1
|
Yu Y, Chen K, Du Z, Fang B, Zhan J, Zhu L, Xu W. Magnetic aptamer copper nanoclusters fluorescent biosensor for the visual detection of zearalenone based on docking-aided rational tailoring. Food Chem 2024; 448:139127. [PMID: 38608399 DOI: 10.1016/j.foodchem.2024.139127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.
Collapse
Affiliation(s)
- Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zaihui Du
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jing Zhan
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Liu Y, Wang X, Liu J. Unexpected enrichment of DNA aptamers for Zn 2+ ions from an insulin selection. Chem Commun (Camb) 2024; 60:6280-6283. [PMID: 38809225 DOI: 10.1039/d4cc01546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We serendipitously discovered Zn2+-binding DNA aptamers when selecting insulin aptamers. The Zn-1 aptamer binds to Zn2+ with a dissociation constant (Kd) of ∼1 μM, and has 450-fold higher selectivity for Zn2+ over Cd2+. A strand-displacement based fluorescent sensor achieved a limit of detection of 0.2 μM Zn2+.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Xiaoqin Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
3
|
Ding Y, Gu L, Wang X, Zhang Z, Zhang H, Liu J. Affinity-Guided Coevolution of Aptamers for Guanine, Xanthine, Hypoxanthine, and Adenine. ACS Chem Biol 2024; 19:208-216. [PMID: 38194356 DOI: 10.1021/acschembio.3c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The simultaneous evolution of multiple aptamers can drastically increase the speed of aptamer discovery. Most previous studies used the same concentration for different targets, leading to the dominance of the libraries by one or a few aptamers and a low success rate. To foster the best aptamers to grow independently in the sequence space, it is important to (1) use low target concentrations close to their dissociation constants and (2) stop at an early round before any sequence starts to dominate. In this study, we demonstrate this affinity-guided selection concept using the capture-SELEX method to isolate aptamers for four important purines: guanine (5 μM), xanthine (50 μM), hypoxanthine (10 μM), and adenine (10 μM). The round 9 library was split, and in round 10, the four targets were individually used to elute the binding sequences. Using thioflavin T fluorescence spectroscopy and isothermal titration calorimetry, we confirmed highly selective aptamers for xanthine, guanine, and adenine. These aptamers have Kd values below 1 μM and around 100-fold selectivity against most competing analytes, and they compare favorably with existing RNA aptamers and riboswitches. A separate selection was performed using hypoxanthine alone, and no selective aptamer was achieved, even with negative selection, explaining the lack of its aptamer in our mixed selection. This affinity-guided multiplex SELEX study offers fundamental insights into aptamer selection and provides high-quality aptamers for three important purines.
Collapse
Affiliation(s)
- Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Lide Gu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaoqin Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ziyu Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hanxiao Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Zhao Y, Li AZ, Liu J. Capture-SELEX for Chloramphenicol Binding Aptamers for Labeled and Label-Free Fluorescence Sensing. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:102-109. [PMID: 37614296 PMCID: PMC10442912 DOI: 10.1021/envhealth.3c00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 08/25/2023]
Abstract
Chloramphenicol (CAP) is a potent antibiotic. Due to its side effects, CAP is currently banned in most countries, but it is still found in many food products and in the environment. Developing aptamer-based biosensors for the detection of CAP has interested many researchers. While both RNA and DNA aptamers were previously reported for CAP, they were all obtained by immobilization of the CAP base, which omitted the two chlorine atoms. In this work, DNA aptamers were selected using the library-immobilized method and free unmodified CAP. Three families of aptamers were obtained, and the best one named CAP1 showed a dissociation constant (Kd) of 9.8 μM using isothermal titration calorimetry (ITC). A fluorescent strand-displacement sensor showed a limit of detection (LOD) of 14 μM CAP. Thioflavin T (ThT) staining allowed label-free detection of CAP with a LOD of 1 μM in buffer, 1.8 μM in Lake Ontario water, and 3.6 μM in a wastewater sample. Comparisons were made with previously reported aptamers, and ITC failed to show binding of a previously reported 80-mer aptamer. Due to the small size and well-defined secondary structures of CAP1, this aptamer will find analytical applications for environmental and food monitoring.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Chemistry,
Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Albert Zehan Li
- Department of Chemistry,
Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry,
Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Huang PJJ, Liu J. Simultaneous Detection of L-Lactate and D-Glucose Using DNA Aptamers in Human Blood Serum. Angew Chem Int Ed Engl 2023; 62:e202212879. [PMID: 36693796 DOI: 10.1002/anie.202212879] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
L-lactate is a key metabolite indicative of physiological states, glycolysis pathways, and various diseases such as sepsis, heart attack, lactate acidosis, and cancer. Detection of lactate has been relying on a few enzymes that need additional oxidants. In this work, DNA aptamers for L-lactate were obtained using a library-immobilization selection method and the highest affinity aptamer reached a Kd of 0.43 mM as determined using isothermal titration calorimetry. The aptamers showed up to 50-fold selectivity for L-lactate over D-lactate and had little responses to other closely related analogs such as pyruvate or 3-hydroxybutyrate. A fluorescent biosensor based on the strand displacement method showed a limit of detection of 0.55 mM L-lactate, and the sensor worked in 90 % serum. Simultaneous detection of L-lactate and D-glucose in the same solution was achieved. This work has broadened the scope of aptamers to simple metabolites and provided a useful probe for continuous and multiplexed monitoring.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
6
|
Canoura J, Alkhamis O, Liu Y, Willis C, Xiao Y. High-throughput quantitative binding analysis of DNA aptamers using exonucleases. Nucleic Acids Res 2023; 51:e19. [PMID: 36583362 PMCID: PMC9976898 DOI: 10.1093/nar/gkac1210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Aptamers are nucleic acid bioreceptors that have been used in various applications including medical diagnostics and as therapeutic agents. Identifying the most optimal aptamer for a particular application is very challenging. Here, we for the first time have developed a high-throughput method for accurately quantifying aptamer binding affinity, specificity, and cross-reactivity via the kinetics of aptamer digestion by exonucleases. We demonstrate the utility of this approach by isolating a set of new aptamers for fentanyl and its analogs, and then characterizing the binding properties of 655 aptamer-ligand pairs using our exonuclease digestion assay and validating the results with gold-standard methodologies. These data were used to select optimal aptamers for the development of new sensors that detect fentanyl and its analogs in different analytical contexts. Our approach dramatically accelerates the aptamer characterization process and streamlines sensor development, and if coupled with robotics, could enable high-throughput quantitative analysis of thousands of aptamer-ligand pairs.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA.,Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Yingzhu Liu
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Connor Willis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA.,Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
7
|
Liu Y, Liu J. Salt-Toggled Capture Selection of Uric Acid Binding Aptamers. Chembiochem 2023; 24:e202200564. [PMID: 36394510 DOI: 10.1002/cbic.202200564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Uric acid is the end-product of purine metabolism in humans and an important biomarker for many diseases. To achieve the detection of uric acid without using enzymes, we previously selected a DNA aptamer for uric acid with a Kd of 1 μM but the aptamer required multiple Na+ ions for binding. Saturated binding was achieved with around 700 mM Na+ and the binding at the physiological condition was much weaker. In this work, a new selection was performed by alternating Mg2+ -containing buffers with Na+ and Li+ . After 13 rounds of selection, a new aptamer sequence named UA-Mg-1 was obtained. Isothermal titration calorimetry confirmed aptamer binding in both selection buffers, and the Kd was around 8 μM. The binding of UA-Mg-1 to UA required only Mg2+ . This is an indicator of successful switching of metal dependency via the salt-toggled selection method. The UA-Mg-1 aptamer was engineered into a fluorescent biosensor based on the strand-displacement assay with a limit of detection of 0.5 μM uric acid in the selection buffer. Finally, comparison with the previously reported Na+ -dependent aptamer and a xanthine/uric acid riboswitch was also made.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, N2L3G1, Waterloo, ON, Canada.,Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong, 999077, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, N2L3G1, Waterloo, ON, Canada.,Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
8
|
Alkhamis O, Xiao Y. Systematic Study of in Vitro Selection Stringency Reveals How To Enrich High-Affinity Aptamers. J Am Chem Soc 2023; 145:194-206. [PMID: 36574475 DOI: 10.1021/jacs.2c09522] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aptamers are oligonucleotide receptors with great potential for sensing and therapeutic applications. They are isolated from random libraries through an in vitro method termed systematic evolution of ligands by exponential enrichment (SELEX). Although SELEX-based methods have been widely employed over several decades, many aspects of the experimental process remain poorly understood in terms of how to adjust the selection conditions to obtain aptamers with the desired set of binding characteristics. As a result, SELEX is often performed with arbitrary parameters that tend to produce aptamers with insufficient affinity and/or specificity. Having a better understanding of these basic principles could increase the likelihood of obtaining high-quality aptamers. Here, we have systematically investigated how altering the selection stringency in terms of target concentration─which is essentially the root source of selection pressure for aptamer isolation─affects the outcome of SELEX. By performing four separate trials of SELEX for the same small-molecule target, we experimentally prove that the use of excessively high target concentrations promotes enrichment of low-affinity binders while also suppressing the enrichment of high-affinity aptamers. These findings should be broadly applicable across SELEX methods, given that they share the same core operating principle, and will be crucial for guiding selections to obtain high-quality aptamers in the future.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina27695, United States
| |
Collapse
|
9
|
Zhang P, Qin K, Lopez A, Li Z, Liu J. General Label-Free Fluorescent Aptamer Binding Assay Using Cationic Conjugated Polymers. Anal Chem 2022; 94:15456-15463. [DOI: 10.1021/acs.analchem.2c03564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ke Qin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. BIOSENSORS 2022; 12:816. [PMID: 36290952 PMCID: PMC9599214 DOI: 10.3390/bios12100816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nucleic-acid aptamers consisting in single-stranded DNA oligonucleotides emerged as very promising biorecognition elements for electrochemical biosensors applied in various fields such as medicine, environmental, and food safety. Despite their outstanding features, such as high-binding affinity for a broad range of targets, high stability, low cost and ease of modification, numerous challenges had to be overcome from the aptamer selection process on the design of functioning biosensing devices. Moreover, in the case of small molecules such as metabolites, toxins, drugs, etc., obtaining efficient binding aptamer sequences proved a challenging task given their small molecular surface and limited interactions between their functional groups and aptamer sequences. Thus, establishing consistent evaluation standards for aptamer affinity is crucial for the success of these aptamers in biosensing applications. In this context, this article will give an overview on the thermodynamic and structural aspects of the aptamer-target interaction, its specificity and selectivity, and will also highlight the current methods employed for determining the aptamer-binding affinity and the structural characterization of the aptamer-target complex. The critical aspects regarding the generation of aptamer-modified electrodes suitable for electrochemical sensing, such as appropriate bioreceptor immobilization strategy and experimental conditions which facilitate a convenient anchoring and stability of the aptamer, are also discussed. The review also summarizes some effective small molecule aptasensing platforms from the recent literature.
Collapse
Affiliation(s)
- Andra Mihaela Onaş
- Advanced Polymer Materials Group, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Constanţa Dascălu
- Faculty of Applied Sciences, University ‘Politehnica’ of Bucharest, 313 Splaiul Independenţei, District 6, 060042 Bucharest, Romania
| | - Matei D. Raicopol
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Luisa Pilan
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| |
Collapse
|
11
|
Huang PJJ, Liu J. A DNA Aptamer for Theophylline with Ultrahigh Selectivity Reminiscent of the Classic RNA Aptamer. ACS Chem Biol 2022; 17:2121-2129. [PMID: 35943093 DOI: 10.1021/acschembio.2c00179] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since the report of the RNA aptamer for theophylline, theophylline has become a key molecule in chemical biology for designing RNA switches and riboswitches. In addition, theophylline is an important drug for treating airway diseases including asthma. The classic RNA aptamer with excellent selectivity for theophylline has been used to design biosensors, although DNA aptamers are more desirable for stability and cost considerations. In this work, we selected DNA aptamers for theophylline, and all the top sequences shared the same binding motifs. Binding was confirmed using isothermal titration calorimetry and a nuclease digestion assay, showing a dissociation constant (Kd) around 0.5 μM theophylline. The Theo2201 aptamer can be truncated down to 23-mer while still has a Kd of 9.8 μM. The selectivity for theophylline over caffeine is around 250,000-fold based on a strand-displacement assay, which was more than 20-fold higher compared to the classic RNA aptamer. For other tested analogs, the DNA aptamer also showed better selectivity. Using the structure-switching aptamer sensor design method, a detection limit of 17 nM theophylline was achieved in the selection buffer, and a detection limit of 31 nM was obtained in 10% serum.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Kadam US, Trinh KH, Kumar V, Lee KW, Cho Y, Can MHT, Lee H, Kim Y, Kim S, Kang J, Kim JY, Chung WS, Hong JC. Identification and structural analysis of novel malathion-specific DNA aptameric sensors designed for food testing. Biomaterials 2022; 287:121617. [PMID: 35728408 DOI: 10.1016/j.biomaterials.2022.121617] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Malathion is an organophosphate chemical (OPC) and a toxic contaminant that adversely impacts food quality, human health, biodiversity, and the environment. Due to its small size and unavailability of sensitive sensors, detection of malathion remains a challenging task. Often chromatographic methods employed to analyze OPCs suffer from several shortcomings, including cost, immobility, laboriousness, and unsuitability for point-of-care settings. Hence, developing a specific and sensitive diagnostic sensor for quick and inexpensive food testing is essential. We discovered four unique malathion-specific ssDNA aptamers; designed two independent sensing strategies using fluorescence labeling and Thioflavin T (ThT) displacement. Selected aptamers formed the G4-quadruplex-like (G4Q) structure, which helped develop a label-free detection approach with a 2.01 ppb limit of detection. Additionally, 3D structures of aptamers were generated and validated using a series of computational modeling programs. Furthermore, we explored structural features using CD spectroscopy and molecular docking, probing ligands' binding mode, and revealed vital intermolecular interactions with aptamers. Subsequently, the novel sensors were optimized to detect malathion from food samples. The novel sensors could be further developed to meet the demands of sensing and quantifying toxic contaminants from real food samples in field conditions.
Collapse
Affiliation(s)
- Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Kien Hong Trinh
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea; Faculty of Biotechnology, Vietnam National University of Agriculture, 12400, Hanoi, Viet Nam
| | - Vikas Kumar
- Department of Bio and Medical Big Data (BK21 Four), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, 52828, Gyeongnam, South Korea
| | - Keun Woo Lee
- Department of Bio and Medical Big Data (BK21 Four), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, 52828, Gyeongnam, South Korea
| | - Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Mai-Huong Thi Can
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jae-Yean Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
13
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. In vitro selection and characterization of a DNA aptamer targeted to Prorocentrum minimum-A common harmful algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154771. [PMID: 35339548 DOI: 10.1016/j.scitotenv.2022.154771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Prorocentrum minimum is a common diarrhetic shellfish toxins-producing marine microalga that may seriously endanger marine resources and cause great economic losses. The development of a novel rapid detection technique is of great importance for the prevention and control of the damage caused by P. minimum. In this study, the aptamer against P. minimum was for the first time generated from an artificially synthesized single-stranded DNA library by systematic evolution of ligand by exponential enrichment (SELEX), using P. minimum and P. minimum-related species, including Prorocentrum donghaiense, Prorocentrum lima and Prorocentrum micans as target and counter-screening species, respectively. The aptamer library was successfully obtained at the end of 18 rounds of SELEX-screening by continuously monitoring the binding ratio of the resultant ssDNA from each round. Three sequences (Apt 1, Apt 2 and Apt 3) with the highest frequency in the aptamer library resulted from high-throughput sequencing were first selected as candidate aptamers. The secondary structure of these sequences was predicted and analyzed. In addition, the specificity and affinity of these candidate aptamers were determined by flow cytometry analysis. The results indicated that these aptamers had high specificity and affinity, with a KD of (224.6 ± 8.8) nM (Apt 1), (286.6 ± 13.9) nM (Apt 2) and (388.5 ± 44.6) nM (Apt 3), respectively. Apt 1 was therefore chosen as the best aptamer against P. minimum. Finally, the fluorescence microscopic examination further confirmed that Apt 1 can well bind to P. minimum. In summary, Apt 1 may be promising for being used as a novel molecular recognition element for P. minimum.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jinju Ma
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| |
Collapse
|
14
|
Manuel BA, Sterling SA, Sanford AA, Heemstra JM. Systematically Modulating Aptamer Affinity and Specificity by Guanosine-to-Inosine Substitution. Anal Chem 2022; 94:6436-6440. [PMID: 35435665 DOI: 10.1021/acs.analchem.2c00422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aptamers are widely used in small molecule detection applications due to their specificity, stability, and cost effectiveness. One key challenge in utilizing aptamers in sensors is matching the binding affinity of the aptamer to the desired concentration range for analyte detection. The most common methods for modulating affinity have inherent limitations, such as the likelihood of drastic changes in aptamer folding. Here, we propose that substituting guanosine for inosine at specific locations in the aptamer sequence provides a less perturbative approach to modulating affinity. Inosine is a naturally occurring nucleotide that results from hydrolytic deamination of adenosine, and like guanine, it base pairs with cytosine. Using the well-studied cocaine binding aptamer, we systematically replaced guanosine with inosine and were able to generate sequences having a range of binding affinities from 230 nM to 80 μM. Interestingly, we found that these substitutions could also modulate the specificity of the aptamers, leading to a range of binding affinities for structurally related analytes. Analysis of folding stability via melting temperature shows that, as expected, aptamer structure is impacted by guanosine-to-inosine substitutions. The ability to tune binding affinity and specificity through guanosine-to-inosine substitution provides a convenient and reliable approach for rapidly generating aptamers for diverse biosensing applications.
Collapse
Affiliation(s)
- Brea A Manuel
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sierra A Sterling
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Aimee A Sanford
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Trinh KH, Kadam US, Rampogu S, Cho Y, Yang KA, Kang CH, Lee KW, Lee KO, Chung WS, Hong JC. Development of novel fluorescence-based and label-free noncanonical G4-quadruplex-like DNA biosensor for facile, specific, and ultrasensitive detection of fipronil. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127939. [PMID: 34893377 DOI: 10.1016/j.jhazmat.2021.127939] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Fipronil is a broad-spectrum insecticide widely used in agriculture and residential areas; its indiscriminate use leads to environmental pollution and poses health hazards. Early detection of fipronil is critical to prevent the deleterious effects. However, current insecticide analysis methods such as HPLC, LC/MS, and GC/MS are incompetent; they are costly, immobile, time-consuming, laborious, and need skilled technicians. Hence, a sensitive, specific, and cheap biosensor are essential to containing the contamination. Here, we designed two novel biosensors-the first design relied on fluorescent labeling/quenching, while the second sensor focused on label-free detection using Thioflavin T displacement. Altogether, we identified four candidate aptamers, predicted secondary structures, and performed 3D molecular modeling to predict the binding pocket of fipronil in FiPA6B aptamer. Furthermore, the aptameric sensors showed high sensitivity to fipronil of sub-ppb level LOD, attributed to stringent experimental design. The biosensors displayed high specificity against other phenylpyrazole insecticides and demonstrated robust sensitivity for fipronil in real samples like cabbage and cucumber. Notably, to the best of our knowledge, this is the first demonstration of noncanonical G4-quadruplex-like aptamer binding to fipronil, verified using CD spectroscopy. Such aptasensors possess considerable potential for real-time measurements of hazardous insecticides as point-of-care technology.
Collapse
Affiliation(s)
- Kien Hong Trinh
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi City 12400, Vietnam
| | - Ulhas Sopanrao Kadam
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Shailima Rampogu
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Yuhan Cho
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Kyung-Ae Yang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Chang Ho Kang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Keun-Woo Lee
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Woo Sik Chung
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Plant Sciences, University of Missouri, Columbia, Missouri, MO 65211, USA.
| |
Collapse
|
16
|
Huang Y, Nguyen MK, Nguyen VH, Loo J, Lehtonen AJ, Kuzyk A. Characterizing Aptamers with Reconfigurable Chiral Plasmonic Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2954-2960. [PMID: 35212547 PMCID: PMC8908738 DOI: 10.1021/acs.langmuir.1c03434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Aptamers have emerged as versatile affinity ligands and as promising alternatives to protein antibodies. However, the inconsistency in the reported affinities and specificities of aptamers has greatly hindered the development of aptamer-based applications. Herein, we present a strategy to characterize aptamers by using DNA origami-based chiral plasmonic assemblies as reporters and establishing a competitive hybridization reaction-based thermodynamic model. We demonstrate the characterization of several DNA aptamers, including aptamers for small molecules and macromolecules, as well as aptamers with high and low affinities. The presented characterization scheme can be readily adapted to a wide selection of aptamers. We anticipate that our approach will advance the development of aptamer-based applications by enabling reliable and reproducible characterization of aptamers.
Collapse
Affiliation(s)
- Yike Huang
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Minh-Kha Nguyen
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dist. 10, 700000 Ho Chi Minh City, Vietnam
- Vietnam
National University Ho Chi Minh City,
Linh Trung Ward, Thu Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Vu Hoang Nguyen
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Jacky Loo
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Arttu J. Lehtonen
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Anton Kuzyk
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
17
|
Wang B, Zhao C, Wang Z, Yang KA, Cheng X, Liu W, Yu W, Lin S, Zhao Y, Cheung KM, Lin H, Hojaiji H, Weiss PS, Stojanović MN, Tomiyama AJ, Andrews AM, Emaminejad S. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. SCIENCE ADVANCES 2022; 8:eabk0967. [PMID: 34985954 PMCID: PMC8730602 DOI: 10.1126/sciadv.abk0967] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Wearable technologies for personalized monitoring require sensors that track biomarkers often present at low levels. Cortisol—a key stress biomarker—is present in sweat at low nanomolar concentrations. Previous wearable sensing systems are limited to analytes in the micromolar-millimolar ranges. To overcome this and other limitations, we developed a flexible field-effect transistor (FET) biosensor array that exploits a previously unreported cortisol aptamer coupled to nanometer-thin-film In2O3 FETs. Cortisol levels were determined via molecular recognition by aptamers where binding was transduced to electrical signals on FETs. The physiological relevance of cortisol as a stress biomarker was demonstrated by tracking salivary cortisol levels in participants in a Trier Social Stress Test and establishing correlations between cortisol in diurnal saliva and sweat samples. These correlations motivated the development and on-body validation of an aptamer-FET array–based smartwatch equipped with a custom, multichannel, self-referencing, and autonomous source measurement unit enabling seamless, real-time cortisol sweat sensing.
Collapse
Affiliation(s)
- Bo Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaoqing Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kyung-Ae Yang
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xuanbing Cheng
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenzhuo Yu
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shuyu Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haisong Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hannaneh Hojaiji
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Milan N. Stojanović
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - A. Janet Tomiyama
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (A.M.A.); (S.E.)
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (A.M.A.); (S.E.)
| |
Collapse
|
18
|
Park J, Yang KA, Choi Y, Choe JK. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. ENVIRONMENT INTERNATIONAL 2022; 158:107000. [PMID: 34991260 DOI: 10.1016/j.envint.2021.107000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely detected environmental contaminants, and there is a great need for development of sensor technologies for rapid and continuous monitoring of PFAS. In this study, we have developed fluorescence based aptasensor that can possibly monitor perfluorooctanoic acid (PFOA) in water with limit of detection (LOD) of 0.17 μM. This is first to report the successful isolation of PFAS binding ssDNA aptamers. The obtained aptamer selectively binds PFOA with dissociation constant (KD) of 5.5 μM. Specific aptamer binding sites to PFOA were identified and the length of the fluorinated carbons was a key binding factor rather than the functional group. The aptamer binding to structurally similar PFAS compounds (i.e., perfluorocarboxylic acids and perfluorosulfonic acids with 4-8 carbon chains) was also investigated; the aptamer KD values were 6.5 and 3.3 μM for perfluoroheptanoic acid and perfluorohexanesulfonic acid, respectively, while other analogs did not bind to the aptamer. The presence of major inorganic ions and dissolved organic matter had negligible influences on the aptamer performance (<14% at a 10 mM concentration), and the aptamer performance was also robust in real wastewater effluent conditions, with a KD of 7.4 μM for PFOA. Fluorescence-based aptasensor developed in this study is adequate in monitoring PFOA levels in water contaminated with the accident spills and heavy usage of fire-fighting foams near the industrial sites and military bases. More importantly, the study opens up new capability of aptasensors to efficiently monitor the trace amount of various PFAS compounds and other fluorinated alternatives in natural and engineered water environments.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung-Ae Yang
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Yongju Choi
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Zinc-Finger-Protein-Based Microfluidic Electrophoretic Mobility Reversal Assay for Quantitative Double-Stranded DNA Analysis. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Trinh KH, Kadam US, Song J, Cho Y, Kang CH, Lee KO, Lim CO, Chung WS, Hong JC. Novel DNA Aptameric Sensors to Detect the Toxic Insecticide Fenitrothion. Int J Mol Sci 2021; 22:ijms221910846. [PMID: 34639187 PMCID: PMC8509669 DOI: 10.3390/ijms221910846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Fenitrothion is an insecticide belonging to the organophosphate family of pesticides that is widely used around the world in agriculture and living environments. Today, it is one of the most hazardous chemicals that causes severe environmental pollution. However, detection of fenitrothion residues in the environment is considered a significant challenge due to the small molecule nature of the insecticide and lack of molecular recognition elements that can detect it with high specificity. We performed in vitro selection experiments using the SELEX process to isolate the DNA aptamers that can bind to fenitrothion. We found that newly discovered DNA aptamers have a strong ability to distinguish fenitrothion from other organophosphate insecticides (non-specific targets). Furthermore, we identified a fenitrothion-specific aptamer; FenA2, that can interact with Thioflavin T (ThT) to produce a label-free detection mode with a Kd of 33.57 nM (9.30 ppb) and LOD of 14 nM (3.88 ppb). Additionally, the FenA2 aptamer exhibited very low cross-reactivity with non-specific targets. This is the first report showing an aptamer sensor with a G4-quadruplex-like structure to detect fenitrothion. Moreover, these aptamers have the potential to be further developed into analytical tools for real-time detection of fenitrothion from a wide range of samples.
Collapse
Affiliation(s)
- Kien Hong Trinh
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi City 12400, Vietnam
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Jinnan Song
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Yuhan Cho
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Chang Ho Kang
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Kyun Oh Lee
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Chae Oh Lim
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Woo Sik Chung
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Jong Chan Hong
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
21
|
Sanford AA, Rangel AE, Feagin TA, Lowery RG, Argueta-Gonzalez HS, Heemstra JM. RE-SELEX: restriction enzyme-based evolution of structure-switching aptamer biosensors. Chem Sci 2021; 12:11692-11702. [PMID: 34659704 PMCID: PMC8442683 DOI: 10.1039/d1sc02715h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising for biosensing applications because target-induced conformational change can be directly linked to a functional output. However, traditional evolution methods do not select for the significant conformational change needed to create structure-switching biosensors. Modified selection methods have been described to select for structure-switching architectures, but these remain limited by the need for immobilization. Herein we describe the first homogenous, structure-switching aptamer selection that directly reports on biosensor capacity for the target. We exploit the activity of restriction enzymes to isolate aptamer candidates that undergo target-induced displacement of a short complementary strand. As an initial demonstration of the utility of this approach, we performed selection against kanamycin A. Four enriched candidate sequences were successfully characterized as structure-switching biosensors for detection of kanamycin A. Optimization of biosensor conditions afforded facile detection of kanamycin A (90 μM to 10 mM) with high selectivity over three other aminoglycosides. This research demonstrates a general method to directly select for structure-switching biosensors and can be applied to a broad range of small-molecule targets.
Collapse
Affiliation(s)
- Aimee A Sanford
- Department of Chemistry, Emory University Atlanta Georgia 30322 USA
| | - Alexandra E Rangel
- Department of Chemistry, Center for Cell and Genome Science, University of Utah Salt Lake City Utah 84112 USA
| | - Trevor A Feagin
- Department of Chemistry, Center for Cell and Genome Science, University of Utah Salt Lake City Utah 84112 USA
| | | | | | | |
Collapse
|
22
|
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small‐Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| |
Collapse
|
23
|
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021; 60:16800-16823. [PMID: 33559947 PMCID: PMC8292151 DOI: 10.1002/anie.202008663] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor-intensive to develop aptamer-based sensors for small-molecule detection. Here, we review the challenges and advances in the isolation and characterization of small-molecule-binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer-target binding and structure. Afterwards, we discuss various small-molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer-based small-molecule sensors for real-world applications.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
24
|
Coonahan ES, Yang KA, Pecic S, De Vos M, Wellems TE, Fay MP, Andersen JF, Tarning J, Long CA. Structure-switching aptamer sensors for the specific detection of piperaquine and mefloquine. Sci Transl Med 2021; 13:13/585/eabe1535. [PMID: 33731432 DOI: 10.1126/scitranslmed.abe1535] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Tracking antimalarial drug use and efficacy is essential for monitoring the current spread of antimalarial drug resistance. However, available methods for determining tablet quality and patient drug use are often inaccessible, requiring well-equipped laboratories capable of performing liquid chromatography-mass spectrometry (LC-MS). Here, we report the development of aptamer-based fluorescent sensors for the rapid, specific detection of the antimalarial compounds piperaquine and mefloquine-two slow-clearing partner drugs in current first-line artemisinin-based combination therapies (ACTs). Highly selective DNA aptamers were identified that bind piperaquine and mefloquine with dissociation constants (K d's) measured in the low nanomolar range via two independent methods. The aptamers were isolated from a library of single-stranded DNA molecules using a capture-systematic evolution of ligands by exponential enrichment (SELEX) technique and then adapted into structure-switching aptamer fluorescent sensors. Sensor performance was optimized for the detection of drug from human serum and crushed tablets, resulting in two sensing platforms. The patient sample platform was validated against an LC-MS standard drug detection method in samples from healthy volunteers and patients with malaria. This assay provides a rapid and inexpensive method for tracking antimalarial drug use and quality for the containment and study of parasite resistance, a major priority for malaria elimination campaigns. This sensor platform allows for flexibility of sample matrix and can be easily adapted to detect other small-molecule drugs.
Collapse
Affiliation(s)
- Erin S Coonahan
- Laboratory of Malaria and Vector Research, NIAID, NIH, MD 20892-8132, USA.,Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kyung-Ae Yang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University , Fullerton, CA 92831, USA
| | - Maarten De Vos
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK.,Department of Electrical Engineering (ESAT), KU Leuven, Leuven 3000, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, NIAID, NIH, MD 20892-8132, USA
| | - Michael P Fay
- Biostatistics Research Branch, DCR, NIAID, NIH, Rockville, MD 20852, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, NIH, MD 20892-8132, USA
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID, NIH, MD 20892-8132, USA.
| |
Collapse
|
25
|
Yang Y, Cheng S, Dong W. Benzimidazole-based turn-on fluorescence probe developed for highly specific and ultrasensitive detection of hypochlorite ions in living cells. LUMINESCENCE 2021; 36:1377-1384. [PMID: 33900032 DOI: 10.1002/bio.4063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 11/11/2022]
Abstract
Hypochlorite (ClO- ), as one of the active oxygen species (ROS), plays an essential role in the cellular defence system and organism immunity. In this paper, we successfully synthesized a new 'turn-on' fluorescent probe BMF based on benzimidazole and characterized it by spectroscopic methods. The designed probe can quickly respond to ClO- with the obvious colour change from pink to colourless. Notably, the probe BMF exhibited almost no fluorescence, but showed strong fluorescence after adding ClO- , including an excellent fluorescence turn-on effect. The fluorescence turn-on phenomenon of BMF was attributed to the strong oxidation of ClO- , which severed the connecting double bond and disrupted the intramolecular charge transfer (ICT) system, plus light-induced electron transfer effect between the fluorophore and the recognition group was discontinued. In addition, the cytotoxicity assay showed that the probe had lower cytotoxicity. Based on these advantages, we demonstrated that probe BMF might be a good candidate for detecting ClO- in biological systems.
Collapse
Affiliation(s)
- Yi Yang
- Outpatient Department, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
26
|
Luo H, Jie T, Zheng L, Huang C, Chen G, Cui W. Electrospun Nanofibers for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:163-190. [PMID: 33543460 DOI: 10.1007/978-3-030-58174-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lately, a remarkable progress has been recorded in the field of electrospinning for the preparation of numerous types of nanofiber scaffolds. These scaffolds present some remarkable features including high loading capacity and encapsulation efficiency, superficial area and porosity, potential for modification, structure for the co-delivery of various therapies, and cost-effectiveness. Their present and future applications for cancer diagnosis and treatment are promising and pioneering. In this chapter we provide a comprehensive overview of electrospun nanofibers (ESNFs) applications in cancer diagnosis and treatment, covering diverse types of drug-loaded electrospun nanofibers.
Collapse
Affiliation(s)
- Huanhuan Luo
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tianyang Jie
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zheng
- The central laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenglong Huang
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Alkhamis O, Yang W, Farhana R, Yu H, Xiao Y. Label-free profiling of DNA aptamer-small molecule binding using T5 exonuclease. Nucleic Acids Res 2020; 48:e120. [PMID: 33053182 PMCID: PMC7672472 DOI: 10.1093/nar/gkaa849] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
In vitro aptamer isolation methods can yield hundreds of potential candidates, but selecting the optimal aptamer for a given application is challenging and laborious. Existing aptamer characterization methods either entail low-throughput analysis with sophisticated instrumentation, or offer the potential for higher throughput at the cost of providing a relatively increased risk of false-positive or -negative results. Here, we describe a novel method for accurately and sensitively evaluating the binding between DNA aptamers and small-molecule ligands in a high-throughput format without any aptamer engineering or labeling requirements. This approach is based on our new finding that ligand binding inhibits aptamer digestion by T5 exonuclease, where the extent of this inhibition correlates closely with the strength of aptamer-ligand binding. Our assay enables accurate and efficient screening of the ligand-binding profiles of individual aptamers, as well as the identification of the best target binders from a batch of aptamer candidates, independent of the ligands in question or the aptamer sequence and structure. We demonstrate the general applicability of this assay with a total of 106 aptamer-ligand pairs and validate these results with a gold-standard method. We expect that our assay can be readily expanded to characterize small-molecule-binding aptamers in an automated, high-throughput fashion.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Weijuan Yang
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Rifat Farhana
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
28
|
Bognár Z, Gyurcsányi RE. Aptamers against Immunoglobulins: Design, Selection and Bioanalytical Applications. Int J Mol Sci 2020; 21:E5748. [PMID: 32796581 PMCID: PMC7461046 DOI: 10.3390/ijms21165748] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Nucleic acid aptamers show clear promise as diagnostic reagents, as highly specific strands were reported against a large variety of biomarkers. They have appealing benefits in terms of reproducible generation by chemical synthesis, controlled modification with labels and functionalities providing versatile means for detection and oriented immobilization, as along with high biochemical and temperature resistance. Aptamers against immunoglobulin targets-IgA, IgM, IgG and IgE-have a clear niche for diagnostic applications, therefore numerous aptamers have been selected and used in combination with a variety of detection techniques. The aim of this review is to overview and evaluate aptamers selected for the recognition of antibodies, in terms of their design, analytical properties and diagnostic applications. Aptamer candidates showed convincing performance among others to identify stress and upper respiratory tract infection through SIgA detection, for cancer cell recognition using membrane bound IgM, to detect and treat hemolytic transfusion reactions, autoimmune diseases with IgG and detection of IgE for allergy diseases. However, in general, their use still lags significantly behind what their claimed benefits and the plethora of application opportunities would forecast.
Collapse
Affiliation(s)
| | - Róbert E. Gyurcsányi
- BME “Lendület” Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary;
| |
Collapse
|
29
|
Li Z, Zhang S, Yu T, Dai Z, Wei Q. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone. Anal Chem 2019; 91:10448-10457. [PMID: 31192585 DOI: 10.1021/acs.analchem.9b00750] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing easy-to-use and miniaturized detectors is essential for in-field monitoring of environmentally hazardous substances, such as the cyanotoxins. We demonstrated a differential fluorescent sensor array made of aptamers and single-stranded DNA (ssDNA) dyes for multiplexed detection and discrimination of four common cyanotoxins with an ordinary smartphone within 5 min of reaction. The assay reagents were preloaded and dried in a microfluidic chip with a long shelf life over 60 days. Upon the addition of analyte solutions, competitive binding of cyanotoxin to the specific aptamer-dye conjugate occurred. A zone-specific and concentration-dependent reduction in the green fluorescence was observed as a result of the aptamer conformation change. The aptasensors are fully optimized by quantification of their dissociation constants, tuning the stoichiometric ratios of reaction mixtures, and implementation of an internal intensity correction step. The fluorescent sensor array allowed for accurate identification and measurement of four important cyanotoxins, including anatoxin-a (ATX), cylindrospermopsin (CYN), nodularin (NOD), and microcystin-LR (MC-LR), in parallel, with the limit of detection (LOD) down to a few nanomolar (<3 nM), which is close to the World Health Organization's guideline for the maximum concentration allowed in drinking water. The smartphone-based sensor platform also showed remarkable chemical specificity against potential interfering agents in water. The performance of the system was tested and validated with real lake water samples that were contaminated with trace levels of individual cyanotoxins as well as binary, ternary, and quaternary mixtures. Finally, a smartphone app interface has been developed for rapid on-site data processing and result display.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Shengwei Zhang
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Tao Yu
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Zhiming Dai
- Department of Electrical and Computer Engineering , North Carolina State University , 890 Oval Drive , Raleigh , North Carolina 27606 , United States
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
30
|
Niu J, Hu X, Ouyang W, Chen Y, Liu S, Han J, Liu L. Femtomolar Detection of Lipopolysaccharide in Injectables and Serum Samples Using Aptamer-Coupled Reduced Graphene Oxide in a Continuous Injection-Electrostacking Biochip. Anal Chem 2019; 91:2360-2367. [PMID: 30576605 DOI: 10.1021/acs.analchem.8b05106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A method for microfluidic sample preconcentration to detect femtomolar level of lipopolysaccharide (LPS) is introduced, enabled by 6-carboxyfluorescein (6-FAM) labeled aptamer-LPS binding along with reduced graphene oxide (rGO). The free FAM-aptamers can be adsorbed onto the surface of rGO, resulting in fluorescence quenching of background signals. Conversely, the aptamer-LPS complex cannot be adsorbed by rGO, so the fluorescence is maintained and detected. When an electric field is applied across the microchannel with Nafion membrane in the chip, only the fluorescence of aptamer-LPS complex can be detected and stacked by continuous injection-electrostacking (CI-ES). The method shows a high selectivity (in the presence of pyrophosphate, FAD+, NAD+, AMP, ADP, ATP, phosphatidylcholine, LTA, and β-d-glucans which respond positively to LAL) to LPS and an extreme sensitivity with the limit of detection (LOD) at 7.9 fM (7.9 × 10-4 EU/mL) and 8.3 fM (8.3 × 10-4 EU/mL) for water sample and serum sample, respectively. As a practical application, this method can detect LPS in injections and serum samples of human and sepsis model mouse and quickly distinguish Gram-negative bacteria Escherichia coli ( E. coli) from Gram-positive bacteria Staphylococcus aureus ( S. aureus) and fungus Candida albicans ( C. albicans). More importantly, by changing the aptamers based on different targets, we can detect different analytes. Therefore, aptamer-coupled rGO in a CI-ES biochip is a universal, sensitive, and specific method. For TOC only.
Collapse
Affiliation(s)
- Junxin Niu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Wei Ouyang
- Department of Electrical Engineering and Computer Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yue Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Biological Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Lihong Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| |
Collapse
|
31
|
Nakatsuka N, Yang KA, Abendroth JM, Cheung KM, Xu X, Yang H, Zhao C, Zhu B, Rim YS, Yang Y, Weiss PS, Stojanović MN, Andrews AM. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 2018; 362:319-324. [PMID: 30190311 DOI: 10.1126/science.aao6750] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
Detection of analytes by means of field-effect transistors bearing ligand-specific receptors is fundamentally limited by the shielding created by the electrical double layer (the "Debye length" limitation). We detected small molecules under physiological high-ionic strength conditions by modifying printed ultrathin metal-oxide field-effect transistor arrays with deoxyribonucleotide aptamers selected to bind their targets adaptively. Target-induced conformational changes of negatively charged aptamer phosphodiester backbones in close proximity to semiconductor channels gated conductance in physiological buffers, resulting in highly sensitive detection. Sensing of charged and electroneutral targets (serotonin, dopamine, glucose, and sphingosine-1-phosphate) was enabled by specifically isolated aptameric stem-loop receptors.
Collapse
Affiliation(s)
- Nako Nakatsuka
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Kyung-Ae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - John M Abendroth
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Kevin M Cheung
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xiaobin Xu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, CA 90095, USA
| | - Chuanzhen Zhao
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Bowen Zhu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - You Seung Rim
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yang Yang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA. .,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.,Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Milan N Stojanović
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York, NY 10032, USA. .,Departments of Biomedical Engineering and Systems Biology, Columbia University, New York, NY 10032, USA
| | - Anne M Andrews
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA. .,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.,Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Yang KA, Chun H, Zhang Y, Pecic S, Nakatsuka N, Andrews AM, Worgall TS, Stojanovic MN. High-Affinity Nucleic-Acid-Based Receptors for Steroids. ACS Chem Biol 2017; 12:3103-3112. [PMID: 29083858 DOI: 10.1021/acschembio.7b00634] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Artificial receptors for hydrophobic molecules usually have moderate affinities and limited selectivities. We describe three new classes of high affinity hydrophobic receptors for nonaromatic steroids based on deoxyribonucleotides, obtained through five high stringency selections coupled with tailored counter-selections. The isolation of multiple classes of high affinity steroid receptors demonstrates the surprising breadth of moderately sized hydrophobic binding motifs (<40 nucleotides) available to natural nucleic acids. Studies of interactions with analogs indicate that two classes, four-way junctions and 4XGN motifs, comprise receptors with shapes that prevent binding of specific steroid conjugates used in counter-selections. Furthermore, they strongly prefer nonhydroxylated steroid cores, which is typical for hydrophobic receptors. The third new class accommodates hydroxyl groups in high-affinity, high-selectivity binding pockets, thus reversing the preferences of the first two classes. The high-affinity binding of aptamers to targets efficiently inhibits double-helix formation in the presence of the complementary oligonucleotides. The high affinity of some of these receptors and tailored elimination of binding through counter-selections ensures that these new aptamers will enable clinical chemistry applications.
Collapse
Affiliation(s)
| | - Hyosun Chun
- School
of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea
| | | | | | - Nako Nakatsuka
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Anne M. Andrews
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
33
|
Yu H, Zheng J, Yang S, Asiri AM, Alamry KA, Sun M, Zhang K, Wang S, Yang R. Use of a small molecule as an initiator for interchain staudinger reaction: A new ATP sensing platform using product fluorescence. Talanta 2017; 178:282-286. [PMID: 29136823 DOI: 10.1016/j.talanta.2017.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
Abstract
We demonstrated that a small molecule induced interchain Staudinger reaction can be employed for highly selective detection of adenosine triphosphate (ATP), an important energy-storage biomolecule. A designed ATP split aptamer (A1) was first functionalized with a weakly fluorescent coumarin derivative due to an azide group (azido-coumarin). The second DNA strand (A2) was covalently linked with triphenylphosphine, which could selectively and efficiently reduce azido to amino group through the Staudinger reaction. The A2 was then hybridized with a half of another designed longer DNA strand (T1). The second half of T1 was a split aptamer and selectively recognized ATP with A1 to form a sandwich structure. The specific interaction between ATP and the aptamers drew the two functionalized DNA strands (A1 and A2) together to initiate the interchain Staudinger reduction at fmol-nmol concentration level, hence produced fluorescent 7-aminocoumarin which could be used as an indicator for the presence of trace ATP. The reaction process had a concentration dependent manner with ATP in a large concentration range. Such a strategy of interchain Staudinger reaction can be extended to construct biosensors for other small functional molecules on the basis of judiciously designed aptamers.
Collapse
Affiliation(s)
- Huan Yu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jing Zheng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Abdullah M Asiri
- NAAM Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid A Alamry
- NAAM Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mingtai Sun
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Kui Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Suhua Wang
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| |
Collapse
|
34
|
Zhang A, Chang D, Zhang Z, Li F, Li W, Wang X, Li Y, Hua Q. In Vitro Selection of DNA Aptamers that Binds Geniposide. Molecules 2017; 22:molecules22030383. [PMID: 28264528 PMCID: PMC6155188 DOI: 10.3390/molecules22030383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Geniposide is a key iridoid glycoside from Gardenia jasminoides fructus widely used in traditional Chinese herbal medicine. However, detection of this small molecule represents a significant challenge mostly due to the lack of specific molecular recognition elements. In this study, we have performed in vitro selection experiments to isolate DNA aptamers that can specifically bind geniposide. Using a stringent selection procedure, we have isolated DNA aptamers that can distinguish geniposide from genipin and glucose, two structural analogs of geniposide. Two top aptamers exhibit low micromolar binding affinity towards geniposide, but show significantly reduced affinity to genipin and glucose. These aptamers have the potential to be further developed into analytical tools for the detection of geniposide.
Collapse
Affiliation(s)
- Aozhe Zhang
- School of Basic Medical Science, Beijing University of Chinese Medicine, 11 East Road, North 3rd Ring Road, Chaoyang District, Beijing 100029, China.
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - Zijian Zhang
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 11 East Road, North 3rd Ring Road, Chaoyang District, Beijing 100029, China.
| | - Fan Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - Weihong Li
- School of Basic Medical Science, Beijing University of Chinese Medicine, 11 East Road, North 3rd Ring Road, Chaoyang District, Beijing 100029, China.
| | - Xu Wang
- School of Basic Medical Science, Beijing University of Chinese Medicine, 11 East Road, North 3rd Ring Road, Chaoyang District, Beijing 100029, China.
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - Qian Hua
- School of Basic Medical Science, Beijing University of Chinese Medicine, 11 East Road, North 3rd Ring Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
35
|
Yang KA, Pei R, Stojanovic MN. In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules. Methods 2016; 106:58-65. [PMID: 27155227 DOI: 10.1016/j.ymeth.2016.04.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022] Open
Abstract
We recently optimized a procedure that directly yields aptameric sensors for small molecules in so-called structure-switching format. The protocol has a high success rate, short time, and is sufficiently simple to be readily implemented in a non-specialist laboratory. We provide a stepwise guide to this selection protocol.
Collapse
Affiliation(s)
- Kyung-Ae Yang
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Renjun Pei
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Milan N Stojanovic
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
36
|
Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci 2016; 4:922-32. [PMID: 27048889 DOI: 10.1039/c6bm00070c] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The advent of nanotechnology has provided unprecedented opportunities for nanomedicine. Electrospun nanofibers have some astounding features such as high loading capacity, extremely large surface area and porosity, high encapsulation efficiency, ease of modification, combination of diverse therapies, low cost and great benefits. These remarkable structure-dependent properties have far reaching application potential in cancer diagnosis and therapy such as ultra-sensitive sensing systems for point-of-care cancer detection, targeted cancer cell capture, and functional and smart anticancer drug delivery systems. This review summarizes the principal mechanism of electrospun nanofibers and a variety of modified electrospun nanofibers, illustrates their application in biosensors for cancer detection, and enumerates their application in implantable drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- College of Material Science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China.
| | | | | | | | | | | |
Collapse
|
37
|
Tan SY, Acquah C, Sidhu A, Ongkudon CM, Yon LS, Danquah MK. SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization. Crit Rev Anal Chem 2016; 46:521-37. [PMID: 26980177 DOI: 10.1080/10408347.2016.1157014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.
Collapse
Affiliation(s)
- Sze Y Tan
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| | - Caleb Acquah
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| | - Amandeep Sidhu
- b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia.,c Faculty of Health Sciences , Curtin University , Perth , Australia
| | - Clarence M Ongkudon
- d Biotechnology Research Institute , University Malaysia Sabah , Kota Kinabalu , Sabah , Malaysia
| | - L S Yon
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia
| | - Michael K Danquah
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| |
Collapse
|
38
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim J, Hu J, Bezerra AB, Holtan MD, Brooks JC, Easley CJ. Protein quantification using controlled DNA melting transitions in bivalent probe assemblies. Anal Chem 2015; 87:9576-9. [PMID: 26372070 DOI: 10.1021/acs.analchem.5b03432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Homogenous protein assays, despite the potential for mix-and-read workflows, have eluded widespread acceptance due to interferences in biological matrices and limited multiplexability. Here, we employ standard qPCR instrumentation for thermofluorimetric analysis of bivalent probe (TFAB) assemblies, allowing protein levels to be quantitatively translated into multiplexable DNA melting transitions within 30 min. As protein-bound bivalent probes are thermodynamically more stable than unbound probes, differential thermal analysis can remove background analytically, without physical separation. Using either antibody-oligonucleotides or aptamers as probes, TFAB is validated for protein quantification in buffer, human serum, and human plasma and for assaying hormone secretions from endocrine cells. The direct optical method exhibits superior scalability, allowing detection of only 1 amol of protein in microfluidic channels of 100 pL volume. Overall, we demonstrate TFAB as a robust and generalizable homogeneous protein assay with superior performance in biological matrices.
Collapse
Affiliation(s)
- Joonyul Kim
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University , Auburn, Alabama 36849, United States
| | - Juan Hu
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University , Auburn, Alabama 36849, United States
| | - Andresa B Bezerra
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University , Auburn, Alabama 36849, United States
| | - Mark D Holtan
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University , Auburn, Alabama 36849, United States
| | - Jessica C Brooks
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University , Auburn, Alabama 36849, United States
| | - Christopher J Easley
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University , Auburn, Alabama 36849, United States
| |
Collapse
|
40
|
Hu J, Kim J, Easley CJ. Quantifying Aptamer-Protein Binding via Thermofluorimetric Analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7358-7362. [PMID: 26366207 PMCID: PMC4562029 DOI: 10.1039/c5ay00837a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Effective aptamer-based protein assays require coupling to a quantitative reporter of aptamer-protein binding. Typically, this involves a direct optical or electrochemical readout of DNA hybridization or an amplification step coupled to the readout. However, method development is often hampered by the multiplicity of aptamer-target binding mechanisms, which can interfere with the hybridization step. As a simpler and more generalizable readout of aptamer-protein binding, we report that thermofluorimetric analysis (TFA) can be used to quantitatively assay protein levels. Sub-nanomolar detection (0.74 nM) of platelet-derived growth factor (PDGF) with its corresponding aptamer is shown as a test case. In the presence of various DNA intercalating dyes, protein-bound aptamers exhibit a change in fluorescence intensity compared to the intercalated, unbound aptamer. This allows thermal resolution of bound and unbound aptamers using fluorescence melting analysis (-dF/dT curves). Remarkably, the homogeneous optical method allows subtraction of autofluorescence in human serum, giving PDGF detection limits of 1.8 and 10.7 nM in serum diluted 1:7 and 1:3, respectively. We have thus demonstrated that bound and unbound aptamers can be thermally resolved in a homogeneous format using a simple qPCR instrument-even in human serum. The simplicity of this approach provides an important step toward a robust, generalizable readout of aptamer-protein binding.
Collapse
Affiliation(s)
- Juan Hu
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849
| | - Joonyul Kim
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849
| | - Christopher J. Easley
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849
| |
Collapse
|
41
|
Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal 2015; 113:72-96. [DOI: 10.1016/j.jpba.2015.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
|
42
|
Cywiński PJ, Olejko L, Löhmannsröben HG. A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements. Anal Chim Acta 2015; 887:209-215. [PMID: 26320804 DOI: 10.1016/j.aca.2015.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 12/01/2022]
Abstract
L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Förster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10-500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Piotr J Cywiński
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, Geiselberstr.69, 14476 Potsdam-Golm, Germany; Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - Lydia Olejko
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Hans-Gerd Löhmannsröben
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
43
|
Chen C, Liu Y, Zheng Z, Zhou G, Ji X, Wang H, He Z. A new colorimetric platform for ultrasensitive detection of protein and cancer cells based on the assembly of nucleic acids and proteins. Anal Chim Acta 2015; 880:1-7. [DOI: 10.1016/j.aca.2015.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
|
44
|
Fan J, Mu H, Zhu H, Wang J, Peng X. Light up ClO−in live cells using an aza-coumarin based fluorescent probe with fast response and high sensitivity. Analyst 2015; 140:4594-8. [DOI: 10.1039/c5an00777a] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aza-coumarin based fluorescent and colorimetricAC-ClOfor the ClO−determination with fast response and high sensitivity.AC-ClOwas successfully applied for the live-cell imaging of exogenous and endogenous ClO−.
Collapse
Affiliation(s)
- Jiangli Fan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Huiying Mu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Hao Zhu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Jingyun Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|
45
|
Carmona H, Valadez H, Yun Y, Sankar J, Estala L, Gomez FA. Development of microfluidic-based assays to estimate the binding between osteocalcin (BGLAP) and fluorescent antibodies. Talanta 2015; 132:676-9. [DOI: 10.1016/j.talanta.2014.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022]
|
46
|
Arnaut V, Langecker M, Simmel FC. Nanopore force spectroscopy of aptamer-ligand complexes. Biophys J 2014; 105:1199-207. [PMID: 24010663 DOI: 10.1016/j.bpj.2013.07.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 01/07/2023] Open
Abstract
The stability of aptamer-ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans-cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer-target interactions in this case, the stability of the ligand-free aptamer-containing G-quadruplexes-is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified.
Collapse
Affiliation(s)
- Vera Arnaut
- Lehrstuhl für Bioelektronik, Physik Department, Technische Universität München, Garching, Germany
| | | | | |
Collapse
|
47
|
Pan Y, Karns K, Herr AE. Microfluidic electrophoretic mobility shift assays for quantitative biochemical analysis. Electrophoresis 2014; 35:2078-90. [PMID: 24591076 DOI: 10.1002/elps.201300500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 02/02/2023]
Abstract
Electrophoretic mobility shift assays (EMSAs) play an important role in analytical chemistry, quantitative bioscience, and point-of-care diagnostics. Emerging microfluidic lab-on-a-chip technologies bring high throughput and multiplexed analysis to affinity-based electrophoretic separations, greatly advancing the performance of traditional EMSAs. This review elaborates on the relevant theoretical basis for EMSAs, surveys microfluidic-based EMSA applications in molecular conformation analyses, immunoassays, affinity assays and genomics, and outlines challenges and potential future improvements needed from this powerful assay.
Collapse
Affiliation(s)
- Yuchen Pan
- Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, CA, USA
| | | | | |
Collapse
|
48
|
Nunes-Miranda JD, Núñez C, Santos HM, Vale G, Reboiro-Jato M, Fdez-Riverola F, Lodeiro C, Miró M, Capelo JL. A mesofluidic platform integrating on-chip probe ultrasonication for multiple sample pretreatment involving denaturation, reduction, and digestion in protein identification assays by mass spectrometry. Analyst 2014; 139:992-5. [DOI: 10.1039/c3an02178e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mesofluidic platform integrating on-chip probe ultrasonication for automated high-throughput shotgun proteomic assays.
Collapse
Affiliation(s)
- J. D. Nunes-Miranda
- Department of Genetics and Biotechnology
- University of Trás-os-Montes and Alto Douro
- Vila Real, Portugal
- Institute for Biotechnology and Bioengineering
- Centre of Genomics and Biotechnology
| | - Cristina Núñez
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Hugo M. Santos
- Institute for Biotechnology and Bioengineering
- Centre of Genomics and Biotechnology
- University of Trás-os-Montes and Alto Douro
- Vila Real, Portugal
- REQUIMTE
| | - G. Vale
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Miguel Reboiro-Jato
- SING Group
- Informatics Department
- Higher Technical School of Computer Engineering
- University of Vigo
- Ourense, Spain
| | - Florentino Fdez-Riverola
- SING Group
- Informatics Department
- Higher Technical School of Computer Engineering
- University of Vigo
- Ourense, Spain
| | - Carlos Lodeiro
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| | - Manuel Miró
- FI-TRACE Group
- Department of Chemistry
- University of the Balearic Islands
- Palma de Mallorca, Spain
| | - J. L. Capelo
- REQUIMTE
- Departamento de Química
- Faculdade de Ciencias e Tecnologia
- FCT
- Universidade Nova de Lisboa
| |
Collapse
|
49
|
Portugal LA, Laglera LM, Anthemidis AN, Ferreira SL, Miró M. Pressure-driven mesofluidic platform integrating automated on-chip renewable micro-solid-phase extraction for ultrasensitive determination of waterborne inorganic mercury. Talanta 2013; 110:58-65. [DOI: 10.1016/j.talanta.2013.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/25/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
|
50
|
Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012; 2012:748913. [PMID: 23150810 PMCID: PMC3488411 DOI: 10.1155/2012/748913] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/08/2012] [Indexed: 12/14/2022] Open
Abstract
Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
Collapse
|