, diverse and powerful chemical transformations. More recently, these developments have been expanded to enable the photochemical macrocyclisation of peptides and small proteins. These constructs benefit from increased stability, structural rigidity and biological potency over their linear counterparts, providing opportunities for improved therapeutic agents. In this review, an overview of both the established and emerging methods for photochemical peptide macrocyclisation is presented, highlighting both the limitations and opportunities for further innovation in the field.
Collapse
Affiliation(s)
- Laetitia Raynal
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Nicholas C. Rose
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - James R. Donald
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Christopher D. Spicer
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
21
|
Das A, Thomas KRJ. Facile Thiol–Ene Click Protocol Using Benzil as Sensitizer and White LED as Light Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee – India
| | - K. R. Justin Thomas
- Organic Materials Laboratory Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee – India
| |
Collapse
|
22
|
Nolan MD, Scanlan EM. Applications of Thiol-Ene Chemistry for Peptide Science. Front Chem 2020; 8:583272. [PMID: 33282831 PMCID: PMC7689097 DOI: 10.3389/fchem.2020.583272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.
Collapse
Affiliation(s)
- Mark D Nolan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
23
|
Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User-friendly Stapling Reaction. Angew Chem Int Ed Engl 2019; 58:14120-14124. [PMID: 31211905 DOI: 10.1002/anie.201906514] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/14/2022]
Abstract
The stabilization of peptide secondary structure via stapling is a ubiquitous goal for creating new probes, imaging agents, and drugs. Inspired by indole-derived crosslinks found in natural peptide toxins, we employed ortho-phthalaldehydes to create isoindole staples, thus transforming inactive linear and monocyclic precursors into bioactive monocyclic and bicyclic products. Mild, metal-free conditions give an array of macrocyclic α-melanocyte-stimulating hormone (α-MSH) derivatives, of which several isoindole-stapled α-MSH analogues (Ki ≈1 nm) are found to be as potent as α-MSH. Analogously, late-stage intra-annular isoindole stapling furnished a bicyclic peptide mimic of α-amanitin that is cytotoxic to CHO cells (IC50 =70 μm). Given its user-friendliness, we have termed this approach FlICk (fluorescent isoindole crosslink) chemistry.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| | - Katerina D Schwab
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| | - Jutta Zeisler
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Chengcheng Zhang
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Francois Bénard
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| |
Collapse
|
24
|
Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User‐friendly Stapling Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department UBC 2036 Main Mall Vancouver B.C. V6T1Z1 Canada
| | | | - Jutta Zeisler
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - Chengcheng Zhang
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - Francois Bénard
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - David M. Perrin
- Chemistry Department UBC 2036 Main Mall Vancouver B.C. V6T1Z1 Canada
| |
Collapse
|
25
|
Yuen TY, Brown CJ, Xue Y, Tan YS, Ferrer Gago FJ, Lee XE, Neo JY, Thean D, Kaan HYK, Partridge AW, Verma CS, Lane DP, Johannes CW. Stereoisomerism of stapled peptide inhibitors of the p53-Mdm2 interaction: an assessment of synthetic strategies and activity profiles. Chem Sci 2019; 10:6457-6466. [PMID: 31316744 PMCID: PMC6610352 DOI: 10.1039/c9sc01456j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/19/2019] [Indexed: 12/26/2022] Open
Abstract
Staple composition can influence target binding and bioactivity of peptides. We present strategies to modulate E/Z ratios and access saturated analogues.
All-hydrocarbon, i, i+7 stapled peptide inhibitors of the p53-Mdm2 interaction have emerged as promising new leads for cancer therapy. Typical chemical synthesis via olefin metathesis results in the formation of both E- and Z-isomers, an observation that is rarely disclosed but may be of importance in targeting PPI. In this study, we evaluated the effect of staple geometry on the biological activity of five p53-reactivating peptides. We also present strategies for the modulation of the E/Z ratio and attainment of the hydrogenated adduct through repurposing of the metathesis catalyst.
Collapse
Affiliation(s)
- Tsz Ying Yuen
- Institute of Chemical and Engineering Sciences , Agency for Science , Technology and Research , 8 Biomedical Grove, Neuros, #07-01 , Singapore 138665 .
| | - Christopher J Brown
- P53 Laboratory , Agency for Science , Technology and Research , 8A Biomedical Grove, #06-06, Immunos , Singapore 138648
| | - Yuezhen Xue
- P53 Laboratory , Agency for Science , Technology and Research , 8A Biomedical Grove, #06-06, Immunos , Singapore 138648
| | - Yaw Sing Tan
- Bioinformatics Institute , Agency for Science , Technology and Research , 30 Biopolis Street, #07-01, Matrix , Singapore 138671
| | - Fernando J Ferrer Gago
- P53 Laboratory , Agency for Science , Technology and Research , 8A Biomedical Grove, #06-06, Immunos , Singapore 138648
| | - Xue Er Lee
- P53 Laboratory , Agency for Science , Technology and Research , 8A Biomedical Grove, #06-06, Immunos , Singapore 138648
| | - Jin Yong Neo
- Institute of Chemical and Engineering Sciences , Agency for Science , Technology and Research , 8 Biomedical Grove, Neuros, #07-01 , Singapore 138665 .
| | - Dawn Thean
- P53 Laboratory , Agency for Science , Technology and Research , 8A Biomedical Grove, #06-06, Immunos , Singapore 138648
| | - Hung Yi Kristal Kaan
- MSD Translational Medicine Research Centre , 8 Biomedical Grove #04-01, Neuros , Singapore 138665
| | - Anthony W Partridge
- MSD Translational Medicine Research Centre , 8 Biomedical Grove #04-01, Neuros , Singapore 138665
| | - Chandra S Verma
- Bioinformatics Institute , Agency for Science , Technology and Research , 30 Biopolis Street, #07-01, Matrix , Singapore 138671
| | - David P Lane
- P53 Laboratory , Agency for Science , Technology and Research , 8A Biomedical Grove, #06-06, Immunos , Singapore 138648
| | - Charles W Johannes
- Institute of Chemical and Engineering Sciences , Agency for Science , Technology and Research , 8 Biomedical Grove, Neuros, #07-01 , Singapore 138665 .
| |
Collapse
|
26
|
Brahm K, Wack JS, Eckes S, Engemann V, Schmitz K. Macrocyclization enhances affinity of chemokine‐binding peptoids. Biopolymers 2018; 110:e23244. [DOI: 10.1002/bip.23244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Kevin Brahm
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| | - Julia S. Wack
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| | - Stefanie Eckes
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| | - Victoria Engemann
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| | - Katja Schmitz
- Clemens‐Schöpf‐Institute of Organic Chemistry and BiochemistryTU Darmstadt Darmstadt Germany
| |
Collapse
|
27
|
Sutherland BP, El-Zaatari BM, Halaszynski NI, French JM, Bai S, Kloxin CJ. On-Resin Macrocyclization of Peptides Using Vinyl Sulfonamides as a Thiol-Michael "Click" Acceptor. Bioconjug Chem 2018; 29:3987-3992. [PMID: 30452234 DOI: 10.1021/acs.bioconjchem.8b00751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrocyclization of linear peptides imparts improved stability to enzymatic degradation and increases potency of function. Many successful macrocyclization of peptides both in solution and on-resin have been achieved but are limited in scope as they lack selectivity, require long reaction times, or necessitate heat. To overcome these drawbacks a robust and facile strategy was developed employing thiol-Michael click chemistry via an N-methyl vinyl sulfonamide. We demonstrate its balance of reactivity and high stability through FTIR model kinetic studies, reaching 88% conversion over 30 min, and NMR stability studies, revealing no apparent degradation over an 8 day period in basic conditions. Using a commercially available reagent, 2-chloroethane sulfonyl chloride, the cell adhesion peptide, RGDS, was functionalized and macrocyclized on-resin with a relative efficiency of over 95%. The simplistic nature of this process demonstrates the effectiveness of vinyl sulfonamides as a thiol-Michael click acceptor and its applicability to many other bioconjugation applications.
Collapse
Affiliation(s)
- Bryan P Sutherland
- Department of Materials Science and Engineering , University of Delaware , 201 DuPont Hall , Newark , Delaware 19716 , United States
| | - Bassil M El-Zaatari
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Nicole I Halaszynski
- Department of Materials Science and Engineering , University of Delaware , 201 DuPont Hall , Newark , Delaware 19716 , United States
| | - Jonathan M French
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13210 , United States
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering , University of Delaware , 201 DuPont Hall , Newark , Delaware 19716 , United States.,Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
28
|
Iegre J, Gaynord JS, Robertson NS, Sore HF, Hyvönen M, Spring DR. Two-Component Stapling of Biologically Active and Conformationally Constrained Peptides: Past, Present, and Future. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jessica Iegre
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| | | | | | - Hannah F. Sore
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| | - Marko Hyvönen
- Department of Biochemistry; University of Cambridge; Cambridge CB2 1GA UK
| | - David R. Spring
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| |
Collapse
|
29
|
Williams ET, Harris PWR, Jamaluddin MA, Loomes KM, Hay DL, Brimble MA. Solid-Phase Thiol-Ene Lipidation of Peptides for the Synthesis of a Potent CGRP Receptor Antagonist. Angew Chem Int Ed Engl 2018; 57:11640-11643. [PMID: 29978532 DOI: 10.1002/anie.201805208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 12/11/2022]
Abstract
We report a new method herein coined SP-CLipPA (solid-phase cysteine lipidation of a peptide or amino acid) for the synthesis of mono-S-lipidated peptides. This technique utilizes thiol-ene chemistry for conjugation of a vinyl ester to a free thiol of a semiprotected, resin-bound peptide. Advantages of SP-CLipPA include: ease of handling, conversions of up to 91 %, by-product removal by simple filtration, and a single purification step. Additionally, the desired lipidated products show high chromatographic separation from impurities, thus facilitating RP-HPLC purification. To showcase the utility of SP-CLipPA, we synthesized a potent calcitonin gene-related peptide (CGRP) receptor antagonist peptide in excellent yield and purity. This peptide, selected from a series of lipidated analogues of CGRP8-37 and CGRP7-37 , has potential for the treatment of migraine.
Collapse
Affiliation(s)
- Elyse T Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Muhammad A Jamaluddin
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
30
|
Williams ET, Harris PWR, Jamaluddin MA, Loomes KM, Hay DL, Brimble MA. Solid-Phase Thiol-Ene Lipidation of Peptides for the Synthesis of a Potent CGRP Receptor Antagonist. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elyse T. Williams
- School of Chemical Sciences; The University of Auckland; 23 Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences; The University of Auckland; 23 Symonds Street Auckland 1142 New Zealand
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Muhammad A. Jamaluddin
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Kerry M. Loomes
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Debbie L. Hay
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland; 23 Symonds Street Auckland 1142 New Zealand
- School of Biological Sciences; The University of Auckland; 3A Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
31
|
Shi X, Liu Y, Zhao R, Li Z. Constructing Thioether/Vinyl Sulfide-tethered Helical Peptides Via Photo-induced Thiol-ene/yne Hydrothiolation. J Vis Exp 2018. [PMID: 30124641 DOI: 10.3791/57356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Here, we describe a detailed protocol for the preparation of thioether-tethered peptides using on-resin intramolecular/intermolecular thiol-ene hydrothiolation. In addition, this protocol describes the preparation of vinyl-sulfide-tethered peptides using in-solution intramolecular thiol-yne hydrothiolation between amino acids that possess alkene/alkyne side chains and cysteine residues at i, i+4 positions. Linear peptides were synthesized using a standard Fmoc-based solid-phase peptide synthesis (SPPS). Thiol-ene hydrothiolation is carried out using either an intramolecular thio-ene reaction or an intermolecular thio-ene reaction, depending on the peptide length. In this research, an intramolecular thio-ene reaction is carried out in the case of shorter peptides using on-resin deprotection of the trityl groups of cysteine residues following the complete synthesis of the linear peptide. The resin is then set to UV irradiation using photoinitiator 4-methoxyacetophenone (MAP) and 2-hydroxy-1-[4-(2-hydroxyethoxy)-phenyl]-2-methyl-1-propanone (MMP). The intermolecular thiol-ene reaction is carried out by dissolving Fmoc-Cys-OH in an N,N-dimethylformamide (DMF) solvent. This is then reacted with the peptide using the alkene-bearing residue on resin. After that, the macrolactamization is carried out using benzotriazole-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBop), 1-hydroxybenzotriazole (HoBt), and 4-Methylmorpholine (NMM) as activation reagents on the resin. Following the macrolactamization, the peptide synthesis is continued using standard SPPS. In the case of the thio-yne hydrothiolation, the linear peptide is cleaved from the resin, dried, and subsequently dissolved in degassed DMF. This is then irradiated using UV light with photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA). Following the reaction, DMF is evaporated and the crude residue is precipitated and purified using high-performance liquid chromatography (HPLC). These methods could function to simplify the generation of thioether-tethered cyclic peptides due to the use of the thio-ene/yne click chemistry that possesses superior functional group tolerance and good yield. The introduction of thioether bonds into peptides takes advantage of the nucleophilic nature of cysteine residues and is redox-inert relative to disulfide bonds.
Collapse
Affiliation(s)
- Xiaodong Shi
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School
| | - Yinghuan Liu
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School
| | - Rongtong Zhao
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School
| | - Zigang Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School;
| |
Collapse
|
32
|
Li X, Zou Y, Hu HG. Different stapling-based peptide drug design: Mimicking α-helix as inhibitors of protein–protein interaction. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
LeValley PJ, Ovadia EM, Bresette CA, Sawicki LA, Maverakis E, Bai S, Kloxin AM. Design of functionalized cyclic peptides through orthogonal click reactions for cell culture and targeting applications. Chem Commun (Camb) 2018; 54:6923-6926. [PMID: 29863200 DOI: 10.1039/c8cc03218a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An approach for the design of functionalized cyclic peptides is established for use in 3D cell culture and in cell targeting. Sequential orthogonal click reactions, specifically a photoinitiated thiol-ene and strain promoted azide-alkyne cycloaddition, were utilized for peptide cyclization and conjugation relevant for biomaterial and biomedical applications, respectively.
Collapse
Affiliation(s)
- Paige J LeValley
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Malins LR. Decarboxylative couplings as versatile tools for late-stage peptide modifications. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lara R. Malins
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| |
Collapse
|
36
|
Heteroatom-Centred Radicals for the Synthesis of Heterocyclic Compounds. TOPICS IN HETEROCYCLIC CHEMISTRY 2018. [DOI: 10.1007/7081_2018_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Martens S, Holloway JO, Du Prez FE. Click and Click-Inspired Chemistry for the Design of Sequence-Controlled Polymers. Macromol Rapid Commun 2017; 38. [PMID: 28990247 DOI: 10.1002/marc.201700469] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/18/2017] [Indexed: 01/09/2023]
Abstract
During the previous decade, many popular chemical reactions used in the area of "click" chemistry and similarly efficient "click-inspired" reactions have been applied for the design of sequence-defined and, more generally, sequence-controlled structures. This combination of topics has already made quite a significant impact on scientific research to date and has enabled the synthesis of highly functionalized and complex oligomeric and polymeric structures, which offer the prospect of many exciting further developments and applications in the near future. This minireview highlights the fruitful combination of these two topics for the preparation of sequence-controlled oligomeric and macromolecular structures and showcases the vast number of publications in this field within a relatively short span of time. It is divided into three sections according to the click-(inspired) reaction that has been applied: copper-catalyzed azide-alkyne cycloaddition, thiol-X, and related thiolactone-based reactions, and finally Diels-Alder-chemistry-based routes are outlined, respectively.
Collapse
Affiliation(s)
- Steven Martens
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Joshua O Holloway
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| |
Collapse
|
38
|
Santandrea J, Minozzi C, Cruché C, Collins SK. Photochemical Dual-Catalytic Synthesis of Alkynyl Sulfides. Angew Chem Int Ed Engl 2017; 56:12255-12259. [PMID: 28768063 DOI: 10.1002/anie.201705903] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Indexed: 12/19/2022]
Abstract
A photochemical dual-catalytic cross-coupling to form alkynyl sulfides via C(sp)-S bond formation is described. The cross-coupling of thiols and bromoalkynes is promoted by a soluble organic carbazole-based photocatalyst using continuous flow techniques. Synthesis of alkynyl sulfides bearing a wide range of electronically and sterically diverse aromatic alkynes and thiols can be achieved in good to excellent yields (50-96 %). The simple continuous flow setup also allows for short reaction times (30 min) and high reproducibility on gram scale. In addition, we report the first application of photoredox/nickel dual catalysis towards macrocyclization, as well as the first example of the incorporation of an alkynyl sulfide functional group into a macrocyclic scaffold.
Collapse
Affiliation(s)
- Jeffrey Santandrea
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7, Canada
| | - Clémentine Minozzi
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7, Canada
| | - Corentin Cruché
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7, Canada
| | - Shawn K Collins
- Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
39
|
Santandrea J, Minozzi C, Cruché C, Collins SK. Photochemical Dual-Catalytic Synthesis of Alkynyl Sulfides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jeffrey Santandrea
- Department of Chemistry and Centre for Green Chemistry and Catalysis; Université de Montréal; CP 6128 Station Downtown Montréal Québec H3C 3J7 Canada
| | - Clémentine Minozzi
- Department of Chemistry and Centre for Green Chemistry and Catalysis; Université de Montréal; CP 6128 Station Downtown Montréal Québec H3C 3J7 Canada
| | - Corentin Cruché
- Department of Chemistry and Centre for Green Chemistry and Catalysis; Université de Montréal; CP 6128 Station Downtown Montréal Québec H3C 3J7 Canada
| | - Shawn K. Collins
- Department of Chemistry and Centre for Green Chemistry and Catalysis; Université de Montréal; CP 6128 Station Downtown Montréal Québec H3C 3J7 Canada
| |
Collapse
|
40
|
Malins LR, deGruyter JN, Robbins KJ, Scola PM, Eastgate MD, Ghadiri MR, Baran PS. Peptide Macrocyclization Inspired by Non-Ribosomal Imine Natural Products. J Am Chem Soc 2017; 139:5233-5241. [PMID: 28326777 PMCID: PMC5391502 DOI: 10.1021/jacs.7b01624] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A thermodynamic approach to peptide macrocyclization inspired by the cyclization of non-ribosomal peptide aldehydes is presented. The method provides access to structurally diverse macrocycles by exploiting the reactivity of transient macrocyclic peptide imines toward inter- and intramolecular nucleophiles. Reactions are performed in aqueous media, in the absence of side chain protecting groups, and are tolerant of all proteinogenic functional groups. Macrocyclic products bearing non-native and rigidifying structural motifs, isotopic labels, and a variety of bioorthogonal handles are prepared, along with analogues of four distinct natural products. Structural interrogation of the linear and macrocyclic peptides using variable-temperature NMR and circular dichroism suggests that preorganization of linear substrates is not a prerequisite for macrocyclization.
Collapse
Affiliation(s)
- Lara R Malins
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Justine N deGruyter
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kevin J Robbins
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Paul M Scola
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Martin D Eastgate
- Chemical Development, Bristol-Myers Squibb , One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - M Reza Ghadiri
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
41
|
Zhang Q, Jiang F, Zhao B, Lin H, Tian Y, Xie M, Bai G, Gilbert AM, Goetz GH, Liras S, Mathiowetz AA, Price DA, Song K, Tu M, Wu Y, Wang T, Flanagan ME, Wu YD, Li Z. Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity. Sci Rep 2016; 6:38573. [PMID: 27934919 PMCID: PMC5146914 DOI: 10.1038/srep38573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022] Open
Abstract
Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity.
Collapse
Affiliation(s)
- Qingzhou Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bingchuan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Huacan Lin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mingsheng Xie
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guoyun Bai
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Adam M Gilbert
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Gilles H Goetz
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Spiros Liras
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Alan A Mathiowetz
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - David A Price
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Kun Song
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Meihua Tu
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Yujie Wu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tao Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mark E Flanagan
- Center for Chemistry Innovation and Excellence, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,College of Chemistry, Peking University, Beijing, 100871, China
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
42
|
Wu ZM, Liu SZ, Cheng XZ, Ding WZ, Zhu T, Chen B. Recent progress of on-resin cyclization for the synthesis of clycopeptidomimetics. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DWC. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan J. McCarver
- Merck Center for Catalysis at Princeton University Washington Road Princeton NJ 08544 USA
| | - Jennifer X. Qiao
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Joseph Carpenter
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | | | - Michael A. Poss
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Martin D. Eastgate
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Michael M. Miller
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University Washington Road Princeton NJ 08544 USA
| |
Collapse
|
44
|
McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DWC. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew Chem Int Ed Engl 2016; 56:728-732. [PMID: 27860140 DOI: 10.1002/anie.201608207] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/01/2016] [Indexed: 01/01/2023]
Abstract
A method for the decarboxylative macrocyclization of peptides bearing N-terminal Michael acceptors has been developed. This synthetic method enables the efficient synthesis of cyclic peptides containing γ-amino acids and is tolerant of functionalities present in both natural and non-proteinogenic amino acids. Linear precursors ranging from 3 to 15 amino acids cyclize effectively under this photoredox method. To demonstrate the preparative utility of this method in the context of bioactive molecules, we synthesized COR-005, a somatostatin analogue that is currently in clinical trials.
Collapse
Affiliation(s)
- Stefan J McCarver
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Jennifer X Qiao
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Joseph Carpenter
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Robert M Borzilleri
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Michael A Poss
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Martin D Eastgate
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Michael M Miller
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
45
|
Zhao B, Zhang Q, Li Z. Constructing thioether-tethered cyclic peptides via on-resin intra-molecular thiol-ene reaction. J Pept Sci 2016; 22:540-4. [DOI: 10.1002/psc.2902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Bingchuan Zhao
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Zigang Li
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| |
Collapse
|
46
|
Tian Y, Li J, Zhao H, Zeng X, Wang D, Liu Q, Niu X, Huang X, Xu N, Li Z. Stapling of unprotected helical peptides via photo-induced intramolecular thiol-yne hydrothiolation. Chem Sci 2016; 7:3325-3330. [PMID: 29997825 PMCID: PMC6006495 DOI: 10.1039/c6sc00106h] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/03/2016] [Indexed: 12/27/2022] Open
Abstract
Peptide stapling emerged as a versatile strategy to recapitulate the bioactive helical conformation of unstructured short peptides in water to improve their therapeutic properties in targeting intracellular "undruggable" targets. Here, we describe the development of photo-induced intramolecular thiol-yne macrocyclization for rapid access to short stapled peptides with enhanced biophysical properties. This new peptide stapling technique provides rapid access to conformationally constrained helices with satisfying functional group tolerance. Notably, the vinyl sulfide linkage shows distinct lipophilicity with reduced membrane toxicity compared to the corresponding all-hydrocarbon analogue. As a proof of principle, we constructed stabilized helices modulating intracellular estrogen receptor (ER)-coactivator interactions with a nanomolar binding affinity, enhanced serum stability, a diffuse cellular distribution and selective cytotoxicity towards ER-positive MCF-7 cells.
Collapse
Affiliation(s)
- Yuan Tian
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Jingxu Li
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Hui Zhao
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Xiangze Zeng
- Department of Chemistry , Center of Systems Biology and Human Health , School of Science and Institute for Advance Study , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| | - Dongyuan Wang
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Qisong Liu
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering , Beijing Nuclear Magnetic Resonance Center , Peking University , Beijing , 100871 , China
| | - Xuhui Huang
- Department of Chemistry , Center of Systems Biology and Human Health , School of Science and Institute for Advance Study , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| | - Naihan Xu
- Key Lab in Healthy Science and Technology , Division of Life Science , Shenzhen Graduate School of Tsinghua University , Shenzhen , 518055 , China .
| | - Zigang Li
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| |
Collapse
|
47
|
|
48
|
Gorges J, Kazmaier U. BEt3-Initiated Thiol-Ene Click Reactions as a Versatile Tool To Modify Sensitive Substrates. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem Rev 2015; 115:8736-834. [DOI: 10.1021/acs.chemrev.5b00056] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mrituanjay D. Pandey
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - M. Isabel Burguete
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Santiago V. Luis
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
50
|
Wang Y, Chou DHC. A Thiol-Ene Coupling Approach to Native Peptide Stapling and Macrocyclization. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503975] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|