1
|
Buzitis NW, Clowers BH. Efficient Coupling of Structures for Lossless Ion Manipulations with Ion Trap Mass Analyzers Using Phase Modulation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 39754593 DOI: 10.1021/jasms.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet. By applying a discrete and repeating injection pulse and solving a series of algebraic equations, the system reconstructs an arrival time distribution with a minimal degree of error with enhanced ion throughput. To demonstrate the feasibility of this approach, the 3.4-m SLIM system resolves gas-phase conformers for various small peptides and proteins. This system and methodology also enable direct implementation between SLIM and ion trap mass analyzers traditionally interfaced with front separation systems such as liquid chromatography.
Collapse
Affiliation(s)
- Nathan W Buzitis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Lee JU, Kim S, Munshi MU, Hwangbo S, Lee SY, Moon B, Lee HS, Oh HB. Elucidating Tertiary Structures of Affibody in Vacuo Using Genetic Code Expansion and FRIPS Mass Spectrometry. Anal Chem 2024; 96:20296-20303. [PMID: 39663559 DOI: 10.1021/acs.analchem.4c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Radical-directed protein fragmentation techniques, particularly free radical-initiated peptide sequencing (FRIPS) mass spectrometry (MS), offer significant potential for elucidating protein structures in the gas phase. This study presents a novel approach to protein structural analysis in vacuo, combining FRIPS MS with genetic code expansion (GCE) technology. By incorporating unnatural amino acids (UAAs) at specific sites within an Affibody protein, we effectively introduced a radical precursor at six distinct positions. The study explores structural information derived from radical-directed fragmentations by analyzing the proximity and pathways of radical transfer within the protein's tertiary structure. Our findings reveal that in the lowest charge state (+5), the Affibody retains a folded conformation resembling its native structure, with significant radical-directed fragmentations occurring through both "through-sequence" and "through-space" mechanisms. These results demonstrate the potential of FRIPS MS to provide residue-specific insights into protein folding and structural information in the gas phase, paving the way for a more detailed protein structure analysis.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- Analytical Sciences Center, LG Chem, Seoul 07796, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 28160, Republic of Korea
| | | | - Song Hwangbo
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - So Yeon Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
3
|
Keng M, Merz KM. Eliminating the Deadwood: A Machine Learning Model for CCS Knowledge-Based Conformational Focusing for Lipids. J Chem Inf Model 2024; 64:7864-7872. [PMID: 39378407 PMCID: PMC11523073 DOI: 10.1021/acs.jcim.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Accurate elucidation of gas-phase chemical structures using collision cross section (CCS) values obtained from ion-mobility mass spectrometry benefits from a synergism between experimental and in silico results. We have shown in recent work that for a molecule of modest size with a proscribed conformational space we can successfully capture a conformation(s) that can match experimental CCS values. However, for flexible systems such as fatty acids that have many rotatable bonds and multiple intramolecular London dispersion interactions, it becomes necessary to sample a much greater conformational space. Sampling more conformers, however, accrues significant computational cost downstream in optimization steps involving quantum mechanics. To reduce this computational expense for lipids, we have developed a novel machine learning (ML) model to facilitate conformer filtering according to the estimated gas-phase CCS values. Herein we report that the implementation of our CCS knowledge-based approach for conformational sampling resulted in improved structure prediction agreement with experiment by achieving favorable average CCS prediction errors of ∼2% for lipid systems in both the validation set and the test set. Moreover, most of the gas-phase candidate conformations obtained by using CCS focusing achieved lower energy-minimum geometries than the candidate conformations without focusing. Altogether, the implementation of this ML model into our modeling workflow has proven to be beneficial for both the quality of the results and the turnaround time. Finally, while our approach is limited to lipids, it can be readily extended to other molecules of interest.
Collapse
Affiliation(s)
- Mithony Keng
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
5
|
Sternicki LM, Poulsen SA. Fragment-based drug discovery campaigns guided by native mass spectrometry. RSC Med Chem 2024; 15:2270-2285. [PMID: 39026646 PMCID: PMC11253872 DOI: 10.1039/d4md00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Native mass spectrometry (nMS) is well established as a biophysical technique for characterising biomolecules and their interactions with endogenous or investigational small molecule ligands. The high sensitivity mass measurements make nMS particularly well suited for applications in fragment-based drug discovery (FBDD) screening campaigns where the detection of weakly binding ligands to a target biomolecule is crucial. We first reviewed the contributions of nMS to guiding FBDD hit identification in 2013, providing a comprehensive perspective on the early adoption of nMS for fragment screening. Here we update this initial progress with a focus on contributions of nMS that have guided FBDD for the period 2014 until end of 2023. We highlight the development of nMS adoption in FBDD in the context of other biophysical fragment screening techniques. We also discuss the roadmap for increased adoption of nMS for fragment screening beyond soluble proteins, including for guiding the discovery of fragments supporting advances in PROTAC discovery, RNA-binding small molecules and covalent therapeutic drug discovery.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| |
Collapse
|
6
|
Benoit F, Wang X, Dai J, Geue N, England RM, Bristow AWT, Barran PE. Exploring the Conformational Landscape of Poly(l-lysine) Dendrimers Using Ion Mobility Mass Spectrometry. Anal Chem 2024; 96:9390-9398. [PMID: 38812282 PMCID: PMC11170554 DOI: 10.1021/acs.analchem.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Ion mobility mass spectrometry (IM-MS) measures the mass, size, and shape of ions in the same experiment, and structural information is provided via collision cross-section (CCS) values. The majority of commercially available IM-MS instrumentation relies on the use of CCS calibrants, and here, we present data from a family of poly(l-lysine) dendrimers and explore their suitability for this purpose. In order to test these compounds, we employed three different IM-MS platforms (Agilent 6560 IM-QToF, Waters Synapt G2, and a home-built variable temperature drift tube IM-MS) and used them to investigate six different generations of dendrimers in two buffer gases (helium and nitrogen). Each molecule gives a highly discrete CCS distribution suggestive of single conformers for each m/z value. The DTCCSN2 values of this series of molecules (molecular weight: 330-16,214 Da) range from 182 to 2941 Å2, which spans the CCS range that would be found by many synthetic molecules including supramolecular compounds and many biopolymers. The CCS values for each charge state were highly reproducible in day-to-day analysis on each instrument, although we found small variations in the absolute CCS values between instruments. The rigidity of each dendrimer was probed using collisionally activated and high-temperature IM-MS experiments, where no evidence for a significant CCS change ensued. Taken together, this data indicates that these polymers are candidates for CCS calibration and could also help to reconcile differences found in CCS measurements on different instrument geometries.
Collapse
Affiliation(s)
- Florian Benoit
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Xudong Wang
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Junxiao Dai
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Niklas Geue
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Richard M. England
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Anthony W. T. Bristow
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
7
|
Zangl R, Soravia S, Saft M, Löffler JG, Schulte J, Rosner CJ, Bredenbeck J, Essen LO, Morgner N. Time-Resolved Ion Mobility Mass Spectrometry to Solve Conformational Changes in a Cryptochrome. J Am Chem Soc 2024; 146:14468-14478. [PMID: 38757172 DOI: 10.1021/jacs.3c13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Many biological mechanisms rely on the precise control of conformational changes in proteins. Understanding such dynamic processes requires methods for determining structures and their temporal evolution. In this study, we introduce a novel approach to time-resolved ion mobility mass spectrometry. We validated the method on a simple photoreceptor model and applied it to a more complex system, the animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY), to determine the role of specific amino acids affecting the conformational dynamics as reaction to blue light activation. In our setup, using a high-power LED mounted in the source region of an ion mobility mass spectrometer, we allow a time-resolved evaluation of mass and ion mobility spectra. Cryptochromes like CraCRY are a widespread type of blue light photoreceptors and mediate various light-triggered biological functions upon excitation of their inbuilt flavin chromophore. Another hallmark of cryptochromes is their flexible carboxy-terminal extension (CTE), whose structure and function as well as the details of its interaction with the photolyase homology region are not yet fully understood and differ among different cryptochromes types. Here, we addressed the highly conserved C-terminal domain of CraCRY, to study the effects of single mutations on the structural transition of the C-terminal helix α22 and the attached CTE upon lit-state formation. We show that D321, the putative proton acceptor of the terminal proton-coupled electron transfer event from Y373, is essential for triggering the large-scale conformational changes of helix α22 and the CTE in the lit state, while D323 influences the timing.
Collapse
Affiliation(s)
- Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Sejla Soravia
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Martin Saft
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jan Gerrit Löffler
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany
| | - Jonathan Schulte
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Christian Joshua Rosner
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| |
Collapse
|
8
|
Zimnicka MM. Structural studies of supramolecular complexes and assemblies by ion mobility mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:526-559. [PMID: 37260128 DOI: 10.1002/mas.21851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Recent advances in instrumentation and development of computational strategies for ion mobility mass spectrometry (IM-MS) studies have contributed to an extensive growth in the application of this analytical technique to comprehensive structural description of supramolecular systems. Apart from the benefits of IM-MS for interrogation of intrinsic properties of noncovalent aggregates in the experimental gas-phase environment, its merits for the description of native structural aspects, under the premises of having maintained the noncovalent interactions innate upon the ionization process, have attracted even more attention and gained increasing interest in the scientific community. Thus, various types of supramolecular complexes and assemblies relevant for biological, medical, material, and environmental sciences have been characterized so far by IM-MS supported by computational chemistry. This review covers the state-of-the-art in this field and discusses experimental methods and accompanying computational approaches for assessing the reliable three-dimensional structural elucidation of supramolecular complexes and assemblies by IM-MS.
Collapse
Affiliation(s)
- Magdalena M Zimnicka
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Gozzo TA, Bush MF. Effects of charge on protein ion structure: Lessons from cation-to-anion, proton-transfer reactions. MASS SPECTROMETRY REVIEWS 2024; 43:500-525. [PMID: 37129026 DOI: 10.1002/mas.21847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Collision cross-section values, which can be determined using ion mobility experiments, are sensitive to the structures of protein ions and useful for applications to structural biology and biophysics. Protein ions with different charge states can exhibit very different collision cross-section values, but a comprehensive understanding of this relationship remains elusive. Here, we review cation-to-anion, proton-transfer reactions (CAPTR), a method for generating a series of charge-reduced protein cations by reacting quadrupole-selected cations with even-electron monoanions. The resulting CAPTR products are analyzed using a combination of ion mobility, mass spectrometry, and collisional activation. We compare CAPTR to other charge-manipulation strategies and review the results of various CAPTR-based experiments, exploring their contribution to a deeper understanding of the relationship between protein ion structure and charge state.
Collapse
Affiliation(s)
- Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Cropley TC, Liu FC, Chai M, Bush MF, Bleiholder C. Metastability of Protein Solution Structures in the Absence of a Solvent: Rugged Energy Landscape and Glass-like Behavior. J Am Chem Soc 2024:10.1021/jacs.3c12892. [PMID: 38598661 PMCID: PMC11464637 DOI: 10.1021/jacs.3c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Native ion mobility/mass spectrometry is well-poised to structurally screen proteomes but characterizes protein structures in the absence of a solvent. This raises long-standing unanswered questions about the biological significance of protein structures identified through ion mobility/mass spectrometry. Using newly developed computational and experimental ion mobility/ion mobility/mass spectrometry methods, we investigate the unfolding of the protein ubiquitin in a solvent-free environment. Our data suggest that the folded, solvent-free ubiquitin observed by ion mobility/mass spectrometry exists in a largely native fold with an intact β-grasp motif and α-helix. The ensemble of folded, solvent-free ubiquitin ions can be partitioned into kinetically stable subpopulations that appear to correspond to the structural heterogeneity of ubiquitin in solution. Time-resolved ion mobility/ion mobility/mass spectrometry measurements show that folded, solvent-free ubiquitin exhibits a strongly stretched-exponential time dependence, which simulations trace to a rugged energy landscape with kinetic traps. Unfolding rate constants are estimated to be approximately 800 to 20,000 times smaller than in the presence of water, effectively quenching the unfolding process on the time scale of typical ion mobility/mass spectrometry measurements. Our proposed unfolding pathway of solvent-free ubiquitin shares substantial characteristics with that established for the presence of solvent, including a polarized transition state with significant native content in the N-terminal β-hairpin and α-helix. Our experimental and computational data suggest that (1) the energy landscape governing the motions of folded, solvent-free proteins is rugged in analogy to that of glassy systems; (2) large-scale protein motions may at least partially be determined by the amino acid sequence of a polypeptide chain; and (3) solvent facilitates, rather than controls, protein motions.
Collapse
Affiliation(s)
- Tyler. C. Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Fanny. C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
11
|
Geue N, Winpenny REP, Barran PE. Ion Mobility Mass Spectrometry for Large Synthetic Molecules: Expanding the Analytical Toolbox. J Am Chem Soc 2024; 146:8800-8819. [PMID: 38498971 PMCID: PMC10996010 DOI: 10.1021/jacs.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Understanding the composition, structure and stability of larger synthetic molecules is crucial for their design, yet currently the analytical tools commonly used do not always provide this information. In this perspective, we show how ion mobility mass spectrometry (IM-MS), in combination with tandem mass spectrometry, complementary techniques and computational methods, can be used to structurally characterize synthetic molecules, make and predict new complexes, monitor disassembly processes and determine stability. Using IM-MS, we present an experimental and computational framework for the analysis and design of complex molecular architectures such as (metallo)supramolecular cages, nanoclusters, interlocked molecules, rotaxanes, dendrimers, polymers and host-guest complexes.
Collapse
Affiliation(s)
- Niklas Geue
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Richard E. P. Winpenny
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
12
|
Fisher NP, McGee JP, Bowen KP, Goodwin M, Senko MW, Kelleher NL, Kafader JO. Determining Collisional Cross Sections from Ion Decay with Individual Ion Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2625-2629. [PMID: 38011219 PMCID: PMC10840072 DOI: 10.1021/jasms.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Collision cross section (CCS) measurements determined by ion mobility spectrometry (IMS) provide useful information about gas-phase protein structure that is complementary to mass analysis. Methods for determining CCS without a dedicated IMS system have been developed for Fourier transform mass spectrometry (FT-MS) platforms by measuring the signal decay during detection. Individual ion mass spectrometry (I2MS) provides charge detection and measures ion lifetimes across the length of an FT-MS detection event. By tracking lifetimes for entire ion populations, we demonstrate simultaneous determination of charge, mass, and CCS for proteins and complexes ranging from ∼8 to ∼232 kDa.
Collapse
Affiliation(s)
- Nickolas P Fisher
- Departments of Chemistry and Molecular Biosciences, Department of Chemical and Biological Engineering, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - John P McGee
- Departments of Chemistry and Molecular Biosciences, Department of Chemical and Biological Engineering, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Kyle P Bowen
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Michael Goodwin
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Michael W Senko
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Department of Chemical and Biological Engineering, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, Department of Chemical and Biological Engineering, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Sahin C, Leppert A, Landreh M. Advances in mass spectrometry to unravel the structure and function of protein condensates. Nat Protoc 2023; 18:3653-3661. [PMID: 37907762 DOI: 10.1038/s41596-023-00900-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/09/2023] [Indexed: 11/02/2023]
Abstract
Membrane-less organelles assemble through liquid-liquid phase separation (LLPS) of partially disordered proteins into highly specialized microenvironments. Currently, it is challenging to obtain a clear understanding of the relationship between the structure and function of phase-separated protein assemblies, owing to their size, dynamics and heterogeneity. In this Perspective, we discuss recent advances in mass spectrometry (MS) that offer several promising approaches for the study of protein LLPS. We survey MS tools that have provided valuable insights into other insoluble protein systems, such as amyloids, and describe how they can also be applied to study proteins that undergo LLPS. On the basis of these recent advances, we propose to integrate MS into the experimental workflow for LLPS studies. We identify specific challenges and future opportunities for the analysis of protein condensate structure and function by MS.
Collapse
Affiliation(s)
- Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.
- Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Schramm HM, Tamadate T, Hogan CJ, Clowers BH. Evaluation of Hydrogen-Deuterium Exchange during Transient Vapor Binding of MeOD with Model Peptide Systems Angiotensin II and Bradykinin. J Phys Chem A 2023; 127:8849-8861. [PMID: 37827113 DOI: 10.1021/acs.jpca.3c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The advancement of hybrid mass spectrometric tools as an indirect probe of molecular structure and dynamics relies heavily upon a clear understanding between gas-phase ion reactivity and ion structural characteristics. This work provides new insights into gas-phase ion-neutral reactions of the model peptides (i.e., angiotensin II and bradykinin) on a per-residue basis by integrating hydrogen/deuterium exchange, ion mobility, tandem mass spectrometry, selective vapor binding, and molecular dynamics simulations. By comparing fragmentation patterns with simulated probabilities of vapor uptake, a clear link between gas-phase hydrogen/deuterium exchange and the probabilities of localized vapor association is established. The observed molecular dynamics trends related to the sites and duration of vapor binding track closely with experimental observation. Additionally, the influence of additional charges and structural characteristics on exchange kinetics and ion-neutral cluster formation is examined. These data provide a foundation for the analysis of solvation dynamics of larger, native-like conformations of proteins in the gas phase.
Collapse
Affiliation(s)
- Haley M Schramm
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Tomoya Tamadate
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
15
|
Saikusa K, Asakawa D, Fuchigami S, Akashi S. Evaluation for Ion Heating of H2A-H2B Dimer in Ion Mobility Spectrometry-Mass Spectrometry. Mass Spectrom (Tokyo) 2023; 12:A0131. [PMID: 37860749 PMCID: PMC10582283 DOI: 10.5702/massspectrometry.a0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) provides m/z values and collision cross sections (CCSs) of gas-phase ions. In our previous study, an intrinsically disordered protein, the H2A-H2B dimer, was analyzed using IMS-MS, resulting in two conformational populations of CCS. Based on experimental and theoretical approaches, this resulted from a structural diversity of intrinsically disordered regions. We predicted that this phenomenon is related to ion heating in the IMS-MS instrument. In this study, to reveal the effect of ion heating from parameters in the IMS-MS instrument on the conformational population of the H2A-H2B dimer, we investigated the arrival time distributions of the H2A-H2B dimer by changing values of three instrumental parameters, namely, cone voltage located in the first vacuum chamber, trap collision energy (trap CE) for tandem mass spectrometry, and trap bias voltage for the entrance of IMS. These results revealed that the two populations observed for the H2A-H2B dimer were due to the trap bias voltage. Furthermore, to evaluate the internal energies of the analyte ions with respect to each parameter, benzylpyridinium derivatives were used as temperature-sensitive probes. The results showed that the trap CE voltage imparts greater internal energy to the ions than the trap bias voltage. In addition, this slight change in the internal energy caused by the trap bias voltage resulted in the structural diversity of the H2A-H2B dimer. Therefore, the trap bias voltage should be set with attention to the properties of the analytes, even if the effect of the trap bias voltage on the internal energy is negligible.
Collapse
Affiliation(s)
- Kazumi Saikusa
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Umezono, Tsukuba, Ibaraki 305–8563, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Daiki Asakawa
- Research Institute for Measurement and Analytical Instrumentation, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Umezono, Tsukuba, Ibaraki 305–8568, Japan
| | - Sotaro Fuchigami
- School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka, Shizuoka 422–8526, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1–7–29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| |
Collapse
|
16
|
Wan J, Nytka M, Qian H, Lemr K, Tureček F. Do d(GCGAAGC) Cations Retain the Hairpin Structure in the Gas Phase? A Cyclic Ion Mobility Mass Spectrometry and Density Functional Theory Computational Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2323-2340. [PMID: 37696624 DOI: 10.1021/jasms.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
d(GCGAAGC) is the smallest oligonucleotide with a well-defined hairpin structure in solution. We report a study of multiply protonated d(GCGAAGC) and its sequence-scrambled isomers, d(CGAAGCG), d(GCGAACG), and d(CGGAAGC), that were produced by electrospray ionization with the goal of investigating their gas-phase structures and dissociations. Cyclic ion mobility measurements revealed that dications of d(GCGAAGC) as well as the scrambled-sequence ions were mixtures of protomers and/or conformers that had collision cross sections (CCS) within a 439-481 Å2 range. Multiple ion conformers were obtained by electrospray under native conditions as well as from aqueous methanol. Arrival time distribution profiles were characteristic of individual isomeric heptanucleotides. Extensive Born-Oppenheimer molecular dynamics (BOMD) and density functional theory (DFT) calculations of d(GCGAAGC)2+ isomers indicated that hairpin structures were high-energy isomers of more compact distorted conformers. Protonation caused a break up of the C2···G6 pair that was associated with the formation of strong hydrogen bonds in zwitterionic phosphate anion-nucleobase cation motifs that predominated in low energy ions. Multiple components were also obtained for d(GCGAAGC)3+ trications under native and denaturing electrospray conditions. The calculated trication structures showed disruption of the G···C pairs in low energy zwitterions. A hairpin trication was calculated to be a high energy isomer. d(GCGAAGC)4+ tetracations were produced and separated by c-IMS as two major isomers. All low energy d(GCGAAGC)4+ ions obtained by DFT geometry optimizations were zwitterions in which all five purine bases were protonated, and the ion charge was balanced by a phosphate anion. Tetracations of the scrambled sequences were each formed as one dominant isomer. The CCS calculated with the MobCal-MPI method were found to closely match experimental values. Collision-induced dissociation (CID) spectra of multiply charged heptanucleotides showed nucleobase loss and backbone cleavages occurring chiefly at the terminal nucleosides. Electron-transfer-CID tandem mass spectra were used to investigate dissociations of different charge and spin states of charge-reduced heptanucleotide cation radicals.
Collapse
Affiliation(s)
- Jiahao Wan
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Marianna Nytka
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 779 00 Olomouc, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Haocheng Qian
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 779 00 Olomouc, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
17
|
He L, Li L, Wang SC, Chan YT. Sequential self-assembly of calix[4]resorcinarene-based heterobimetallic Cd 8Pt 8 nano-Saturn complexes. Chem Commun (Camb) 2023; 59:11500-11503. [PMID: 37622211 DOI: 10.1039/d3cc03414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A rational molecular design strategy is introduced for selective metal-ligand coordination, enabling the quantitative self-assembly of heterobimetallic nano-Saturn complexes. During the sequential multicomponent self-assembly, the CdII ions and organometallic trans-PtII motifs demonstrate preferential binding to specific ligands. The pre-designed directive interactions allow for precise control over the structural characteristics.
Collapse
Affiliation(s)
- Lipeng He
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lijie Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
18
|
Turzo SMBA, Seffernick JT, Lyskov S, Lindert S. Predicting ion mobility collision cross sections using projection approximation with ROSIE-PARCS webserver. Brief Bioinform 2023; 24:bbad308. [PMID: 37609950 PMCID: PMC10516336 DOI: 10.1093/bib/bbad308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Ion mobility coupled to mass spectrometry informs on the shape and size of protein structures in the form of a collision cross section (CCSIM). Although there are several computational methods for predicting CCSIM based on protein structures, including our previously developed projection approximation using rough circular shapes (PARCS), the process usually requires prior experience with the command-line interface. To overcome this challenge, here we present a web application on the Rosetta Online Server that Includes Everyone (ROSIE) webserver to predict CCSIM from protein structure using projection approximation with PARCS. In this web interface, the user is only required to provide one or more PDB files as input. Results from our case studies suggest that CCSIM predictions (with ROSIE-PARCS) are highly accurate with an average error of 6.12%. Furthermore, the absolute difference between CCSIM and CCSPARCS can help in distinguishing accurate from inaccurate AlphaFold2 protein structure predictions. ROSIE-PARCS is designed with a user-friendly interface, is available publicly and is free to use. The ROSIE-PARCS web interface is supported by all major web browsers and can be accessed via this link (https://rosie.graylab.jhu.edu).
Collapse
Affiliation(s)
- S M Bargeen Alam Turzo
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH 43210, USA
| | - Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Duez Q, Hoyas S, Josse T, Cornil J, Gerbaux P, De Winter J. Gas-phase structure of polymer ions: Tying together theoretical approaches and ion mobility spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:1129-1151. [PMID: 34747528 DOI: 10.1002/mas.21745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/07/2023]
Abstract
An increasing number of studies take advantage of ion mobility spectrometry (IMS) coupled to mass spectrometry (IMS-MS) to investigate the spatial structure of gaseous ions. Synthetic polymers occupy a unique place in the field of IMS-MS. Indeed, due to their intrinsic dispersity, they offer a broad range of homologous ions with different lengths. To help rationalize experimental data, various theoretical approaches have been described. First, the study of trend lines is proposed to derive physicochemical and structural parameters. However, the evaluation of data fitting reflects the overall behavior of the ions without reflecting specific information on their conformation. Atomistic simulations constitute another approach that provide accurate information about the ion shape. The overall scope of this review is dedicated to the synergy between IMS-MS and theoretical approaches, including computational chemistry, demonstrating the essential role they play to fully understand/interpret IMS-MS data.
Collapse
Affiliation(s)
- Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| | - Sébastien Hoyas
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| | | | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| |
Collapse
|
20
|
Cropley TC, Liu FC, Pedrete T, Hossain MA, Agar JN, Bleiholder C. Structure Relaxation Approximation (SRA) for Elucidation of Protein Structures from Ion Mobility Measurements (II). Protein Complexes. J Phys Chem B 2023. [PMID: 37311097 DOI: 10.1021/acs.jpcb.3c01024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Characterizing structures of protein complexes and their disease-related aberrations is essential to understanding molecular mechanisms of many biological processes. Electrospray ionization coupled with hybrid ion mobility/mass spectrometry (ESI-IM/MS) methods offer sufficient sensitivity, sample throughput, and dynamic range to enable systematic structural characterization of proteomes. However, because ESI-IM/MS characterizes ionized protein systems in the gas phase, it generally remains unclear to what extent the protein ions characterized by IM/MS have retained their solution structures. Here, we discuss the first application of our computational structure relaxation approximation [Bleiholder, C.; et al. J. Phys. Chem. B 2019, 123 (13), 2756-2769] to assign structures of protein complexes in the range from ∼16 to ∼60 kDa from their "native" IM/MS spectra. Our analysis shows that the computed IM/MS spectra agree with the experimental spectra within the errors of the methods. The structure relaxation approximation (SRA) indicates that native backbone contacts appear largely retained in the absence of solvent for the investigated protein complexes and charge states. Native contacts between polypeptide chains of the protein complex appear to be retained to a comparable extent as contacts within a folded polypeptide chain. Our computations also indicate that the hallmark "compaction" often observed for protein systems in native IM/MS measurements appears to be a poor indicator of the extent to which native residue-residue interactions are lost in the absence of solvent. Further, the SRA indicates that structural reorganization of the protein systems in IM/MS measurements appears driven largely by remodeling of the protein surface that increases its hydrophobic content by approximately 10%. For the systems studied here, this remodeling of the protein surface appears to occur mainly by structural reorganization of surface-associated hydrophilic amino acid residues not associated with β-strand secondary structure elements. Properties related to the internal protein structure, as assessed by void volume or packing density, appear unaffected by remodeling of the surface. Taken together, the structural reorganization of the protein surface appears to be generic in nature and to sufficiently stabilize protein structures to render them metastable on the time scale of IM/MS measurements.
Collapse
Affiliation(s)
- Tyler C Cropley
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Thais Pedrete
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Barnett Institute of Chemical and Biological Analysis, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Barnett Institute of Chemical and Biological Analysis, 140 The Fenway, Boston, Massachusetts 02115, United States
- Department of Pharmaceutical Sciences, Northeastern University, 10 Leon St, Boston, Massachusetts 02115, United States
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
- Institute of Molecular Biophysics, Florida State University, 91 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
21
|
Cajahuaringa S, Caetano DLZ, Zanotto LN, Araujo G, Skaf MS. MassCCS: A High-Performance Collision Cross-Section Software for Large Macromolecular Assemblies. J Chem Inf Model 2023; 63:3557-3566. [PMID: 37184925 PMCID: PMC10269586 DOI: 10.1021/acs.jcim.3c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 05/16/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) techniques have become highly valued as a tool for structural characterization of biomolecular systems since they yield accurate measurements of the rotationally averaged collision cross-section (CCS) against a buffer gas. Despite its enormous potential, IM-MS data interpretation is often challenging due to the conformational isomerism of metabolites, lipids, proteins, and other biomolecules in the gas phase. Therefore, reliable and fast CCS calculations are needed to help interpret IM-MS data. In this work, we present MassCCS, a parallelized open-source code for computing CCS of molecules ranging from small organic compounds to massive protein assemblies at the trajectory method level of description using atomic and molecular buffer gas particles. The performance of the code is comparable to other available software for small molecules and proteins but is significantly faster for larger macromolecular assemblies. We performed extensive tests regarding accuracy, performance, and scalability with system size and number of CPU cores. MassCCS has proven highly accurate and efficient, with execution times under a few minutes, even for large (84.87 MDa) virus capsid assemblies with very modest computational resources. MassCCS is freely available at https://github.com/cces-cepid/massccs.
Collapse
Affiliation(s)
- Samuel Cajahuaringa
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Daniel L. Z. Caetano
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Leandro N. Zanotto
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Guido Araujo
- Institute
of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
| | - Munir S. Skaf
- Center
for Computing in Engineering & Sciences, University of Campinas, Campinas, São Paulo 13083-861, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
22
|
Thoben C, Raddatz CR, Tataroglu A, Kobelt T, Zimmermann S. How to Improve the Resolving Power of Compact Electrospray Ionization Ion Mobility Spectrometers. Anal Chem 2023; 95:8277-8283. [PMID: 37192335 DOI: 10.1021/acs.analchem.3c00471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Every drift tube ion mobility spectrometer (IMS) has an optimum drift voltage to reach maximum resolving power. This optimum depends, among other things, on the temporal and spatial width of the injected ion packet and the pressure within the IMS. A reduction of the spatial width of the injected ion packet leads to improved resolving power, higher peak amplitudes when operating the IMS at optimum resolving power, and thus a better signal-to-noise ratio despite the reduced number of injected ions. Hereby, the performance of electrospray ionization (ESI)-IMS can be considerably improved. By setting the ion shutter opening time to just 5 μs and slightly increasing the pressure, a high resolving power RP > 150 can be achieved with a given drift length of just 75 mm. At such high resolving power, even a mixture of the herbicides isoproturon and chlortoluron having similar ion mobility can be well separated despite short drift length.
Collapse
Affiliation(s)
- Christian Thoben
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Aykut Tataroglu
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Tim Kobelt
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| |
Collapse
|
23
|
Chakraborty P, Neumaier M, Weis P, Kappes MM. Exploring Isomerism in Isolated Cyclodextrin Oligomers through Trapped Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:676-684. [PMID: 36952473 DOI: 10.1021/jasms.2c00351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cyclodextrin (CD) macrocycles are used to create a wide range of supramolecular architectures which are also of interest in applications such as selective gas adsorption, drug delivery, and catalysis. However, predicting their assemblies and identifying the possible isomers in CD oligomers have always remained challenging due to their dynamic nature. Herein, we interacted CDs (α, β, and γ) with a divalent metal ion, Cu2+, to create a series of Cu2+-linked CD oligomers, from dimers to pentamers. We characterized these oligomers using electrospray ionization mass spectrometry and probed isomerism in each of these isolated oligomers using high resolution trapped ion mobility spectrometry. Using this technique, we separated multiple isomers for each of the Cu2+-interlinked CD oligomers and estimated their relative population, which was not accessible previously using other characterization techniques. We further carried out structural analysis of the observed isomers by comparing the experimental collision cross sections (CCSs) to that of modeled structures. We infer that the isomeric heterogeneity reflects size-specific packing patterns of individual CDs (e.g., close-packed/linear). In some cases, we also reveal the existence of kinetically trapped structures in the gas phase and study their transformation to thermodynamically controlled forms by examining the influence of activation of the ions on isomer interconversion.
Collapse
Affiliation(s)
- Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
24
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
25
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
26
|
Yang L, Zhang W, Xu W. Efficient protein conformation dynamics characterization enabled by mobility-mass spectrometry. Anal Chim Acta 2023; 1243:340800. [PMID: 36697173 DOI: 10.1016/j.aca.2023.340800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Protein structure dynamics in solution and from solution to gas phase are important but challenging topics. Great efforts and advances have been made especially since the wide application of ion mobility mass spectrometry (IM-MS), by which protein collision cross section (CCS) in gas phase could be measured. Due to the lack of efficient experimental methods, protein structures in protein databank are typically referred as their structures in solution. Although conventional structural biology techniques provide high-resolution protein structures, complicated and stringent processes also limit their applicability under different solvent conditions, thus preventing the capture of protein dynamics in solution. Enabled by the combination of mobility capillary electrophoresis (MCE) and IM-MS, an efficient experimental protocol was developed to characterize protein conformation dynamics in solution and from solution to gas phase. As a first attempt, key factors that affecting protein conformations were distinguished and evaluated separately, including pH, temperature, softness of ionization process, presence and specific location of disulfide bonds. Although similar extent of unfolding could be observed for different proteins, in-depth analysis reveals that pH decrease from 7.0 to 3.0 dominates the unfolding of proteins without disulfide bonds in conventional ESI-MS experiments; while harshness of the ionization process dominates the unfolding of proteins with disulfide bonds. Second, disulfide bonds show capability of preserving protein conformations in acidic solution environments. However, by monitoring protein conformation dynamics and comparing results from different proteins, it is also found that their capability is position dependent. Surprisingly, disulfide bonds did not show the capability of preserving protein conformations during ionization processes.
Collapse
Affiliation(s)
- Lei Yang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenjing Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
27
|
Atakay M. Monitoring Conformational Changes of Lysozyme–Polyelectrolyte Complexes Using Trapped Ion Mobility-Mass Spectrometry (IM-MS). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2173768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mehmet Atakay
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
28
|
Fu D, Habtegabir SG, Wang H, Feng S, Han Y. Understanding of protomers/deprotomers by combining mass spectrometry and computation. Anal Bioanal Chem 2023:10.1007/s00216-023-04574-1. [PMID: 36737499 DOI: 10.1007/s00216-023-04574-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Multifunctional compounds may form different prototropic isomers under different conditions, which are known as protomers/deprotomers. In biological systems, these protomer/deprotomer isomers affect the interaction modes and conformational landscape between compounds and enzymes and thus present different biological activities. Study on protomers/deprotomers is essentially the study on the acidity/basicity of each intramolecular functional group and its effect on molecular structure. In recent years, the combination of mass spectrometry (MS) and computational chemistry has been proven to be a powerful and effective means to study prototropic isomers. MS-based technologies are developed to discriminate and characterize protomers/deprotomers to provide structural information and monitor transformations, showing great superiority than other experimental methods. Computational chemistry is used to predict the thermodynamic stability of protomers/deprotomers, provide the simulated MS/MS spectra, infrared spectra, and calculate collision cross-section values. By comparing the theoretical data with the corresponding experimental results, the researchers can not only determine the protomer/deprotomer structure, but also investigate the structure-activity relationship in a given system. This review covers various MS methods and theoretical calculations and their devotion to isomer discrimination, structure identification, conformational transformation, and phase transition investigation of protomers/deprotomers.
Collapse
Affiliation(s)
- Dali Fu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Sara Girmay Habtegabir
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Haodong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Shijie Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China.
| |
Collapse
|
29
|
Cropley TC, Chai M, Liu FC, Bleiholder C. Perspective on the potential of tandem-ion mobility /mass spectrometry methods for structural proteomics applications. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1106752. [PMID: 37333518 PMCID: PMC10273136 DOI: 10.3389/frans.2023.1106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cellular processes are usually carried out collectively by the entirety of all proteins present in a biological cell, i.e. the proteome. Mass spectrometry-based methods have proven particularly successful in identifying and quantifying the constituent proteins of proteomes, including different molecular forms of a protein. Nevertheless, protein sequences alone do not reveal the function or dysfunction of the identified proteins. A straightforward way to assign function or dysfunction to proteins is characterization of their structures and dynamics. However, a method capable to characterize detailed structures of proteins and protein complexes in a large-scale, systematic manner within the context of cellular processes does not yet exist. Here, we discuss the potential of tandem-ion mobility / mass spectrometry (tandem-IM/MS) methods to provide such ability. We highlight the capability of these methods using two case studies on the protein systems ubiquitin and avidin using the tandem-TIMS/MS technology developed in our laboratory and discuss these results in the context of other developments in the broader field of tandem-IM/MS.
Collapse
Affiliation(s)
- Tyler C. Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Department of Chemistry, Washington University in St. Louis, Saint-Louis, Missouri, USA
| | - Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
30
|
Alawani N, Barrère-Mangote C, Wesdemiotis C. Analysis of Thermoplastic Copolymers by Mild Thermal Degradation Coupled to Ion Mobility Mass Spectrometry. Macromol Rapid Commun 2023; 44:e2200306. [PMID: 35701837 DOI: 10.1002/marc.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Indexed: 01/11/2023]
Abstract
Thermal desorption/degradation with an atmospheric solids analysis probe (ASAP) and ion mobility (IM) separation are coupled with mass spectrometry (MS) analysis and tandem mass spectrometry (MS/MS) fragmentation to characterize thermoplastic elastomers. The compounds investigated, which are used in the manufacture of a wide variety of packaging materials, are mainly composed of thermoplastic copolymers, but also contain additional chemicals ("additives"), like antioxidants and UV stabilizers, for enhancement of their properties or protection from degradation. The traditional method for analyzing such complex mixtures is vacuum pyrolysis followed by electron or chemical ionization mass spectrometry, often after gas chromatography separation. Here, an alternative, faster approach, involving mild degradation at atmospheric pressure (ASAP) and subsequent characterization of the desorbates and pyrolyzates by IM-MS, and if needed, MS/MS is presented. Such multidimensional dispersion considerably simplifies the resulting spectra, permitting the conclusive separation, characterization, and classification of the multicomponent materials examined.
Collapse
Affiliation(s)
- Nadrah Alawani
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| | | | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
31
|
Turzo SMBA, Seffernick JT, Rolland AD, Donor MT, Heinze S, Prell JS, Wysocki VH, Lindert S. Protein shape sampled by ion mobility mass spectrometry consistently improves protein structure prediction. Nat Commun 2022; 13:4377. [PMID: 35902583 PMCID: PMC9334640 DOI: 10.1038/s41467-022-32075-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Ion mobility (IM) mass spectrometry provides structural information about protein shape and size in the form of an orientationally-averaged collision cross-section (CCSIM). While IM data have been used with various computational methods, they have not yet been utilized to predict monomeric protein structure from sequence. Here, we show that IM data can significantly improve protein structure determination using the modelling suite Rosetta. We develop the Rosetta Projection Approximation using Rough Circular Shapes (PARCS) algorithm that allows for fast and accurate prediction of CCSIM from structure. Following successful testing of the PARCS algorithm, we use an integrative modelling approach to utilize IM data for protein structure prediction. Additionally, we propose a confidence metric that identifies near native models in the absence of a known structure. The results of this study demonstrate the ability of IM data to consistently improve protein structure prediction.
Collapse
Affiliation(s)
- S M Bargeen Alam Turzo
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Amber D Rolland
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Micah T Donor
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Sten Heinze
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - James S Prell
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Liu FC, Ridgeway ME, Park MA, Bleiholder C. Tandem-trapped ion mobility spectrometry/mass spectrometry ( tTIMS/MS): a promising analytical method for investigating heterogenous samples. Analyst 2022; 147:2317-2337. [PMID: 35521797 PMCID: PMC9914546 DOI: 10.1039/d2an00335j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ion mobility spectrometry/mass spectrometry (IMS/MS) is widely used to study various levels of protein structure. Here, we review the current state of affairs in tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS). Two different tTIMS/MS instruments are discussed in detail: the first tTIMS/MS instrument, constructed from coaxially aligning two TIMS devices; and an orthogonal tTIMS/MS configuration that comprises an ion trap for irradiation of ions with UV photons. We discuss the various workflows the two tTIMS/MS setups offer and how these can be used to study primary, tertiary, and quaternary structures of protein systems. We also discuss, from a more fundamental perspective, the processes that lead to denaturation of protein systems in tTIMS/MS and how to soften the measurement so that biologically meaningful structures can be characterised with tTIMS/MS. We emphasize the concepts underlying tTIMS/MS to underscore the opportunities tandem-ion mobility spectrometry methods offer for investigating heterogeneous samples.
Collapse
Affiliation(s)
- Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | | | | | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
33
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
34
|
Gavriilidou AFM, Sokratous K, Yen HY, De Colibus L. High-Throughput Native Mass Spectrometry Screening in Drug Discovery. Front Mol Biosci 2022; 9:837901. [PMID: 35495635 PMCID: PMC9047894 DOI: 10.3389/fmolb.2022.837901] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The design of new therapeutic molecules can be significantly informed by studying protein-ligand interactions using biophysical approaches directly after purification of the protein-ligand complex. Well-established techniques utilized in drug discovery include isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and structure-based drug discovery which mainly rely on protein crystallography and, more recently, cryo-electron microscopy. Protein-ligand complexes are dynamic, heterogeneous, and challenging systems that are best studied with several complementary techniques. Native mass spectrometry (MS) is a versatile method used to study proteins and their non-covalently driven assemblies in a native-like folded state, providing information on binding thermodynamics and stoichiometry as well as insights on ternary and quaternary protein structure. Here, we discuss the basic principles of native mass spectrometry, the field's recent progress, how native MS is integrated into a drug discovery pipeline, and its future developments in drug discovery.
Collapse
|
35
|
Lee JU, Lee ST, Park CR, Moon B, Kim HI, Oh HB. TEMPO-Assisted Free-Radical-Initiated Peptide Sequencing Mass Spectrometry for Ubiquitin Ions: An Insight on the Gas-Phase Conformations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:471-481. [PMID: 35099967 DOI: 10.1021/jasms.1c00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
TEMPO ((2,2,6,6-tetramethylpiperidine-1-yl)oxyl)-assisted free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) is applied to the top-down tandem mass spectrometry of guanidinated ubiquitin (UB(Gu)) ions, i.e., p-TEMPO-Bn-Sc-guanidinated ubiquitin (UBT(Gu)), to shed a light on gas-phase ubiquitin conformations. Thermal activation of UBT(Gu) ions produced protein backbone fragments of radical character, i.e., a-/x- and c-/z-type fragments. It is in contrast to the collision-induced dissociation (CID) results for UB(Gu), which dominantly showed the specific charge-remote CID fragments of b-/y-type at the C-terminal side of glutamic acid (E) and aspartic acid (D). The transfer of a radical "through space" was mainly observed for the +5 and +6 UBT(Gu) ions. This provides the information about folding/unfolding and structural proximity between the positions of the incipient benzyl radical site and fragmented sites. The analysis of FRIPS MS results for the +5 charge state ubiquitin ions shows that the +5 charge state ubiquitin ions bear a conformational resemblance to the native ubiquitin (X-ray crystallography structure), particularly in the central sequence region, whereas some deviations were observed in the unstable second structure region (β2) close to the N-terminus. The ion mobility spectrometry results also corroborate the FRIPS MS results in terms of their conformations (or structures). The experimental results obtained in this study clearly demonstrate a potential of the TEMPO-assisted FRIPS MS as one of the methods for the elucidation of the overall gas-phase protein structures.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Sang Tak Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Chae Ri Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
36
|
Rolland AD, Biberic LS, Prell JS. Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility-Mass Spectrometry and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:369-381. [PMID: 35073092 PMCID: PMC11404549 DOI: 10.1021/jasms.1c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise relationship between native gas-phase protein ion structure, charge, desolvation, and activation remains elusive. Much evidence supports the Charge Residue Model for native protein ions formed by electrospray ionization, but scaling laws derived from it relate only to overall ion size. Closer examination of drift tube CCSs across individual native protein ion charge state distributions (CSDs) reveals deviations from global trends. To investigate whether this is due to structure variation across CSDs or contributions of long-range charge-dipole interactions, we performed in vacuo force field molecular dynamics (MD) simulations of multiple charge conformers of three proteins representing a variety of physical and structural features: β-lactoglobulin, concanavalin A, and glutamate dehydrogenase. Results from these simulated ions indicate subtle structure variation across their native CSDs, although effects of these structural differences and long-range charge-dependent interactions on CCS are small. The structure and CCS of smaller proteins may be more sensitive to charge due to their low surface-to-volume ratios and reduced capacity to compact. Secondary and higher order structure from condensed-phase structures is largely retained in these simulations, supporting the use of the term "native-like" to describe results from native ion mobility-mass spectrometry experiments, although, notably, the most compact structure can be the most different from the condensed-phase structure. Collapse of surface side chains to self-solvate through formation of new hydrogen bonds is a major feature of gas-phase compaction and likely occurs during the desolvation process. Results from these MD simulations provide new insight into the relationship of gas-phase protein ion structure, charge, and CCS.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lejla S Biberic
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
37
|
|
38
|
Luan M, Hou Z, Huang G. Suppression of Protein Structural Perturbations in Native Electrospray Ionization during the Final Evaporation Stages Revealed by Molecular Dynamics Simulations. J Phys Chem B 2021; 126:144-150. [PMID: 34964355 DOI: 10.1021/acs.jpcb.1c09130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Native electrospray ionization was known to preserve the protein structure in solution, which overcame the uncontrollable acidification of droplets during transfer from solution into the gas phase in conventional electrospray ionization. However, detailed experimental studies on when and how could native electrospray ionization minimize structural perturbations remain quite unclear. Herein, we conducted molecular dynamics simulations to investigate the protein structure evolution during electrospray ionization. At a neutral droplet pH, the protein structure in solution could be retained after evaporation, which was in accordance with previous reports. As the droplet pH deviated from neutral, we have found that the compact protein structure would not unfold until the last 10 ns prior to the final desolvation, which demonstrated that the role of native electrospray ionization in preserving the protein structure was mainly reflected on the final evaporation stages. The present study might provide new insights into studying the microscopic biomolecular events occurring during the liquid-gas interface transition and their influence on solution-structure retention.
Collapse
Affiliation(s)
- Moujun Luan
- The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China.,School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Zhuanghao Hou
- The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China.,School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029 Hefei, China
| | - Guangming Huang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China.,School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029 Hefei, China
| |
Collapse
|
39
|
Dodds JN, Baker ES. Improving the Speed and Selectivity of Newborn Screening Using Ion Mobility Spectrometry-Mass Spectrometry. Anal Chem 2021; 93:17094-17102. [PMID: 34851605 PMCID: PMC8730783 DOI: 10.1021/acs.analchem.1c04267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection and diagnosis of congenital disorders is the principal aim of newborn screening (NBS) programs worldwide. Mass spectrometry (MS) has become the preferred primary testing method for high-throughput NBS sampling because of its speed and selectivity. However, the ever-increasing list of NBS biomarkers included in expanding panels creates unique analytical challenges for multiplexed MS assays due to isobaric/isomeric overlap and chimeric fragmentation spectra. Since isobaric and isomeric systems limit the diagnostic power of current methods and require costly follow-up exams due to many false-positive results, here, we explore the utility of ion mobility spectrometry (IMS) to enhance the accuracy of MS assays for primary (tier 1) screening. Our results suggest that ∼400 IMS resolving power would be required to confidently assess most NBS biomarkers of interest in dried blood spots (DBSs) that currently require follow-up testing. While this level of selectivity is unobtainable with most commercially available platforms, the separations detailed here for a commercially available drift tube IMS (Agilent 6560 with high-resolution demultiplexing, HRdm) illustrate the unique capabilities of IMS to separate many diagnostic NBS biomarkers from interferences. Furthermore, to address the need for increased speed of NBS analyses, we utilized an automated solid-phase extraction (SPE) system for ∼10 s sampling of simulated NBS samples prior to IMS-MS. This proof-of-concept work demonstrates the unique capabilities of SPE-IMS-MS for high-throughput sample introduction and enhanced separation capacity conducive for increasing speed and accuracy for NBS.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
40
|
Abramsson ML, Sahin C, Hopper JTS, Branca RMM, Danielsson J, Xu M, Chandler SA, Österlund N, Ilag LL, Leppert A, Costeira-Paulo J, Lang L, Teilum K, Laganowsky A, Benesch JLP, Oliveberg M, Robinson CV, Marklund EG, Allison TM, Winther JR, Landreh M. Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry. JACS AU 2021; 1:2385-2393. [PMID: 34977906 PMCID: PMC8717373 DOI: 10.1021/jacsau.1c00458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 05/03/2023]
Abstract
In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
Collapse
Affiliation(s)
- Mia L. Abramsson
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| | - Cagla Sahin
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Jonathan T. S. Hopper
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Rui M. M. Branca
- Department
of Oncology-Pathology, Science for Life
Laboratory and Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Jens Danielsson
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Mingming Xu
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Shane A. Chandler
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Nicklas Österlund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Leopold L. Ilag
- Department
of Material and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Axel Leppert
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Neo, 141 83 Huddinge, Sweden
| | - Joana Costeira-Paulo
- Department
of Chemistry−BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Lisa Lang
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Kaare Teilum
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Arthur Laganowsky
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Justin L. P. Benesch
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Mikael Oliveberg
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Carol V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Erik G. Marklund
- Department
of Chemistry−BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Timothy M. Allison
- Biomolecular
Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Jakob R. Winther
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Michael Landreh
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| |
Collapse
|
41
|
Pham KN, Fernandez-Lima F. Structural Characterization of Human Histone H4.1 by Tandem Nonlinear and Linear Ion Mobility Spectrometry Complemented with Molecular Dynamics Simulations. ACS OMEGA 2021; 6:29567-29576. [PMID: 34778628 PMCID: PMC8582071 DOI: 10.1021/acsomega.1c03744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Extracellular histone H4 is an attractive drug target owing to its roles in organ failure in sepsis and other diseases. To identify inhibitors using in silico methods, information on histone H4 structural dynamics and three-dimensional (3D) structural coordinates is required. Here, DNA-free histone H4 type 1 (H4.1) was characterized by utilizing tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry (MS) complemented with molecular dynamics (MD) simulations. The gas-phase structures of H4.1 are dependent on the starting solution conditions, evidenced by differences in charge state distributions, mobility distributions, and collision-induced unfolding (CIU) pathways. The experimental results show that H4.1 adopts diverse conformational types from compact (C) to partially folded (P) and subsequently elongated (E) structures. Molecular dynamics simulations provided candidate structures for the histone H4.1 monomer in solution and for the gas-phase structures observed using FAIMS-IMS-TOF MS as a function of the charge state and mobility distribution. A combination of the FAIMS-TIMS experimental results with theoretical dipole calculations reveals the important role of charge distribution in the dipole alignment of H4.1 elongated structures at high electric fields. A comparison of the secondary and primary structures of DNA-free H2A.1 and H4.1 is made based on the experimental IMS-MS and MD findings.
Collapse
Affiliation(s)
- Khoa N. Pham
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Science Institute, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
42
|
Abstract
Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
43
|
Omae M, Ozeki Y, Kitagawa S, Ohtani H. End group analysis of poly(methylmethacrylate)s using the most abundant peak in electrospray ionization-ion mobility spectrometry-tandem mass spectrometry and Fourier transform-based noise filtering. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9176. [PMID: 34355832 DOI: 10.1002/rcm.9176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE We recently developed the characterization method for synthetic polymers weighing more than a few tens of kilodalton using electrospray ionization-ion mobility spectrometry-tandem mass spectrometry, in which the m/z value of the most abundant peak was used for characterization. However, the identification of the most abundant peak from the isotopic peaks was often difficult due to the background noise. METHODS Here, we employed a noise reduction method using Fourier transform (FT) filtering. In the power spectrum obtained using FT of the mass spectrum of the multiple charged analytes, the significant signals in the low-frequency region and at frequency z are observed for the analytes of z charges. When the signals in both regions were used for inversed FT (i.e., the signals in other regions were zero padded), a noise-filtered mass spectrum was obtained. RESULTS In the analysis of poly(methylmethacrylate)s weighing 13-17 kDa, mass spectra without noise filtering with relatively high-intensity noise (than signal) were complicated to identify the most abundant peak. On the contrary, the most abundant peak was clearly identified from the mass spectra after FT-based noise filtering, and end group composition was estimated successfully. CONCLUSIONS The proposed FT-based noise filtering for the mass spectrum is effective to characterize multiply charged synthetic polymers weighing more than a few tens of kilodalton using electrospray ionization-ion mobility spectrometry-tandem mass spectrometry.
Collapse
Affiliation(s)
- Mizuki Omae
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuka Ozeki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
44
|
Aliyari E, Konermann L. Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization. Anal Chem 2021; 93:12748-12757. [PMID: 34494821 DOI: 10.1021/acs.analchem.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative mechanism where protein-protein contacts were formed early within ESI droplets, followed by cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation model (IEM). The observation of these IEM events for large protein clusters is unexpected because the IEM has been thought to be associated primarily with low-molecular-weight analytes. In all cases, our MD simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein clustering does not follow a tightly orchestrated pathway but can proceed along different avenues.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
45
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
46
|
Ieritano C, Hopkins WS. "Thermometer" Ions Can Fragment Through an Unexpected Intramolecular Elimination: These Are Not the Fragments You Are Looking For. J Phys Chem Lett 2021; 12:5994-5999. [PMID: 34161734 DOI: 10.1021/acs.jpclett.1c01538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benzylpyridinium analogs are effective thermometer ions since monitoring the formation of the benzylium fragment produced from heterolytic cleavage of the C-N bond can be linked to the ion's internal energy. In this study, three para-substituted benzylpyridinium ions containing ethoxy (OEt), isopropoxy (OiPr) and tert-butoxy (OtBu) substitutents were synthesized and evaluated as chemical thermometers. Intriguingly, the product ion spectra of the three benzylpyridinium ions were dominated by m/z 107 instead of the anticipated benzylium species. Deuterium labeling suggested that the m/z 107 fragment resulted from an intramolecular elimination (Ei), which formed via a four-membered transition state (TS). The fragmentation pathway appears to be an anomaly within the mass spectrometry literature, as four-membered pericyclic TSs are usually accompanied by the formation of an exceptionally stable neutral molecule (e.g., CO2). Quantum-chemical calculations confirmed our hypothesis that stabilization of the strained TS is afforded by hyperconjugation (ΔG‡ tert-butoxy < isopropyoxy < ethoxy).
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories, 999077, Hong Kong
| |
Collapse
|
47
|
Lloyd Williams OH, Rijs NJ. Reaction Monitoring and Structural Characterisation of Coordination Driven Self-Assembled Systems by Ion Mobility-Mass Spectrometry. Front Chem 2021; 9:682743. [PMID: 34169059 PMCID: PMC8217442 DOI: 10.3389/fchem.2021.682743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Nature creates exquisite molecular assemblies, required for the molecular-level functions of life, via self-assembly. Understanding and harnessing these complex processes presents an immense opportunity for the design and fabrication of advanced functional materials. However, the significant industrial potential of self-assembly to fabricate highly functional materials is hampered by a lack of knowledge of critical reaction intermediates, mechanisms, and kinetics. As we move beyond the covalent synthetic regime, into the domain of non-covalent interactions occupied by self-assembly, harnessing and embracing complexity is a must, and non-targeted analyses of dynamic systems are becoming increasingly important. Coordination driven self-assembly is an important subtype of self-assembly that presents several wicked analytical challenges. These challenges are "wicked" due the very complexity desired confounding the analysis of products, intermediates, and pathways, therefore limiting reaction optimisation, tuning, and ultimately, utility. Ion Mobility-Mass Spectrometry solves many of the most challenging analytical problems in separating and analysing the structure of both simple and complex species formed via coordination driven self-assembly. Thus, due to the emerging importance of ion mobility mass spectrometry as an analytical technique tackling complex systems, this review highlights exciting recent applications. These include equilibrium monitoring, structural and dynamic analysis of previously analytically inaccessible complex interlinked structures and the process of self-sorting. The vast and largely untapped potential of ion mobility mass spectrometry to coordination driven self-assembly is yet to be fully realised. Therefore, we also propose where current analytical approaches can be built upon to allow for greater insight into the complexity and structural dynamics involved in self-assembly.
Collapse
Affiliation(s)
| | - Nicole J. Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
Pham KN, Mamun Y, Fernandez-Lima F. Structural Heterogeneity of Human Histone H2A.1. J Phys Chem B 2021; 125:4977-4986. [PMID: 33974801 PMCID: PMC8568062 DOI: 10.1021/acs.jpcb.1c00335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.
Collapse
Affiliation(s)
- Khoa N Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yasir Mamun
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
49
|
Kit MCS, Carvalho VV, Vilseck JZ, Webb IK. Gas-Phase Ion/Ion Chemistry for Structurally Sensitive Probes of Gaseous Protein Ion Structure: Electrostatic and Electrostatic to Covalent Cross-Linking. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 463:116549. [PMID: 33716558 PMCID: PMC7946065 DOI: 10.1016/j.ijms.2021.116549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intramolecular interactions within a protein are key in maintaining protein tertiary structure and understanding how proteins function. Ion mobility-mass spectrometry (IM-MS) has become a widely used approach in structural biology since it provides rapid measurements of collision cross sections (CCS), which inform on the gas-phase conformation of the biomolecule under study. Gas-phase ion/ion reactions target amino acid residues with specific chemical properties and the modified sites can be identified by MS. In this study, electrostatically reactive, gas-phase ion/ion chemistry and IM-MS are combined to characterize the structural changes between ubiquitin electrosprayed from aqueous and denaturing conditions. The electrostatic attachment of sulfo-NHS acetate to ubiquitin via ion/ion reactions and fragmentation by electron-capture dissociation (ECD) provide the identification of the most accessible protonated sites within ubiquitin as the sulfonate group forms an electrostatic complex with accessible protonated side chains. The protonated sites identified by ECD from the different solution conditions are distinct and, in some cases, reflect the disruption of interactions such as salt bridges that maintain the native protein structure. This agrees with previously published literature demonstrating that a high methanol concentration at low pH causes the structure of ubiquitin to change from a native (N) state to a more elongated A state. Results using gas-phase, electrostatic cross-linking reagents also point to similar structural changes and further confirm the role of methanol and acid in favoring a more unfolded conformation. Since cross-linking reagents have a distance constraint for the two reactive sites, the data is valuable in guiding computational structures generated by molecular dynamics. The research presented here describes a promising strategy that can detect subtle changes in the local environment of targeted amino acid residues to inform on changes in the overall protein structure.
Collapse
Affiliation(s)
- Melanie Cheung See Kit
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Veronica V. Carvalho
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Jonah Z. Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Ian K. Webb
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
50
|
Konermann L, Aliyari E, Lee JH. Mobile Protons Limit the Stability of Salt Bridges in the Gas Phase: Implications for the Structures of Electrosprayed Protein Ions. J Phys Chem B 2021; 125:3803-3814. [PMID: 33848419 DOI: 10.1021/acs.jpcb.1c00944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrosprayed protein ions can retain native-like conformations. The intramolecular contacts that stabilize these compact gas-phase structures remain poorly understood. Recent work has uncovered abundant salt bridges in electrosprayed proteins. Salt bridges are zwitterionic BH+/A- contacts. The low dielectric constant in the vacuum strengthens electrostatic interactions, suggesting that salt bridges could be a key contributor to the retention of compact protein structures. A problem with this assertion is that H+ are mobile, such that H+ transfer can convert salt bridges into neutral B0/HA0 contacts. This possible salt bridge annihilation puts into question the role of zwitterionic motifs in the gas phase, and it calls for a detailed analysis of BH+/A- versus B0/HA0 interactions. Here, we investigate this issue using molecular dynamics (MD) simulations and electrospray experiments. MD data for short model peptides revealed that salt bridges with static H+ have dissociation energies around 700 kJ mol-1. The corresponding B0/HA0 contacts are 1 order of magnitude weaker. When considering the effects of mobile H+, BH+/A- bond energies were found to be between these two extremes, confirming that H+ migration can significantly weaken salt bridges. Next, we examined the protein ubiquitin under collision-induced unfolding (CIU) conditions. CIU simulations were conducted using three different MD models: (i) Positive-only runs with static H+ did not allow for salt bridge formation and produced highly expanded CIU structures. (ii) Zwitterionic runs with static H+ resulted in abundant salt bridges, culminating in much more compact CIU structures. (iii) Mobile H+ simulations allowed for the dynamic formation/annihilation of salt bridges, generating CIU structures intermediate between scenarios (i) and (ii). Our results uncover that mobile H+ limit the stabilizing effects of salt bridges in the gas phase. Failure to consider the effects of mobile H+ in MD simulations will result in unrealistic outcomes under CIU conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Justin H Lee
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|