1
|
Liu X, Zhang Y, Zou Y, Yan C, Chen J. Recent Advances and Outlook of Benzopyran Derivatives in the Discovery of Agricultural Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12300-12318. [PMID: 38800848 DOI: 10.1021/acs.jafc.3c09244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Scaffold structures, new mechanisms of action, and targets present enormous challenges in the discovery of novel pesticides. The discovery of new scaffolds is the basis for the continuous development of modern agrochemicals. Identification of a good scaffold such as triazole, carbamate, methoxy acrylate, pyrazolamide, pyrido-pyrimidinone mesoionic, and bisamide often leads to the development of a new series of pesticides. In addition, pesticides with the same target, including the inhibitors of succinate dehydrogenase (SDH), oxysterol-binding-protein, and p-hydroxyphenyl pyruvate dioxygenase (HPPD), may have the same or similar scaffold structure. Recent years have witnessed significant progress in the discovery of new pesticides using natural products as scaffolds or bridges. In recent years, there have been increasing reports on the application of natural benzopyran compounds in the discovery of new pesticides, especially osthole and coumarin. A systematic and comprehensive review of benzopyran active compounds in the discovery of new agricultural chemicals is helpful to promote the discussion and development of benzopyran active compounds. Therefore, this work systematically reviewed the research and application of benzopyran derivatives in the discovery of agricultural chemicals, summarized the antiviral, herbicidal, antibacterial, fungicidal, insecticidal, nematicidal and acaricidal activities of benzopyran active compounds, and discussed the structural-activity relationship and mechanism of action. In addition, some active fragments were recommended to further optimize the chemical structure of benzopyran active compounds based on reference information.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chongchong Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Sharma N, Shekhar P, Kumar V, Kaur H, Jayasena V. Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. J Basic Microbiol 2024; 64:4-21. [PMID: 37861279 DOI: 10.1002/jobm.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Color serves as the initial attraction and offers a pleasing aspect. While synthetic colorants have been popular for many years, their adverse environmental and health effects cannot be overlooked. This necessitates the search for natural colorants, especially microbial colorants, which have proven and more effective. Pigment-producing microorganisms offer substantial benefits. Natural colors improve product marketability and bestow additional benefits, including antioxidant, antiaging, anticancer, antiviral, antimicrobial, and antitumor properties. This review covers the various types of microbial pigments, the methods to enhance their production, and their cosmetic and therapeutic applications. We also address the challenges faced during the commercial production of microbial pigments and propose potential solutions.
Collapse
Affiliation(s)
- Nitin Sharma
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | | | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Harpreet Kaur
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
3
|
Hammerle F, Quirós-Guerrero L, Wolfender JL, Peintner U, Siewert B. Highlighting the Phototherapeutical Potential of Fungal Pigments in Various Fruiting Body Extracts with Informed Feature-Based Molecular Networking. MICROBIAL ECOLOGY 2023; 86:1972-1992. [PMID: 36947169 PMCID: PMC10497435 DOI: 10.1007/s00248-023-02200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Fungal pigments are characterized by a diverse set of chemical backbones, some of which present photosensitizer-like structures. From the genus Cortinarius, for example, several biologically active photosensitizers have been identified leading to the hypothesis that photoactivity might be a more general phenomenon in the kingdom Fungi. This paper aims at testing the hypothesis. Forty-eight fruiting body-forming species producing pigments from all four major biosynthetic pathways (i.e., shikimate-chorismate, acetate-malonate, mevalonate, and nitrogen heterocycles) were selected and submitted to a workflow combining in vitro chemical and biological experiments with state-of-the-art metabolomics. Fungal extracts were profiled by high-resolution mass spectrometry and subsequently explored by spectral organization through feature-based molecular networking (FBMN), including advanced metabolite dereplication techniques. Additionally, the photochemical properties (i.e., light-dependent production of singlet oxygen), the phenolic content, and the (photo)cytotoxic activity of the extracts were studied. Different levels of photoactivity were found in species from all four metabolic groups, indicating that light-dependent effects are common among fungal pigments. In particular, extracts containing pigments from the acetate-malonate pathway, e.g., extracts from Bulgaria inquinans, Daldinia concentrica, and Cortinarius spp., were not only efficient producers of singlet oxygen but also exhibited photocytotoxicity against three different cancer cell lines. This study explores the distribution of photobiological traits in fruiting body forming fungi and highlights new sources for phototherapeutics.
Collapse
Affiliation(s)
- Fabian Hammerle
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Luis Quirós-Guerrero
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland
| | - Ursula Peintner
- Department of Microbiology, University Innsbruck, Technikerstrasse 25d, 6020, Innsbruck, Austria
| | - Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Seibold PS, Lawrinowitz S, Raztsou I, Gressler M, Arndt HD, Stallforth P, Hoffmeister D. Bifurcate evolution of quinone synthetases in basidiomycetes. Fungal Biol Biotechnol 2023; 10:14. [PMID: 37400920 PMCID: PMC10316625 DOI: 10.1186/s40694-023-00162-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The terphenylquinones represent an ecologically remarkable class of basidiomycete natural products as they serve as central precursors of pigments and compounds that impact on microbial consortia by modulating bacterial biofilms and motility. This study addressed the phylogenetic origin of the quinone synthetases that assemble the key terphenylquinones polyporic acid and atromentin. RESULTS The activity of the Hapalopilus rutilans synthetases HapA1, HapA2 and of Psilocybe cubensis PpaA1 were reconstituted in Aspergilli. Liquid chromatography and mass spectrometry of the culture extracts identified all three enzymes as polyporic acid synthetases. PpaA1 is unique in that it features a C-terminal, yet catalytically inactive dioxygenase domain. Combined with bioinformatics to reconstruct the phylogeny, our results demonstrate that basidiomycete polyporic acid and atromentin synthetases evolved independently, although they share an identical catalytic mechanism and release structurally very closely related products. A targeted amino acid replacement in the substrate binding pocket of the adenylation domains resulted in bifunctional synthetases producing both polyporic acid and atromentin. CONCLUSIONS Our results imply that quinone synthetases evolved twice independently in basidiomycetes, depending on the aromatic α-keto acid substrate. Furthermore, key amino acid residues for substrate specificity were identified and changed which led to a relaxed substrate profile. Therefore, our work lays the foundation for future targeted enzyme engineering.
Collapse
Affiliation(s)
- Paula Sophie Seibold
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Stefanie Lawrinowitz
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Ihar Raztsou
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Hans-Dieter Arndt
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Pierre Stallforth
- Department Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
6
|
Zhang SH, Wang J, Dong XY, Wang GQ, Feng T, Li XJ, Liu JK. Lanostane triterpenoids from the fungus Physisporinus vitreus and their inhibitory activity against nitric oxide production. PHYTOCHEMISTRY 2023; 206:113556. [PMID: 36496004 DOI: 10.1016/j.phytochem.2022.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Eight undescribed lanostane triterpenoids, physivitrins A-H, along with four known analogues, were isolated from cultures of the fungus Physisporinus vitreus. Their structures were elucidated on the basis of extensive spectroscopic methods, in which the absolute configuration of physivitrin A was elucidated using electronic circular dichroism calculation and nuclear magnetic resonance (NMR) calculation with DP4+ analysis. Physivitrins B and C showed inhibitory activities against nitric oxide (NO) production in LPS-activated RAW264.7 macrophages with IC50 values of 7.5 and 23.5 μM, respectively. Meanwhile, proinflammatory cytokines (TNF-α, iNOS and IL-1β) mRNA expression was also inhibited by physivitrin B significantly.
Collapse
Affiliation(s)
- Shu-Han Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jun Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xin-Yue Dong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Gang-Qiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Xiao-Jun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
7
|
Chen S, Guo H, Wu Z, Wu Q, Jiang M, Li H, Liu L. Targeted Discovery of Sorbicillinoid Pigments with Anti-Inflammatory Activity from the Sponge-Derived Fungus Stagonospora sp. SYSU-MS7888 Using the PMG Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15116-15125. [PMID: 36410725 DOI: 10.1021/acs.jafc.2c05940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An effective identification and discovery of fungal pigments is very important to illustrate the role of fungal pigments in the life process and conduce to the discovery of new bioactive and edible pigments. The phenotype combined with metabolomic and genomic (PMG) strategy led to the discovery and characterization of three new sorbicillinoid pigments, stasorbicillinoids A-C (1-3), and five known analogues (4-8) from the sponge-derived fungus Stagonospora sp. SYSU-MS7888. Their structures were elucidated by the application of spectroscopic methods (NMR, MS, UV, IR, and ECD) and modified Mosher's method. Compounds 1 and 2 featured novel naphthone nuclei linked by two alkyl side chains possibly undergoing inter- and intramolecular Michael reactions. Compounds 1-8 exhibited potent anti-inflammatory activity with IC50 values in the range of 3.56-22.8 μM. Furthermore, compound 2 inhibited the production of IL-1β, IL-6, and TNF-α in a dose-dependent manner. This study provides an effective strategy to accelerate the discovery of new fungal pigments and further exploration of their potential applications in different fields such as medicine and food industries.
Collapse
Affiliation(s)
- Senhua Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Heng Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
| | - Zhenger Wu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
| | - Minghua Jiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Hanxiang Li
- Institutional Center for Shared Technologies and Facilities, South China Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou 510650, PR China
- South China National Botanical Garden, Guangzhou 510650, PR China
| | - Lan Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
8
|
Secondary Metabolites from Fungi-In Honor of Prof. Dr. Ji-Kai Liu's 60th Birthday. J Fungi (Basel) 2022; 8:jof8121271. [PMID: 36547604 PMCID: PMC9782213 DOI: 10.3390/jof8121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
It is our pleasure and privilege to serve as Guest Editors for this Special Issue of the Journal of Fungi in honor of Professor Ji-Kai Liu's 60th birthday [...].
Collapse
|
9
|
Cultivation of Inonotus hispidus in Stirred Tank and Wave Bag Bioreactors to Produce the Natural Colorant Hispidin. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hispidin (6-(3,4-dihydroxystyrl)-4-hydroxy-2-pyrone) production in submerged cultured mycelia of the basidiomycete Inonotus hispidus was doubled in shake flasks through irradiation with white light. The daily addition of 1 mM hydrogen peroxide as a chemical stressor and a repeated supplementation of the shake flask cultures with 2 mM caffeic acid, a biogenetic precursor, further increased the hispidin synthesis. These cultivation conditions were combined and applied to parallel fermentation trials on the 4 L scale using a classical stirred tank bioreactor and a wave bag bioreactor. No significant differences in biomass yield and colorant production were observed. The hispidin concentration in both bioreactors reached 5.5 g·L−1, the highest ever published. Textile dyeing with hispidin was successful, but impeded by its limited light stability in comparison to industrial dyes. However, following the idea of sustainability and the flawless toxicity profile, applications in natural cosmetics, other daily implements, or even therapeutics appear promising.
Collapse
|
10
|
Löhr NA, Eisen F, Thiele W, Platz L, Motter J, Hüttel W, Gressler M, Müller M, Hoffmeister D. Unprecedented Mushroom Polyketide Synthases Produce the Universal Anthraquinone Precursor. Angew Chem Int Ed Engl 2022; 61:e202116142. [PMID: 35218274 PMCID: PMC9325552 DOI: 10.1002/anie.202116142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/11/2022]
Abstract
(Pre-)anthraquinones are widely distributed natural compounds and occur in plants, fungi, microorganisms, and animals, with atrochrysone (1) as the key biosynthetic precursor. Chemical analyses established mushrooms of the genus Cortinarius-the webcaps-as producers of atrochrysone-derived octaketide pigments. However, more recent genomic data did not provide any evidence for known atrochrysone carboxylic acid (4) synthases nor any other polyketide synthase (PKS) producing oligocyclic metabolites. Here, we describe an unprecedented class of non-reducing (NR-)PKS. In vitro assays with recombinant enzyme in combination with in vivo product formation in the heterologous host Aspergillus niger established CoPKS1 and CoPKS4 of C. odorifer as members of a new class of atrochrysone carboxylic acid synthases. CoPKS4 catalyzed both hepta- and octaketide synthesis and yielded 6-hydroxymusizin (6), along with 4. These first mushroom PKSs for oligocyclic products illustrate how the biosynthesis of bioactive natural metabolites evolved independently in various groups of life.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Frederic Eisen
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Wiebke Thiele
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lukas Platz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Jonas Motter
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| |
Collapse
|
11
|
Lee S, Yu JS, Lee SR, Kim KH. Non-peptide secondary metabolites from poisonous mushrooms: overview of chemistry, bioactivity, and biosynthesis. Nat Prod Rep 2022; 39:512-559. [PMID: 34608478 DOI: 10.1039/d1np00049g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to June 2021A wide variety of mushrooms have traditionally been recognized as edible fungi with high nutritional value and low calories, and abundantly produce structurally diverse and bioactive secondary metabolites. However, accidental ingestion of poisonous mushrooms can result in serious illnesses and even death. Chemically, mushroom poisoning is associated with secondary metabolites produced in poisonous mushrooms, causing specific toxicity. However, many poisonous mushrooms have not been fully investigated for their secondary metabolites, and the secondary metabolites of poisonous mushrooms have not been systematically summarized for details such as chemical composition and biosynthetic mechanisms. The isolation and identification of secondary metabolites from poisonous mushrooms have great research value since these compounds could be lethal toxins that contribute to the toxicity of mushrooms or could provide lead compounds with remarkable biological activities that can promote advances in other related disciplines, such as biochemistry and pharmacology. In this review, we summarize the structures and biological activities of secondary metabolites identified from poisonous mushrooms and provide an overview of the current information on these metabolites, focusing on their chemistry, bioactivity, and biosynthesis.
Collapse
Affiliation(s)
- Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. .,Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. .,Department of Chemistry, Princeton University, New Jersey, 08544, USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
12
|
Liu SL, Zhou L, Chen HP, Liu JK. Sesquiterpenes with diverse skeletons from histone deacetylase inhibitor modified cultures of the basidiomycete Cyathus stercoreus (Schwein.) De Toni HFG134. PHYTOCHEMISTRY 2022; 195:113048. [PMID: 34890889 DOI: 10.1016/j.phytochem.2021.113048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Epigenetic modifiers are proved to be effective specialized products-mining tools by rationally regulating the gene expression of fungal biosynthetic pathways. Chemical investigation on the histone deacetylase inhibitor (HDI) vorinostat (also known as SAHA)-modified cultures of the basidiomycete Cyathus stercoreus (Schwein.) De Toni (Nidulariaceae) led to the isolation of nine previously undescribed sesquiterpenes, and four previously described ones. The structures of the nine undescribed compounds were determined by extensive NMR spectroscopic analysis, HRESIMS analysis, as well as ECD and NMR calculations. Notably, the isolated sesquiterpenes are exclusive or overproduced from the epigenetic modified cultures compared to the negative control cultures. Additionally, the skeleton types of the isolated sesquiterpenes include protoilludalane, illudalane, 1,11-seco-protoilludalane, 10,11-seco-illudalane, and 14(11→10)abeo-illudalane. It is noteworthy that the 14(11→10)abeo-illudalane skeleton is reported for the first time. Cystercorodiol A, 4-O-acetylcybrodol, cystercorotone, and cybrodol showed weak inhibitory activity against the bacterium Escherichia coli ATCC25922 with the inhibitory rates 34.7%, 33.0%, 32.3%, and 29.6% at the concentration 200 μM, respectively. This study suggested that epigenetic modifiers are also an effective tool for specialized metabolite-mining in basidiomycetes.
Collapse
Affiliation(s)
- Shui-Lin Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Lin Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
13
|
Cao R, Wu X, Wang Q, Qi P, Zhang Y, Wang L, Sun C. Characterization of γ-Cadinene Enzymes in Ganoderma lucidum and Ganoderma sinensis from Basidiomycetes Provides Insight into the Identification of Terpenoid Synthases. ACS OMEGA 2022; 7:7229-7239. [PMID: 35252713 PMCID: PMC8892675 DOI: 10.1021/acsomega.1c06792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Enzymes boost protein engineering, directed evolution, and the biochemical industry and are also the cornerstone of metabolic engineering. Basidiomycetes are known to produce a large variety of terpenoids with unique structures. However, basidiomycetous terpene synthases remain largely untapped. Therefore, we provide a modeling method to obtain specific terpene synthases. Aided by bioinformatics analysis, three γ-cadinene enzymes from Ganoderma lucidum and Ganoderma sinensis were accurately predicted and identified experimentally. Based on the highly conserved amino motifs of the characterized γ-cadinene enzymes, the enzyme was reassembled as model 1. Using this model as a template, 67 homologous sequences of the γ-cadinene enzyme were screened from the National Center for Biotechnology Information (NCBI). According to the 67 sequences, the same gene structure, and similar conserved motifs to model 1, the γ-cadinene enzyme model was further improved by the same construction method and renamed as model 2. The results of bioinformatics analysis show that the conservative regions of models 1 and 2 are highly similar. In addition, five of these sequences were verified, 100% of which were γ-cadinene enzymes. The accuracy of the prediction ability of the γ-cadinene enzyme model was proven. In the same way, we also reanalyzed the identified Δ6-protoilludene enzymes in fungi and (-)-α-bisabolol enzymes in plants, all of which have their own unique conserved motifs. Our research method is expected to be used to study other terpenoid synthases with a similar or the same function in basidiomycetes, ascomycetes, bacteria, and plants and to provide rich enzyme resources.
Collapse
Affiliation(s)
- Rui Cao
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xinlong Wu
- College
of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Qi Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Pengyan Qi
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuna Zhang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Lizhi Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chao Sun
- Institute
of Medicinal Plant Development, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P. R. China
| |
Collapse
|
14
|
Löhr NA, Eisen F, Thiele W, Platz L, Motter J, Hüttel W, Gressler M, Müller M, Hoffmeister D. Unprecedented Mushroom Polyketide Synthases Produce the Universal Anthraquinone Precursor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nikolai A Löhr
- Friedrich-Schiller-Universitat Jena Pharmaceutical Microbiology GERMANY
| | - Frederic Eisen
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Wiebke Thiele
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Lukas Platz
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Jonas Motter
- Friedrich-Schiller-Universitat Jena Pharmaceutical Microbiology GERMANY
| | - Wolfgang Hüttel
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Markus Gressler
- Friedrich-Schiller-Universitat Jena Pharmaceutical Microbiology GERMANY
| | - Michael Müller
- Albert-Ludwigs-Universitat Freiburg Pharmaceutical and Medicinal Chemistry GERMANY
| | - Dirk Hoffmeister
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Pharmaceutical Microbiology at the Hans-Kn�ll-Institute Beutenbergstrasse 11a 07745 Jena GERMANY
| |
Collapse
|
15
|
Dai Q, Zhang FL, Feng T. Sesquiterpenoids Specially Produced by Fungi: Structures, Biological Activities, Chemical and Biosynthesis (2015-2020). J Fungi (Basel) 2021; 7:1026. [PMID: 34947008 PMCID: PMC8705726 DOI: 10.3390/jof7121026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fungi are widely distributed in the terrestrial environment, freshwater, and marine habitat. Only approximately 100,000 of these have been classified although there are about 5.1 million characteristic fungi all over the world. These eukaryotic microbes produce specialized metabolites and participate in a variety of ecological functions, such as quorum detection, chemical defense, allelopathy, and maintenance of symbiosis. Fungi therefore remain an important resource for the screening and discovery of biologically active natural products. Sesquiterpenoids are arguably the richest natural products from plants and micro-organisms. The rearrangement of the 15 high-ductility carbons gave rise to a large number of different skeletons. At the same time, abundant structural variations lead to a diversification of biological activity. This review examines the isolation, structural determination, bioactivities, and synthesis of sesquiterpenoids that were specially produced by fungi over the past five years (2015-2020).
Collapse
Affiliation(s)
| | | | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.)
| |
Collapse
|
16
|
Jiang M, Xu X, Song J, Li D, Han L, Sun X, Guo L, Xiang W, Zhao J, Wang X. Streptomyces botrytidirepellens sp. nov., a novel actinomycete with antifungal activity against Botrytis cinerea. Int J Syst Evol Microbiol 2021; 71. [PMID: 34520340 DOI: 10.1099/ijsem.0.005004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fungal pathogen Botrytis cinerea is the causal agent of devastating gray mold diseases in many economically important fruits, vegetables, and flowers, leading to serious economic losses worldwide. In this study, a novel actinomycete NEAU-LD23T exhibiting antifungal activity against B. cinerea was isolated, and its taxonomic position was evaluated using a polyphasic approach. Based on the genotypic, phenotypic and chemotaxonomic data, it is concluded that the strain represents a novel species within the genus Streptomyces, for which the name Streptomyces botrytidirepellens sp. nov. is proposed. The type strain is NEAU-LD23T (=CCTCC AA 2019029T=DSM 109824T). In addition, strain NEAU-LD23T showed a strong antagonistic effect against B. cinerea (82.6±2.5%) and varying degrees of inhibition on nine other phytopathogenic fungi. Both cell-free filtrate and methanol extract of mycelia of strain NEAU-LD23T significantly inhibited mycelial growth of B. cinerea. To preliminarily explore the antifungal mechanisms, the genome of strain NEAU-LD23T was sequenced and analyzed. AntiSMASH analysis led to the identification of several gene clusters responsible for the biosynthesis of bioactive secondary metabolites with antifungal activity, including 9-methylstreptimidone, echosides, anisomycin, coelichelin and desferrioxamine B. Overall, this research provided us an excellent strain with considerable potential to use for biological control of tomato gray mold.
Collapse
Affiliation(s)
- Mengqi Jiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| | - Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| | - Dongmei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| | - Liyuan Han
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| | - Xiujun Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Xiangfang, Harbin 150030, PR China
| |
Collapse
|
17
|
Valenzuela-Gloria MS, Balagurusamy N, Chávez-González ML, Aguilar O, Hernández-Almanza A, Aguilar CN. Molecular Characterization of Fungal Pigments. J Fungi (Basel) 2021; 7:326. [PMID: 33922407 PMCID: PMC8146848 DOI: 10.3390/jof7050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022] Open
Abstract
The industrial application of pigments of biological origin has been gaining strength over time, which is mainly explained by the increased interest of the consumer for products with few synthetic additives. So, the search for biomolecules from natural origin has challenged food scientists and technologists to identify, develop efficient and less consuming strategies for extraction and characterization of biopigments. In this task, elucidation of molecular structure has become a fundamental requirement, since it is necessary to comply with compound regulatory submissions of industrial sectors such as food, pharmaceutical agrichemicals, and other new chemical entity registrations. Molecular elucidation consists of establishing the chemical structure of a molecule, which allows us to understand the interaction between the natural additive (colorant, flavor, antioxidant, etc) and its use (interaction with the rest of the mixture of compounds). Elucidation of molecular characteristics can be achieved through several techniques, the most common being infrared spectroscopy (IR), spectroscopy or ultraviolet-visible spectrophotometry (UV-VIS), nuclear-resonance spectroscopy (MAGNETIC MRI), and mass spectrometry. This review provides the details that aid for the molecular elucidation of pigments of fungal origin, for a viable and innocuous application of these biopigments by various industries.
Collapse
Affiliation(s)
- Miriam S. Valenzuela-Gloria
- School of Biological Sciences, Universidad Autónoma de Coahuila, Torreón 27000, Coahuila, Mexico; (M.S.V.-G.); (N.B.)
| | - Nagamani Balagurusamy
- School of Biological Sciences, Universidad Autónoma de Coahuila, Torreón 27000, Coahuila, Mexico; (M.S.V.-G.); (N.B.)
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, BBG-DIA, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| | - Oscar Aguilar
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico;
| | - Ayerim Hernández-Almanza
- School of Biological Sciences, Universidad Autónoma de Coahuila, Torreón 27000, Coahuila, Mexico; (M.S.V.-G.); (N.B.)
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, BBG-DIA, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| |
Collapse
|
18
|
He P, Zhang Y, Li N. The phytochemistry and pharmacology of medicinal fungi of the genus Phellinus: a review. Food Funct 2021; 12:1856-1881. [PMID: 33576366 DOI: 10.1039/d0fo02342f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phellinus Quél is one of the largest genera of Hymenochaetaceae, which is comprised of about 220 species. Most Phellinus macro-fungi are perennial lignicolous mushrooms, which are widely distributed on Earth. Some Phellinus fungi are historically recorded as traditional medicines used to treat various diseases in eastern Asian countries, especially China, Japan and Korean. Previous phytochemical studies have revealed that Phellinus fungi produce diverse secondary metabolites, which mainly contain polysaccharides, flavones, coumarins, terpenes, steroids, and styrylpyranones. Pharmacological documents have demonstrated that Phellinus mushrooms and their compounds have a variety of bioactivities, such as anti-tumor, immunomodulation, anti-oxidative and anti-inflammation, anti-diabetes, neuro-protection, and anti-viral effects. This review surveys the literature reporting the isolation, characterization, and bioactivities of secondary metabolites from the fungi of the genus Phellinus, focusing on studies published in the literature up to April 2020. Herein, a total of more than 300 compounds from 13 Phellinus species and their isolation, characterization, chemistry, pharmacological activities, and relevant molecular mechanisms are comprehensively summarized.
Collapse
Affiliation(s)
- Pingya He
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | | | | |
Collapse
|
19
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
20
|
Das T. Desymmetrization of Cyclopentene‐1,3‐Diones via Alkylation, Arylation, Amidation and Cycloaddition Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202003341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tapas Das
- Department of Chemistry NIT Jamshedpur Jamshedpur 831014 India
| |
Collapse
|
21
|
Anke T. Secondary metabolites from mushrooms. J Antibiot (Tokyo) 2020; 73:655-656. [PMID: 32981930 DOI: 10.1038/s41429-020-0358-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Timm Anke
- Institute of Biotechnology and Drug Research, IBWF, Kaiserslautern, Germany.
| |
Collapse
|
22
|
Sugawara S, Meguro Y, Sato S, Enomoto M, Ogura Y, Kuwahara S. Total synthesis of terfestatins a and B. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Zhao DL, Cao F, Wang CY, Yang LJ, Shi T, Wang KL, Shao CL, Wang CY. Alternatone A, an Unusual Perylenequinone-Related Compound from a Soft-Coral-Derived Strain of the Fungus Alternaria alternata. JOURNAL OF NATURAL PRODUCTS 2019; 82:3201-3204. [PMID: 31659905 DOI: 10.1021/acs.jnatprod.9b00905] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel perylenequinone-related compound, alternatone A (1), with an unprecedented tricyclo[6.3.1.02,7] dodecane skeleton, together with three known perylenequinones, altertoxin I (2), stemphyperylenol (3), and alterperylenol (4), was isolated from the soft-coral-derived fungus Alternaria alternata L3111'. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic analysis, electronic circular dichroism calculations, and X-ray diffraction data. Compound 4 showed cytotoxicity against A-549, HCT-116, and HeLa cell lines with IC50 values of 2.6, 2.4, and 3.1 μM, respectively. A possible biosynthetic pathway of 1 was proposed.
Collapse
Affiliation(s)
- Dong-Lin Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Marine Agricultural Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences , Hebei University , Baoding 071002 , People's Republic of China
| | - Chao-Yi Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Lu-Jia Yang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Ting Shi
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Kai-Ling Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , People's Republic of China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , People's Republic of China
- Institute of Evolution & Marine Biodiversity , Ocean University of China , Qingdao 266003 , People's Republic of China
| |
Collapse
|
24
|
Wang P, Yao FJ, Lu LX, Fang M, Zhang YM, Khan AA, Kong XH, Yu J, Jiang WZ, Kitamoto Y, Honda Y. Map-based cloning of genes encoding key enzymes for pigment synthesis in Auricularia cornea. Fungal Biol 2019; 123:843-853. [PMID: 31627860 DOI: 10.1016/j.funbio.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/10/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Color is an important quality attribute of fungi, and a useful marker for classification, genetic, and molecular research. However, there is much debate over which enzymes play key regulatory roles in pigment synthesis pathways among different fungi and even within the same species. Auricularia cornea is the most widely cultivated mushroom in the genus Auricularia; 1.834 million tons of this mushroom were produced in 2016 in China. Thus, systematic studies on its color inheritance and the genes encoding key enzymes for pigment synthesis have high scientific and economic value. In this study, the white strain ACW001 and the purple strain ACP004 of A. cornea were used as dikaryotic parents. Selfing populations of ACW001 and ACP004 were constructed with their monokaryotic strains. The fruiting body color of the two populations was consistent with that of their parents, confirming that the two parents were color homozygotes. All strains in the hybrid population of the two parents produced purple fruiting bodies. A robust hybrid strain (ACW001-33×ACP004-33) was selected from the hybrid population, and 87 monokaryotic strains of ACW001-33×ACP004-33 were obtained as a mapping population. Finally, a testcross population was constructed by crossing the mapping population with the test strain ACW001-9. The color genotype of each monokaryotic strain in the mapping population was identified by a fruiting test. The genomes of the two monokaryotic strains ACW001-33 and ACP004-33 were sequenced, and then simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular marker primers were developed. Then, 88 pairs of primers that could distinguish the genotypes of the mapping population were used to construct a genetic linkage map. The genetic linkage map consisted of 12 linkage groups (LGs) spanning 1315.2 cM. The color control locus was preliminarily located at 24.5 cM of the 11th LG. Fine-mapping primers were designed based on sequence differences between ACW001-33 and ACP004-33 in the primary location region. Four color control candidate genes were located in an 8.2-kb region of ACW001-33_contig733 and a 9.2-kb region of ACP004-33_contig802. Homologous alignment and prediction of conserved domain analyses indicated that two of the color control candidate genes encoded proteins with unknown function, and the other two, ACP004_g11815 and ACP004_g11816, encoded glutamyl aminotransferases. These two genes were consecutively arranged on ACP004-33_contig802, and were likely to encode key enzymes in the γ-glutamine-4-hydroxy-benzoate (GHB) pigment synthesis pathway. Primers were designed from the flanking sequences of the two genes and used to analyze the testcross population. Products were amplified only from the 30 testcross strains with purple fruiting bodies, confirming the accuracy of the localization results. We discuss the deficiencies and advantages of map-based cloning in fungi vs. plants, and summarize the steps and requirements of the map-based cloning method for fungi. This study has provided novel ideas and methods for locating functional genes in fungi.
Collapse
Affiliation(s)
- Peng Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Fang-Jie Yao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China; College of Horticulture, Jilin Agricultural University, Changchun, 130118, China.
| | - Li-Xin Lu
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Ming Fang
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - You-Min Zhang
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China.
| | - Asif Ali Khan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Xiang-Hui Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Wan-Zhu Jiang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Yutaka Kitamoto
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| |
Collapse
|
25
|
Torres S, González-Ramírez M, Gavilán J, Paz C, Palfner G, Arnold N, Fuentealba J, Becerra J, Pérez C, Cabrera-Pardo JR. Exposure to UV-B Radiation Leads to Increased Deposition of Cell Wall-Associated Xerocomic Acid in Cultures of Serpula himantioides. Appl Environ Microbiol 2019; 85:e00870-19. [PMID: 31285193 PMCID: PMC6715839 DOI: 10.1128/aem.00870-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022] Open
Abstract
Many fungi are thought to have developed morphological and physiological adaptations to cope with exposure to UV-B radiation, but in most species, such responses and their protective effects have not been explored. Here, we study the adaptive response to UV-B radiation in the widespread, saprotrophic fungus Serpula himantioides, frequently found colonizing coniferous wood in nature. We report the morphological and chemical responses of S. himantioides to controlled intensities of UV-B radiation, under in vitro culture conditions. Ultraviolet radiation induced a decrease in the growth rate of S. himantioides but did not cause gross morphological changes. Instead, we observed accumulation of pigments near the cell wall with increasing intensities of UV-B radiation. Nuclear magnetic resonance (NMR) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses revealed that xerocomic acid was the main pigment present, both before and after UV-B exposure, increasing from 7 mg/liter to 15 mg/liter after exposure. We show that xerocomic acid is a photoprotective metabolite with strong antioxidant abilities, as evidenced by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt], and oxygen radical absorbance capacity (ORAC) assays. Finally, we assessed the capacity of xerocomic acid as a photoprotective agent on HEK293 cells and observed better photoprotective properties than those of β-carotene. Xerocomic acid is therefore a promising natural product for development as a UV-protective ingredient in cosmetic and pharmaceutical products.IMPORTANCE Our study shows the morphological and chemical responses of S. himantioides to controlled doses of UV-B radiation under in vitro culture conditions. We found that increased biosynthesis of xerocomic acid was the main strategy adopted by S. himantioides against UV-B radiation. Xerocomic acid showed strong antioxidant and photoprotective abilities, which has not previously been reported. Our results indicate that upon UV-B exposure, S. himantioides decreases its hyphal growth rate and uses this energy instead to increase the biosynthesis of xerocomic acid, which is allocated near the cell wall. This metabolic switch likely allows xerocomic acid to efficiently defend S. himantioides from UV radiation through its antioxidant and photoprotective properties. The findings further suggest that xerocomic acid is a promising candidate for development as a cosmetic ingredient to protect against UV radiation and should therefore be investigated in depth in the near future both in vitro and in vivo.
Collapse
Affiliation(s)
- Solange Torres
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mariela González-Ramírez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian Paz
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Goetz Palfner
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - José Becerra
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Claudia Pérez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jaime R Cabrera-Pardo
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Departamento de Química, Facultad de Ciencias, Universidad del Bio-Bio, Concepción, Chile
| |
Collapse
|
26
|
|
27
|
Lam YTH, Palfner G, Lima C, Porzel A, Brandt W, Frolov A, Sultani H, Franke K, Wagner C, Merzweiler K, Wessjohann LA, Arnold N. Nor-guanacastepene pigments from the Chilean mushroom Cortinarius pyromyxa. PHYTOCHEMISTRY 2019; 165:112048. [PMID: 31229789 DOI: 10.1016/j.phytochem.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
For the first time, the pigment composition of basidiocarps from the Chilean mushroom Cortinarius pyromyxa was studied under various aspects like phylogeny, chemistry and antibiotic activity. A molecular biological study supports the monotypic position of C. pyromyxa in subgenus Myxacium, genus Cortinarius. Four undescribed diterpenoids, named pyromyxones A-D, were isolated from fruiting bodies of C. pyromyxa. Their chemical structures were elucidated based on comprehensive one- and two-dimensional NMR spectroscopic analysis, ESI-HRMS measurements, as well as X-ray crystallography. In addition, the absolute configurations of pyromyxones A-D were established with the aid of JH,H, NOESY spectra and quantum chemical CD calculation. The pyromyxones A-D possess the undescribed nor-guanacastane skeleton. Tested pyromyxones A, B, and D exhibit only weak activity against gram-positive Bacillus subtilis and gram-negative Aliivibrio fischeri as well as the phytopathogenic fungi Botrytis cinerea, Septoria tritici and Phytophthora infestans.
Collapse
Affiliation(s)
- Yen T H Lam
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Götz Palfner
- Departamento de Botanica, Facultad de CienciasNaturales y Oceanograficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Celia Lima
- Departamento de Microbiología, Facultad de CienciasBiológicas, Universidad de Concepción, Concepción, Casilla 160-C, Concepción, Chile
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany; St. Petersburg State University, Faculty of Biology, Department of Biochemistry, Sredny Prospekt V.O. 41, 199004, St. Petersburg, Russian Federation
| | - Haider Sultani
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Christoph Wagner
- Institute of Chemistry, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str.2, D-06120, Halle (Saale), Germany
| | - Kurt Merzweiler
- Institute of Chemistry, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str.2, D-06120, Halle (Saale), Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany.
| |
Collapse
|
28
|
Kaczmarczyk-Ziemba A, Wagner GK, Grzywnowicz K, Kucharczyk M, Zielińska S. The microbiome profiling of fungivorous black tinder fungus beetle Bolitophagus reticulatus reveals the insight into bacterial communities associated with larvae and adults. PeerJ 2019; 7:e6852. [PMID: 31119076 PMCID: PMC6510215 DOI: 10.7717/peerj.6852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/23/2019] [Indexed: 01/01/2023] Open
Abstract
Saproxylic beetles play a crucial role in key processes occurring in forest ecosystems, and together with fungi contribute to the decomposition and mineralization of wood. Among this group are mycetophilic beetles which associate with wood-decaying fungi and use the fruiting body for nourishment and development. Therefore, their feeding strategy (especially in the case of fungivorous species) requires special digestive capabilities to take advantage of the nutritional value of fungal tissue. Although polypore-beetle associations have been investigated in numerous studies, detailed studies focusing on the microbiome associated with species feeding on fruiting bodies of polypores remain limited. Here we investigated the bacterial communities associated with larvae and adults of Bolitophagus reticulatus collected from Fomes fomentarius growing on two different host tree: beech (Fagus sp.) and birch (Betula sp.), respectively. Among 24 identified bacterial phyla, three were the most relatively abundant (Proteobacteria, Actinobacteria and Bacteroidetes). Moreover, we tried to find unique patterns of bacteria abundances which could be correlated with the long-term field observation showing that the fruiting bodies of F. fomentarius, growing on birch are more inhabited by beetles than fruiting bodies of the same fungus species growing on beech. Biochemical analyses showed that the level of protease inhibitors and secondary metabolites in F. fomentarius is higher in healthy fruiting bodies than in the inhabited ones. However, tested microbiome samples primarily clustered by developmental stage of B. reticulatus and host tree did not appear to impact the taxonomic distribution of the communities. This observation was supported by statistical analyses.
Collapse
Affiliation(s)
| | - Grzegorz K. Wagner
- Department of Zoology, Maria Curie-Sklodowska University, Lublin, Poland
| | | | - Marek Kucharczyk
- Department of Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - Sylwia Zielińska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Phage Consultants, Gdansk, Poland
| |
Collapse
|
29
|
Ren F, Chen S, Zhang Y, Zhu S, Xiao J, Liu X, Su R, Che Y. Hawaiienols A-D, Highly Oxygenated p-Terphenyls from an Insect-Associated Fungus, Paraconiothyrium hawaiiense. JOURNAL OF NATURAL PRODUCTS 2018; 81:1752-1759. [PMID: 30024750 DOI: 10.1021/acs.jnatprod.8b00106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Four new highly oxygenated p-terphenyls, hawaiienols A-D (1-4), have been isolated from cultures of Paraconiothyrium hawaiiense, a fungus associated with the Septobasidium-infected insect Diaspidiotus sp.; their structures were elucidated primarily by NMR experiments. The absolute configurations of 1 and 2-4 were assigned by single-crystal X-ray diffraction analysis using Cu Kα radiation and via electronic circular dichroism calculations, respectively. Compound 1 incorporated the first naturally occurring 4,7-dioxatricyclo[3.2.1.03,6]octane unit in its p-terphenyl skeleton and showed cytotoxicity toward six human tumor cell lines.
Collapse
Affiliation(s)
- Fengxia Ren
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Shenxi Chen
- State Key Laboratory of Mycology, Institute of Microbiology , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Shuaiming Zhu
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Junhai Xiao
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Ruibin Su
- State Key Laboratory of Toxicology & Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , Beijing 100850 , People's Republic of China
| | - Yongsheng Che
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
30
|
Tauber JP, Matthäus C, Lenz C, Hoffmeister D, Popp J. Analysis of basidiomycete pigments in situ by Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700369. [PMID: 29411940 DOI: 10.1002/jbio.201700369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Basidiomycetes, that is, mushroom-type fungi, are known to produce pigments in response to environmental impacts. As antioxidants with a high level of unsaturation, these compounds can neutralize highly oxidative species. In the event of close contact with other microbes, the enzymatically controlled pigment production is triggered and pigment secretion is generated at the interaction zone. The identification and analysis of these pigments is important to understand the defense mechanism of fungi, which is essential to counteract an uncontrolled spread of harmful species. Usually, a detailed analysis of the pigments is time consuming as it depends on laborious sample preparation and isolation procedures. Furthermore, the applied protocols often influence the chemical integrity of the compound of interest. A possibility to noninvasively investigate the pigmentation is Raman microspectroscopy. The methodology has the potential to analyze the chemical composition of the sample spatially resolved at the interaction zone. After the acquisition of a representative spectroscopic library, the pigment production by basidiomycetes was monitored for during response to different fungi and bacteria. The presented results describe a very efficient noninvasive way of pigment analysis which can be applied with minimal sample preparation.
Collapse
Affiliation(s)
- James P Tauber
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich Schiller University, Jena, Germany
| | - Christian Matthäus
- Spectroscopy/Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena, Germany
| | - Claudius Lenz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich Schiller University, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich Schiller University, Jena, Germany
| | - Jürgen Popp
- Spectroscopy/Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
31
|
Water-Soluble Red Pigment Production by Paecilomyces sinclairii and Biological Characterization. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0103-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
32
|
Taheri Kal Koshvandi A, Heravi MM, Momeni T. Current Applications of Suzuki–Miyaura Coupling Reaction in The Total Synthesis of Natural Products: An update. Appl Organomet Chem 2018. [DOI: 10.10.1002/aoc.4210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Tayebeh Momeni
- Department of ChemistryAlzahra University Vanak Tehran Iran
| |
Collapse
|
33
|
Taheri Kal Koshvandi A, Heravi MM, Momeni T. Current Applications of Suzuki–Miyaura Coupling Reaction in The Total Synthesis of Natural Products: An update. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4210] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Tayebeh Momeni
- Department of ChemistryAlzahra University Vanak Tehran Iran
| |
Collapse
|
34
|
Lamb CJC, Nderitu BG, McMurdo G, Tobin JM, Vilela F, Lee AL. Auto-Tandem Catalysis: Pd II -Catalysed Dehydrogenation/Oxidative Heck Reaction of Cyclopentane-1,3-diones. Chemistry 2017; 23:18282-18288. [PMID: 29105890 PMCID: PMC5767738 DOI: 10.1002/chem.201704442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/29/2022]
Abstract
A PdII catalyst system has been used to successfully catalyse two mechanistically distinct reactions in a one-pot procedure: dehydrogenation of 2,2-disubstituted cyclopentane-1,3-diones and the subsequent oxidative Heck coupling. This auto-tandem catalytic reaction is applicable to both batch and continuous flow processes, with the latter being the first example of a tandem aerobic dehydrogenation/oxidative Heck in flow. In addition, a telescoped reaction involving enantioselective desymmetrisation of the all-C quaternary centre was successfully achieved.
Collapse
Affiliation(s)
- Claire J C Lamb
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Bryan G Nderitu
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Gemma McMurdo
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - John M Tobin
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Filipe Vilela
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Ai-Lan Lee
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
35
|
Abstract
Mushrooms are known to produce over 140 natural products bearing an indole heterocycle. In this review, the isolation of these mushroom-derived indole alkaloids is discussed, along with their associated biological activities.
Collapse
Affiliation(s)
- Joshua A Homer
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
36
|
Zhao ZZ, Chen HP, Wu B, Zhang L, Li ZH, Feng T, Liu JK. Matsutakone and Matsutoic Acid, Two (Nor)steroids with Unusual Skeletons from the Edible Mushroom Tricholoma matsutake. J Org Chem 2017; 82:7974-7979. [PMID: 28691489 DOI: 10.1021/acs.joc.7b01230] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen-Zhu Zhao
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - He-Ping Chen
- School
of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Bin Wu
- School
of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Ling Zhang
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Zheng-Hui Li
- School
of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Tao Feng
- School
of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Ji-Kai Liu
- School
of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| |
Collapse
|
37
|
Huang Y, Zhang SB, Chen HP, Zhao ZZ, Zhou ZY, Li ZH, Feng T, Liu JK. New Acetylenic Acids and Derivatives from the Edible Mushroom Craterellus lutescens (Cantharellaceae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3835-3841. [PMID: 28468498 DOI: 10.1021/acs.jafc.7b00899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thirteen new acetylenic acids and their derivatives, craterellynes G-Q (1, 2, 4-10, 12, 13), 9-epi-craterellyne H (3), and 14-O-ethyl-craterellyne O (11), were isolated from the fruiting bodies of edible mushrooms Craterellus lutescens. The structures of these compounds were identified by various spectroscopic and chemical means. The stereoconfigurations of 1-13 were elucidated by the combination of acetonide formation, J-based configuration analysis, and modified Mosher's method. Craterellyne I exhibited cytotoxicities against human cancer strains and inhibition of nitric oxide (NO) production, as well as weak antimicrobial activity against Candida albicans.
Collapse
Affiliation(s)
- Ying Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan 430074, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Shuai-Bing Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - He-Ping Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhen-Zhu Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhong-Yu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan 430074, China
| |
Collapse
|
38
|
Takahashi S, Suda Y, Nakamura T, Matsuoka K, Koshino H. Total Synthesis of Kehokorins A-E, Cytotoxic p-Terphenyls. J Org Chem 2017; 82:3159-3166. [PMID: 28267327 DOI: 10.1021/acs.joc.7b00147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper describes a general method for the synthesis of kehokorins A-E, novel cytotoxic p-terphenyls. 2,4,6-Trihydroxybenzaldehyde served as a common building block for preparation of the central aromatic ring. Construction of their p-terphenyl skeletons was achieved by a stepwise Suzuki-Miyaura coupling, whereas the phenyldibenzofuran moiety was built up by an intramolecular Ullmann reaction. Introduction of an l-rhamnose residue into partly protected kehokorin B was performed by the trichloroacetimidate method.
Collapse
Affiliation(s)
- Shunya Takahashi
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| | - Yasuaki Suda
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan.,Division of Material Science, Graduate School of Science and Engineering, Saitama University , Saitama 338-8570, Japan
| | - Takemichi Nakamura
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University , Saitama 338-8570, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Use of Fibonacci numbers in lipidomics - Enumerating various classes of fatty acids. Sci Rep 2017; 7:39821. [PMID: 28071669 PMCID: PMC5223158 DOI: 10.1038/srep39821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
In lipid biochemistry, a fundamental question is how the potential number of fatty acids increases with their chain length. Here, we show that it grows according to the famous Fibonacci numbers when cis/trans isomerism is neglected. Since the ratio of two consecutive Fibonacci numbers tends to the Golden section, 1.618, organisms can increase fatty acid variability approximately by that factor per carbon atom invested. Moreover, we show that, under consideration of cis/trans isomerism and/or of modification by hydroxy and/or oxo groups, diversity can be described by generalized Fibonacci numbers (e.g. Pell numbers). For the sake of easy comprehension, we deliberately build the proof on the recursive definitions of these number series. Our results should be of interest for mass spectrometry, combinatorial chemistry, synthetic biology, patent applications, use of fatty acids as biomarkers and the theory of evolution. The recursive definition of Fibonacci numbers paves the way to construct all structural formulas of fatty acids in an automated way.
Collapse
|
40
|
Biochemical and genetic basis of orsellinic acid biosynthesis and prenylation in a stereaceous basidiomycete. Fungal Genet Biol 2017; 98:12-19. [DOI: 10.1016/j.fgb.2016.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/25/2022]
|
41
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase. Sci Rep 2016; 6:37601. [PMID: 27869186 PMCID: PMC5116637 DOI: 10.1038/srep37601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/01/2016] [Indexed: 01/15/2023] Open
Abstract
The medicinal macrofungus Inonotus obliquus widely utilized as folk medicine in Russia and Baltic countries is a source of phenylpropanoid-derived styrylpyrone polyphenols that can inhibit tumor proliferation. Insights into the regulatory machinery that controls I. obliquus styrylpyrone polyphenol biosynthesis will enable strategies to increase the production of these molecules. Here we show that Thioredoxin (Trx) mediated transnitrosylation of S-nitrosoglutathione reductase (GSNOR) underpins the regulation of styrylpyrone production, driven by nitric oxide (NO) synthesis triggered by P. morii coculture. NO accumulation results in the S-nitrosylation of PAL and 4CL required for the synthesis of precursor phenylpropanoids and styrylpyrone synthase (SPS), integral to the production of styrylpyrone, inhibiting their activities. These enzymes are targeted for denitrosylation by Trx proteins, which restore their activity. Further, this Trx S-nitrosothiol (SNO) reductase activity was potentiated following S-nitrosylation of Trx proteins at a non-catalytic cysteine (Cys) residue. Intriguingly, this process was counterbalanced by Trx denitrosylation, mediated by Trx-dependent transnitrosylation of GSNOR. Thus, unprecedented interplay between Trx and GSNOR oxidoreductases regulates the biosynthesis of styrylpyrone polyphenols in I. obliquus.
Collapse
|
43
|
Feng T, Cai JL, Li XM, Zhou ZY, Huang R, Zheng YS, Li ZH, Liu JK. Phellibarin D with an unprecedented triterpenoid skeleton isolated from the mushroom Phellinus rhabarbarinus. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Reversible S-nitrosylation limits over synthesis of fungal styrylpyrone upon nitric oxide burst. Appl Microbiol Biotechnol 2016; 100:4123-34. [DOI: 10.1007/s00253-016-7442-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/27/2016] [Accepted: 03/05/2016] [Indexed: 11/26/2022]
|
45
|
Feng T, Cai JL, Li XM, Zhou ZY, Li ZH, Liu JK. Chemical Constituents and Their Bioactivities of Mushroom Phellinus rhabarbarinus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1945-1949. [PMID: 26905803 DOI: 10.1021/acs.jafc.6b00176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phellinus rhabarbarinus soaked in wine has folk usages by local residents of Ailao mountain of Yunnan province, China, which were to daub the wound to prevent infection and to drink to enhance immunity and treat other diseases such as cough, gastritis, and cancer. Systemic investigation on the chemical constituents of fruiting bodies of P. rhabarbarinus resulted in the isolation of 11 lanostane triterpenoids (1-10) including three new ones, namely, phellibarins A-C (1-3), together with five ergosterols (11-15). This is the first time reporting secondary metabolites of P. rhabarbarinus. Compounds 2, 3, 7, and 8 showed inhibitory activities against nitric oxide (NO) production in LPS-activated RAW264.7 macrophages, whereas compounds 2-4, 6, 7, and 10 exhibited cytotoxicities against human cancer cell lines. The results of this assessment suggested that the lanostane triterpenoids in fruiting bodies of P. rhabarbarinus played key roles in its folk usages.
Collapse
Affiliation(s)
- Tao Feng
- College of Pharmacy, South-Central University for Nationalities , Wuhan 430074, China
| | - Jin-Long Cai
- School of Agriculture and Biological Technic, Yunnan Agricultural University , Kunming 650201, China
| | - Xue-Mei Li
- College of Pharmacy, South-Central University for Nationalities , Wuhan 430074, China
| | - Zhong-Yu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650, China
| | - Zheng-Hui Li
- College of Pharmacy, South-Central University for Nationalities , Wuhan 430074, China
| | - Ji-Kai Liu
- College of Pharmacy, South-Central University for Nationalities , Wuhan 430074, China
| |
Collapse
|
46
|
Valerio F, Di Biase M, Lattanzio VMT, Lavermicocca P. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. Int J Food Microbiol 2016; 222:1-7. [PMID: 26827290 DOI: 10.1016/j.ijfoodmicro.2016.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 11/15/2022]
Abstract
The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB strains and resulted in the production of the polyporic acid, here ascertained in LAB strains.
Collapse
Affiliation(s)
- Francesca Valerio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Mariaelena Di Biase
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Veronica M T Lattanzio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Paola Lavermicocca
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy.
| |
Collapse
|
47
|
Involutin is an Fe3+ reductant secreted by the ectomycorrhizal fungus Paxillus involutus during Fenton-based decomposition of organic matter. Appl Environ Microbiol 2015; 81:8427-33. [PMID: 26431968 PMCID: PMC4644656 DOI: 10.1128/aem.02312-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/27/2015] [Indexed: 11/20/2022] Open
Abstract
Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby increasing nutrient accessibility to the host plant. Recent studies have shown that during the assimilation of nutrients, the ectomycorrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + ˙OH + H2O), similar to that of brown rot wood-decaying fungi. In such fungi, secreted metabolites are one of the components that drive one-electron reductions of Fe3+ and O2, generating Fenton chemistry reagents. Here we investigated whether such a mechanism is also implemented by P. involutus during organic matter decomposition. Activity-guided purification was performed to isolate the Fe3+-reducing principle secreted by P. involutus during growth on a maize compost extract. The Fe3+-reducing activity correlated with the presence of one compound. Mass spectrometry and nuclear magnetic resonance (NMR) identified this compound as the diarylcyclopentenone involutin. A major part of the involutin produced by P. involutus during organic matter decomposition was secreted into the medium, and the metabolite was not detected when the fungus was grown on a mineral nutrient medium. We also demonstrated that in the presence of H2O2, involutin has the capacity to drive an in vitro Fenton reaction via Fe3+ reduction. Our results show that the mechanism for the reduction of Fe3+ and the generation of hydroxyl radicals via Fenton chemistry by ectomycorrhizal fungi during organic matter decomposition is similar to that employed by the evolutionarily related brown rot saprotrophs during wood decay.
Collapse
|
48
|
Three Redundant Synthetases Secure Redox-Active Pigment Production in the Basidiomycete Paxillus involutus. ACTA ACUST UNITED AC 2015; 22:1325-34. [DOI: 10.1016/j.chembiol.2015.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/17/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022]
|
49
|
Stadler M, Hoffmeister D. Fungal natural products-the mushroom perspective. Front Microbiol 2015; 6:127. [PMID: 25741334 PMCID: PMC4332364 DOI: 10.3389/fmicb.2015.00127] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/03/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Hans Knöll Institute Friedrich Schiller Universität Jena, Germany
| |
Collapse
|
50
|
Walker SE, Lamb CJC, Beattie NA, Nikodemiak P, Lee AL. Oxidative Heck desymmetrisation of 2,2-disubstituted cyclopentene-1,3-diones. Chem Commun (Camb) 2015; 51:4089-92. [DOI: 10.1039/c5cc00407a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxidative Heck couplings have been successfully developed for 2,2-disubstituted cyclopentene-1,3-diones. The direct coupling onto the 2,2-disubstituted cyclopentene-1,3-dione core provides a novel, expedient and useful way of desymmetrising all-carbon quaternary centres.
Collapse
Affiliation(s)
- S. E. Walker
- Institute of Chemical Sciences
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - C. J. C. Lamb
- Institute of Chemical Sciences
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - N. A. Beattie
- Institute of Chemical Sciences
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - P. Nikodemiak
- Institute of Chemical Sciences
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - A.-L. Lee
- Institute of Chemical Sciences
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| |
Collapse
|