1
|
Rangel-Grimaldo M, Earp CE, Raja HA, Wood JS, Mardiana L, Ho KL, Longcake A, Williamson RT, Palatinus L, Hall MJ, Probert MR, Oberlies NH. Wheldone Revisited: Structure Revision Via DFT-GIAO Chemical Shift Calculations, 1,1-HD-ADEQUATE NMR Spectroscopy, and X-ray Crystallography Studies. JOURNAL OF NATURAL PRODUCTS 2024; 87:2095-2100. [PMID: 39039966 PMCID: PMC11348420 DOI: 10.1021/acs.jnatprod.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Wheldone is a fungal metabolite isolated from the coculture of Aspergillus fischeri and Xylaria flabelliformis, displaying cytotoxic activity against breast, melanoma, and ovarian cancer cell lines. Initially, its structure was characterized as an unusual 5-methyl-bicyclo[5.4.0]undeca-3,5-diene scaffold with a 2-hydroxy-1-propanone side chain and a 3-(2-(1-hydroxyethyl)-2-methyl-2,5-dihydrofuran-3-yl)acrylic acid moiety. Upon further examination, minor inconsistencies in the data suggested the need for the structure to be revisited. Thus, the structure of wheldone has been revised using an orthogonal experimental-computational approach, which combines 1,1-HD-ADEQUATE NMR experiments, DFT-GIAO chemical shift calculations, and single-crystal X-ray diffraction (SCXRD) analysis of a semisynthetic p-bromobenzylamide derivative, formed via a Steglich-type reaction. The summation of these data now permits the unequivocal assignment of both the structure and absolute configuration of the natural product.
Collapse
Affiliation(s)
- Manuel Rangel-Grimaldo
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cody E. Earp
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jared S. Wood
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Lina Mardiana
- Indicatrix
Crystallography Ltd, Newcastle University, Newcastle NE1 7RU, U.K.
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
- Department
of Chemistry, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Kin Lok Ho
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Alexandra Longcake
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Lukáš Palatinus
- Department
of Structure Analysis, Institute of Physics
of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
| | - Michael J. Hall
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Michael R. Probert
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
2
|
Sommer RD. How to grow crystals for X-ray crystallography. Acta Crystallogr C Struct Chem 2024; 80:337-342. [PMID: 39046814 DOI: 10.1107/s2053229624006624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Growing high-quality crystals remains a necessary part of crystallography and many other techniques. This article tabulates and describes several techniques and variations that will help individuals grow high-quality crystals in preparation for crystallographic techniques and other endeavors, such as form screening. The discussion is organized to focus on low-tech approaches available in any laboratory.
Collapse
Affiliation(s)
- Roger D Sommer
- Bristol Myers Squibb, 111 Squibb Dr. North, New Brunswick, NJ 08902, USA
| |
Collapse
|
3
|
Sonoda K, Tohnai N, Kaneko Y. Stereoselective synthesis of different cyclic tetrasiloxane isomers depending on the superacid catalyst employed. Dalton Trans 2024; 53:8709-8715. [PMID: 38700509 DOI: 10.1039/d4dt00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this study, we investigated the hydrolytic condensation of 3-aminopropyldiethoxymethylsilane over different superacid catalysts. We found that cyclic tetrasiloxanes with different stereostructures (Am-CyTS-NNf2 and Am-CyTS-NHf2) could be selectively prepared in high yields (>95%) depending on the superacid catalyst employed (bis(nonafluorobutanesulfonyl)imide or cyclohexafluoropropane-1,3-bis(sulfonyl)imide). The single-crystal X-ray structural analyses of compounds in which amino groups of Am-CyTS-NNf2 and Am-CyTS-NHf2 were protected by the tert-butoxycarbonyl group revealed the formation of all-cis and cis-trans-cis cyclic tetrasiloxanes, respectively.
Collapse
Affiliation(s)
- Kanako Sonoda
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065, Japan.
| | - Norimitsu Tohnai
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiro Kaneko
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
4
|
Nievergelt P, Berliat F, McAuley KE, Dorgan CR, van Well RM, Thorn A, Spingler B. RNA oligomers at atomic resolution containing 1-methylpseudouridine, an essential building block of mRNA vaccines. ChemMedChem 2024; 19:e202300600. [PMID: 38235959 DOI: 10.1002/cmdc.202300600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
All widely used mRNA vaccines against COVID-19 contain in their sequence 1-methylpseudouridine (m1Ψ) instead of uridine. In this publication, we report two high resolution crystal structures (at up to 1.01 and 1.32 Å, respectively) of one such double-stranded 12-mer RNA sequence crystallized in two crystal forms. The structures are compared with similar structures which do not contain this modification. Additionally, the X-ray structure of 1-methyl-pseudouridine itself was determined.
Collapse
Affiliation(s)
- Philipp Nievergelt
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Florian Berliat
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | | | - Colin R Dorgan
- Biosynth Limited, Compton, Berkshire, RG20 6NE, United Kingdom
| | | | - Andrea Thorn
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, 22761, Hamburg, Germany
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
5
|
Metherall JP, Corner PA, McCabe JF, Hall MJ, Probert MR. High-throughput nanoscale crystallization of dihydropyridine active pharmaceutical ingredients. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:4-12. [PMID: 38126354 PMCID: PMC10848412 DOI: 10.1107/s2052520623010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Single-crystal X-ray diffraction analysis of small molecule active pharmaceutical ingredients is a key technique in the confirmation of molecular connectivity, including absolute stereochemistry, as well as the solid-state form. However, accessing single crystals suitable for X-ray diffraction analysis of an active pharmaceutical ingredient can be experimentally laborious, especially considering the potential for multiple solid-state forms (solvates, hydrates and polymorphs). In recent years, methods for the exploration of experimental crystallization space of small molecules have undergone a `step-change', resulting in new high-throughput techniques becoming available. Here, the application of high-throughput encapsulated nanodroplet crystallization to a series of six dihydropyridines, calcium channel blockers used in the treatment of hypertension related diseases, is described. This approach allowed 288 individual crystallization experiments to be performed in parallel on each molecule, resulting in rapid access to crystals and subsequent crystal structures for all six dihydropyridines, as well as revealing a new solvate polymorph of nifedipine (1,4-dioxane solvate) and the first known solvate of nimodipine (DMSO solvate). This work further demonstrates the power of modern high-throughput crystallization methods in the exploration of the solid-state landscape of active pharmaceutical ingredients to facilitate crystal form discovery and structural analysis by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Jessica P. Metherall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip A. Corner
- Early Product Development & Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - James F. McCabe
- Early Product Development & Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Michael J. Hall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael R. Probert
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Barrio J, Li J, Shalom M. Carbon Nitrides from Supramolecular Crystals: From Single Atoms to Heterojunctions and Advanced Photoelectrodes. Chemistry 2023; 29:e202302377. [PMID: 37605638 DOI: 10.1002/chem.202302377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Carbon nitride materials (CN) have become one of the most studied photocatalysts within the last 15 years. While CN absorbs visible light, its low porosity and fast electron-hole recombination hinder its photoelectric performance and have motivated the research in the modification of its physical and chemical properties (such as energy band structure, porosity, or chemical composition) by different means. In this Concept we review the utilization of supramolecular crystals as CN precursors to tailor its properties. We elaborate on the features needed in a supramolecular crystal to serve as CN precursor, we delve on the influence of metal-free crystals in the morphology and porosity of the resulting materials and then discuss the formation of single atoms and heterojunctions when employing a metal-organic crystal. We finally discuss the performance of CN photoanodes derived from crystals and highlight the current standing challenges in the field.
Collapse
Affiliation(s)
- Jesús Barrio
- Department of Chemical Engineering, Imperial College London, London, SW72AZ, England, UK
| | - Junyi Li
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
7
|
Mettler M, Dewandre A, Tumanov N, Wouters J, Septavaux J. Single crystal formation in core-shell capsules. Chem Commun (Camb) 2023; 59:12739-12742. [PMID: 37801289 DOI: 10.1039/d3cc03727d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This work extends the scope of microfluidic-based crystallization methods by introducing solid microcapsules. Hundreds of perfectly similar microcapsules were generated per second, allowing a fast screening of crystallization conditions. XRD analyses were performed directly on encapsulated single crystals demonstrating the potential of this process for the characterization of compounds, including screening polymorphism.
Collapse
Affiliation(s)
- Marie Mettler
- Secoya Technologies Fond des Més 4, Louvain-la-Neuve 1348, Belgium.
| | - Adrien Dewandre
- Secoya Technologies Fond des Més 4, Louvain-la-Neuve 1348, Belgium.
| | - Nikolay Tumanov
- Namur Institute of Structured Matter (NISM) Université de Namur, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Johan Wouters
- Namur Institute of Structured Matter (NISM) Université de Namur, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Jean Septavaux
- Secoya Technologies Fond des Més 4, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
8
|
Schmidt EM, Klar PB, Krysiak Y, Svora P, Goodwin AL, Palatinus L. Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction. Nat Commun 2023; 14:6512. [PMID: 37845256 PMCID: PMC10579245 DOI: 10.1038/s41467-023-41934-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
Structure-property relationships in ordered materials have long been a core principle in materials design. However, the introduction of disorder into materials provides structural flexibility and thus access to material properties that are not attainable in conventional, ordered materials. To understand disorder-property relationships, the disorder - i.e., the local ordering principles - must be quantified. Local order can be probed experimentally by diffuse scattering. The analysis is notoriously difficult, especially if only powder samples are available. Here, we combine the advantages of three-dimensional electron diffraction - a method that allows single crystal diffraction measurements on sub-micron sized crystals - and three-dimensional difference pair distribution function analysis (3D-ΔPDF) to address this problem. In this work, we compare the 3D-ΔPDF from electron diffraction data with those obtained from neutron and x-ray experiments of yttria-stabilized zirconia (Zr0.82Y0.18O1.91) and demonstrate the reliability of the proposed approach.
Collapse
Affiliation(s)
- Ella Mara Schmidt
- Faculty of Geosciences and MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany.
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.
| | - Paul Benjamin Klar
- Faculty of Geosciences and MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Yaşar Krysiak
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Petr Svora
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Andrew L Goodwin
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Lukas Palatinus
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
9
|
Sundaresan S, Brooker S. Solution Spin Crossover Versus Speciation Effects: A Cautionary Tale. Inorg Chem 2023. [PMID: 37482662 DOI: 10.1021/acs.inorgchem.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Two acyclic tetradentate Schiff base ligands, HLX-OH (X = H and Br), were synthesised by 2:1 condensation of either 2-pyridinecarboxaldehyde or 5-bromo-2-pyridinecarboxaldehyde and 1,3-diamino-2-propanol and then used to prepare six mononuclear complexes, [FeII(HLX-OH)(NCE)2], with three different NCE co-ligands (E = BH3, Se, and S). The apparent solution spin crossover switching temperature, T1/2, of these 6 complexes, determined by Evans method NMR studies, is tuned by several factors: (a) substituent X present at the 5 position of the pyridine ring of the ligand, (b) E present in the NCE co-ligand, (c) solvent employed (P'), and (d) potentially also by speciation effects. In CD3CN, for the pair of NCE = NCBH3 complexes, when X = H, the complex is practically LS (extrapolated T1/2 ∼624 K), whereas when X = Br, it is far lower (373 K), which implies a higher field strength when X = H than when it is Br. The same trend, X = H results in a higher apparent T1/2 than X = Br, is seen for the other two pairs of complexes, with E = Se (429 > 351 K, ΔT1/2 = 78 K) or S (361 > 342 K, ΔT1/2 = 19 K). For the family of three X = Br complexes, the change of E from BH3 (373 K) to Se (351 K) to S (342 K) leads to an overall ΔT1/2(apparent) = 31 K, whereas the decreases are far more pronounced in the X = H family (BH3 ∼624 > Se 429 > S 361 K). Changing the solvent used from CD3CN to (CD3)2CO and CD3NO2, for [FeII(HLBr-OH)(NCE)2] with either E = BH3 or S, revealed excellent, and very similar, positive linear correlations (R2 = 0.99) of increasing solvent polarity index P' (from 5 to 7) with increasing apparent T1/2 of the complex (E = BH3 gave T1/2 300 < 373 < 451 K , ΔT1/2 = 151 K; E = S gave T1/2 288 < 342 < 427 K, ΔT1/2 = 147 K). Several other solvent parameters were also correlated with the apparent T1/2 of these complexes (R2 = 0.74-0.96). Excellent linear correlations (R2 = 0.99) are also obtained with the coordination ability (aTM) of the three NCE co-ligands with the apparent T1/2 in both families of compounds, [FeII(HLX-OH)(NCE)2] where X = H or Br. The 15N NMR chemical shifts of the nitrogen atom in the three NCE co-ligands (direct measurement) show modest correlations (R2 = 0.74 for LH-OH family and 0.80 for LBr-OH family) with the apparent T1/2 values of the corresponding complexes.
Collapse
Affiliation(s)
- Sriram Sundaresan
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sally Brooker
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
10
|
Šterbinská S, Holub M, Čižmár E, Černák J, Falvello LR, Tomás M. An Old Crystallization Technique as a Fast, Facile, and Adaptable Method for Obtaining Single Crystals of Unstable "Li 2TCNQF 4" and New Compounds of TCNQ or TCNQF 4: Syntheses, Crystal Structures, and Magnetic Properties. CRYSTAL GROWTH & DESIGN 2023; 23:4357-4369. [PMID: 37304399 PMCID: PMC10251768 DOI: 10.1021/acs.cgd.3c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Detailed structural information is essential for understanding the properties of TCNQ and TCNQF4 compounds (TCNQ = 7,7,8,8-tetracyanoquinodimethane; TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane). The ineludible requirement of obtaining crystals of a size and quality sufficient to yield a successful X-ray diffraction analysis has been challenging to satisfy because of the instability of many of these compounds in solution. Crystals of two new complexes of TCNQ, [trans-M(2ampy)2(TCNQ)2] [M = Ni (1), Zn (2); 2ampy = 2-aminomethylpyridine], as well as unstable [Li2(TCNQF4)(CH3CN)4]·CH3CN (3), can be prepared in minutes by a horizontal diffusion technique and can be harvested easily for X-ray structural studies. Compound 3, previously described as "Li2TCNQF4," forms a one-dimensional (1D) ribbon. Compounds 1 and 2 can also be obtained as microcrystalline solids from methanolic solutions of MCl2/LiTCNQ/2ampy. Their variable-temperature magnetic studies confirmed a contribution of strongly antiferromagnetically coupled pairs of TCNQ•- anion radicals at higher temperatures with exchange coupling J/kB = -1206 K and J/kB = -1369 K for 1 and 2, respectively, estimated using a spin dimer model. The presence of magnetically active anisotropic Ni(II) atoms with S = 1 in 1 was confirmed, and the magnetic behavior of 1, representing an infinite chain of alternating S = 1 sites and S = 1/2 dimers, was described by a spin-ring model suggesting ferromagnetic exchange coupling between Ni(II) sites and anion radicals.
Collapse
Affiliation(s)
- Slavomíra Šterbinská
- Faculty
of Sciences, Institute of Chemistry, Department of Inorganic Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
- Instituto
de Nanociencia y Materiales de Aragón (INMA) and Departamento
de Química Inorgánica, CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
| | - Mariia Holub
- Faculty
of Sciences, Institute of Physics, P. J.
Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Erik Čižmár
- Faculty
of Sciences, Institute of Physics, P. J.
Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Juraj Černák
- Faculty
of Sciences, Institute of Chemistry, Department of Inorganic Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
| | - Lawrence Rocco Falvello
- Instituto
de Nanociencia y Materiales de Aragón (INMA) and Departamento
de Química Inorgánica, CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
| | - Milagros Tomás
- Instituto
de Síntesis Quimica y Catálisis Homogénea (ISQCH),
Departamento de Química Inorgánica, Pedro Cerbuna 12, University of Zaragoza−CSIC, E-50009 Zaragoza, Spain
| |
Collapse
|
11
|
Hu CH, Kim ST, Baik MH, Mirica LM. Nickel-Carbon Bond Oxygenation with Green Oxidants via High-Valent Nickel Species. J Am Chem Soc 2023; 145:11161-11172. [PMID: 37183827 DOI: 10.1021/jacs.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Described herein is the synthesis of the NiII complex (tBuMe2tacn)NiII(cycloneophyl) (tBuMe2tacn = 1-tert-butyl-4,7-dimethyl-1,4,7-triazacyclononane, cycloneophyl = -CH2CMe2-o-C6H4-) and its reactivity with dioxygen and peroxides. The new tBuMe2tacn ligand is designed to enhance the oxidatively induced bond-forming reactivity of high-valent Ni intermediates. Tunable chemoselectivity for Csp2-O vs Csp2-Csp3 bond formation was achieved by selecting the appropriate solvent and reaction conditions. Importantly, the use of cumene hydroperoxide and meta-chloroperbenzoic acid suggests a heterolytic O-O bond cleavage upon reaction with (tBuMe2tacn)NiII(cycloneophyl). Mechanistic studies using isotopically labeled H2O2 support the generation of a high-valent Ni-oxygen species via an inner-sphere mechanism and subsequent reductive elimination to form the Csp2-O bond. Kinetic studies of the exceptionally fast Csp2-O bond-forming reaction reveal a first-order dependence on both (tBuMe2tacn)NiII(cycloneophyl) and H2O2, and thus an overall second-order reaction. Eyring analysis further suggests that the oxidation of the NiII complex by H2O2 is the rate-determining step, which can be modulated by the presence of coordinating solvents. Moreover, computational studies fully support the conclusions drawn from experimental results. Overall, this study reveals for the first time the ability to control the oxidatively induced C-C vs C-O bond formation reactions at a Ni center. Importantly, the described system merges the known organometallic reactivity of Ni with the biomimetic oxidative transformations resembling oxygenases and peroxidases, and involving high-valent metal-oxygen intermediates, which is a novel approach that should lead to unprecedented oxidative catalytic transformations.
Collapse
Affiliation(s)
- Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Metherall JP, Carroll RC, Coles SJ, Hall MJ, Probert MR. Advanced crystallisation methods for small organic molecules. Chem Soc Rev 2023; 52:1995-2010. [PMID: 36857636 DOI: 10.1039/d2cs00697a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Molecular materials based on small organic molecules often require advanced structural analysis, beyond the capability of spectroscopic techniques, to fully characterise them. In such cases, diffraction methods such as single crystal X-ray diffraction (SCXRD), are one of the most powerful tools available to researchers, providing molecular and structural elucidation at atomic level resolution, including absolute stereochemistry. However SCXRD, and related diffraction methods, are heavily dependent on the availability of suitable, high-quality crystals, thus crystallisation often becomes the major bottleneck in preparing samples. Following a summary of classical methods for the crystallisation of small organic molecules, this review will focus on a number of recently developed advanced methods for crystalline material sample preparation for SCXRD. This review will cover two main areas of modern small organic molecule crystallisation, namely the inclusion of molecules within host complexes (e.g., "crystalline sponge" and tetraaryladamantane based inclusion chaperones) and the use of high-throughput crystallisation, employing "under-oil" approaches (e.g., microbatch under-oil and ENaCt). Representative examples have been included for each technique, together with a discussion of their relative advantages and limitations to aid the reader in selecting the most appropriate technique to overcome a specific analytical challenge.
Collapse
Affiliation(s)
- J P Metherall
- Newcastle University, Chemistry - School of Natural Environmental Sciences, Newcastle upon Tyne, NE1 7RU, UK.
| | - R C Carroll
- University of Southampton, School of Chemistry, Southampton, SO17 1BJ, UK
| | - S J Coles
- University of Southampton, School of Chemistry, Southampton, SO17 1BJ, UK
| | - M J Hall
- Newcastle University, Chemistry - School of Natural Environmental Sciences, Newcastle upon Tyne, NE1 7RU, UK.
| | - M R Probert
- Newcastle University, Chemistry - School of Natural Environmental Sciences, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
13
|
Palakkeezhillam VNV, Haribabu J, Manakkadan V, Rasin P, Varughese RE, Gayathri D, Bhuvanesh N, Echeverria C, Sreekanth A. Synthesis, spectroscopic characterizations, single crystal X-ray analysis, DFT calculations, in vitro biological evaluation and in silico evaluation studies of thiosemicarbazones based 1,3,4-thiadiazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Wang G, Lu J, Fang C, Fang W, Peng X, Zeng H, Zhu L. Ultrathin metal-organic framework nanosheets as building blocks of lamellar nanofilms for ultrafast molecular sieving. NANOSCALE 2022; 14:17670-17680. [PMID: 36416307 DOI: 10.1039/d2nr05229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic framework (MOF) nanosheets have significant potential applications including separation, catalysis, and sensors. However, the on-demand design with tunable thickness and morphology remains a great challenge, leading to difficulties in modulating their hierarchical assembly for the preparation of macroscopic films. Herein, we report the successful synthesis of smooth and ultrathin MOF (Cu-TCPP (TCPP = 4,4,4,4-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid))) nanosheets used in lamellar nanofilms for the rejection of organic molecules from water. Dopamine hydrochloride (DA-HCl) is used as an adjuvant in the synthesis. Facilitated by a HCl acid environment and DA competitive coordination, the normal and lateral growths of Cu-TCPP nanosheets are modulated to achieve the desired thickness and morphology. DA-HCl can be also easily removed from the nanosheets without affecting their physicochemical properties. The as-synthesized nanosheets are utilized as nanofilm building blocks in which they are stacked into ordered bricks. The obtained membrane displays an ultrahigh water permeance of 2540 L m-2 h-1 bar-1, which is two orders of magnitude higher than the currently reported polymer membranes, while it does not sacrifice the solute rejection as completely determined by the intrinsic pore size of the nanosheets (i.e., 98.8% for molecules larger than 1.3 nm). This work provides a novel and facile strategy to tailor the morphology of the MOF nanosheets for maximizing their functionalities and structure superiority in many engineering applications.
Collapse
Affiliation(s)
- Guitu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China.
| | - Jingyu Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China.
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China.
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China.
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, Canada
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China.
| |
Collapse
|
15
|
Weder N, Grundmann NS, Probst B, Blacque O, Ketkaew R, Creazzo F, Luber S, Alberto R. Two Novel Dinuclear Cobalt Polypyridyl Complexes in Electro- and Photocatalysis for Hydrogen Production: Cooperativity Increases Performance. CHEMSUSCHEM 2022; 15:e202201049. [PMID: 35765252 PMCID: PMC9545343 DOI: 10.1002/cssc.202201049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Syntheses and mechanisms of two dinuclear Co-polypyridyl catalysts for the H2 evolution reaction (HER) were reported and compared to their mononuclear analogue (R1). In both catalysts, two di-(2,2'-bipyridin-6-yl)-methanone units were linked by either 2,2'-bipyridin-6,6'-yl or pyrazin-2,5-yl. Complexation with CoII gave dinuclear compounds bridged by pyrazine (C2) or bipyridine (C1). Photocatalytic HER gave turnover numbers (TONs) of up to 20000 (C2) and 7000 (C1) in water. Electrochemically, C1 was similar to the R1, whereas C2 showed electronic coupling between the two Co centers. The E(CoII/I ) split by 360 mV into two separate waves. Proton reduction in DMF was investigated for R1 with [HNEt3 ](BF4 ) by simulation, foot of the wave analysis, and linear sweep voltammetry (LSV) with in-line detection of H2 . All methods agreed well with an (E)ECEC mechanism and the first protonation being rate limiting (≈104 m-1 s-1 ). The second reduction was more anodic than the first one. pKa values of around 10 and 7.5 were found for the two protonations. LSV analysis with H2 detection for all catalysts and acids with different pKa values [HBF4 , pKa (DMF)≈3.4], intermediate {[HNEt3 ](BF4 ), pKa (DMF)≈9.2} to weak [AcOH, pKa (DMF)≈13.5] confirmed electrochemical H2 production, distinctly dependent on the pKa values. Only HBF4 protonated CoI intermediates. The two metals in the dualcore C2 cooperated with an increase in rate to a competitive 105 m-1 s-1 with [HNEt3 ](BF4 ). The overpotential decreased compared to R1 by 100 mV. Chronoamperometry established high stabilities for all catalysts with TONlim of 100 for R1 and 320 for C1 and C2.
Collapse
Affiliation(s)
- Nicola Weder
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Nora S. Grundmann
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Benjamin Probst
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Olivier Blacque
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Rangsiman Ketkaew
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Fabrizio Creazzo
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Sandra Luber
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Roger Alberto
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| |
Collapse
|
16
|
Synthesis and magnetic properties of two cobalt-coordination polymers containing 1,10-phenanthroline and alkyl dicarboxylates ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Acharjya A, Corbin BA, Prasad E, Allen MJ, Maity S. Solvation-Controlled Emission of Divalent Europium Salts. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
New Crystalline Salts of Nicotinamide Riboside as Food Additives. Molecules 2021; 26:molecules26092729. [PMID: 34066468 PMCID: PMC8125264 DOI: 10.3390/molecules26092729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
NR+ is a highly effective vitamin B3 type supplement due to its unique ability to replenish NAD+ levels. While NR+ chloride is already on the market as a nutritional supplement, its synthesis is challenging, expensive, and low yielding, making it cumbersome for large-scale industrial production. Here we report the novel crystalline NR+ salts, d/l/dl-hydrogen tartrate and d/l/dl-hydrogen malate. Their high-yielding, one-pot manufacture does not require specific equipment and is suitable for multi-ton scale production. These new NR+ salts seem ideal for nutritional applications due to their bio-equivalence compared to the approved NR+ chloride. In addition, the crystal structures of all stereoisomers of NR+ hydrogen tartrate and NR+ hydrogen malate and a comparison to the known NR+ halogenides are presented.
Collapse
|
19
|
Armer M, Höcker J, Büchner C, Häfele S, Dörflinger P, Sirtl MT, Tvingstedt K, Bein T, Dyakonov V. Influence of crystallisation on the structural and optical properties of lead-free Cs 2AgBiBr 6 perovskite crystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00844g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We compare the growth of Cs2AgBiBr6 crystals by slow and fast evaporation of organic solvents. Using different growth temperatures and precursors enables bridging the gap between the optical properties and applications of Cs2AgBiBr6 in solar cells.
Collapse
Affiliation(s)
- Melina Armer
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Julian Höcker
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Carsten Büchner
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Sophie Häfele
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Patrick Dörflinger
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Maximilian T. Sirtl
- Department of Chemistry and Centre for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany
| | - Kristofer Tvingstedt
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Bein
- Department of Chemistry and Centre for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany
| | - Vladimir Dyakonov
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
20
|
Höcker J, Brust F, Armer M, Dyakonov V. A temperature-reduced method for the rapid growth of hybrid perovskite single crystals with primary alcohols. CrystEngComm 2021. [DOI: 10.1039/d0ce01759k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present the simple and temperature-reduced reactive inverse temperature crystallisation (RITC) method to rapidly grow high-quality organic lead trihalide perovskite single crystals.
Collapse
Affiliation(s)
- Julian Höcker
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat
- Julius Maximilian University of Würzburg
- 97074 Würzburg
- Germany
| | - Felix Brust
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat
- Julius Maximilian University of Würzburg
- 97074 Würzburg
- Germany
| | - Melina Armer
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat
- Julius Maximilian University of Würzburg
- 97074 Würzburg
- Germany
| | - Vladimir Dyakonov
- Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.qmat
- Julius Maximilian University of Würzburg
- 97074 Würzburg
- Germany
- Bavarian Centre for Applied Energy Research (ZAE Bayern)
| |
Collapse
|
21
|
Kshtriya V, Koshti B, Gangrade A, Haque A, Singh R, Joshi KB, Bhatia D, Gour N. Self-assembly of a benzothiazolone conjugate into panchromatic fluorescent fibres and their application in cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj03269k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report self assembly of a benzothiazolone conjugate (CBT) into fluorescent panchromatic fibres and their application as a panchromatic dye in bioimaging.
Collapse
Affiliation(s)
- Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ankit Gangrade
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ashadul Haque
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| |
Collapse
|
22
|
Kanižaj L, Barišić D, Torić F, Pajić D, Molčanov K, Šantić A, Lončarić I, Jurić M. Structural, Electrical, and Magnetic Versatility of the Oxalate-Based [CuFe] Compounds Containing 2,2':6',2″-Terpyridine: Anion-Directed Synthesis. Inorg Chem 2020; 59:18078-18089. [PMID: 33289548 DOI: 10.1021/acs.inorgchem.0c02548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterodimetallic [CuFe] compounds [CuII4(terpy)4Cl5][FeIII(C2O4)3]·10H2O (1;terpy = 2,2':6',2''-terpyridine), [CuII2(H2O)2(terpy)2(C2O4)][CuIIFeIII(CH3OH)(terpy)(C2O4)3]2 (2), and {[Cu2IIFeIII(H2O)(terpy)2(C2O4)7/2]·6H2O}n (3) were obtained using building block approach, from reaction of aqueous solution of [Fe(C2O4)3]3- and a methanol solution containing Cu2+ ions and terpy by the layering technique. Interestingly, by changing only the anion of the starting salt of copper(II), Cu(NO3)2·3H2O instead of CuCl2·2H2O, an unexpected change in the type of bridge, oxalate (2 and 3) versus chloride (1), was achieved, thus affecting the overall structural architecture. Two polymorphs of 3D coordination polymer [CuIIFeII2(H2O)(terpy)(C2O4)3]n (4), crystallizing in the triclinic (a) and monoclinic (b) space groups, were formed hydrothermally, depending on whether CuCl2·2H2O or Cu(NO3)2·3H2O was added to the water, besides K3[Fe(C2O4)3]·3H2O and terpy, respectively. Under hydrothermal conditions iron(III) from initial building block is reduced to the divalent state, creating 2D honeycomb [FeII2(C2O4)3]n2n- layers, which are bridged by [Cu(H2O)(terpy)]2+ cations. Compounds were investigated by single-crystal X-ray diffraction, IR, and impedance spectroscopies, magnetization measurements, and density functional theory (DFT) calculations. In compounds 1 and 2, 0D magnetism is observed, with 1 having a ground-state spin of 1 due to different interactions through chloride bridges of Cu2+ ions in tetramer [CuII4(terpy)4Cl5]3+ and 2 showing strong antiferromagnetic coupling of Cu2+ ions mediated by oxalate ligand in [CuII2(H2O)2(terpy)2(C2O4)]2+ and weak ones between Cu2+ and Fe3+ ions through oxalate bridge in [CuIIFeIII(CH3OH)(terpy)(C2O4)3]-. Polymer 4 exhibits antiferromagnetic phase transition at 25 K: The [FeII2(C2O4)3]n2n- layers are antiferromagnetically ordered, and a small amount of interlayer interaction is transferred through [Cu(H2O)(terpy)]2+ cations via Oox-Cu-Oox bridges. Additionally, compounds 1 and 2 are electrical insulators, while 4a and 4b show proton conductivity.
Collapse
Affiliation(s)
- Lidija Kanižaj
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Dario Barišić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Filip Torić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.,Hebrew University Center for Nanoscience and Nanotechnology, 9190401 Jerusalem, Israel
| | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Krešimir Molčanov
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Šantić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivor Lončarić
- Division of Theoretical Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marijana Jurić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Qi Q, Hu J, Zhang Y, Li W, Huang B, Zhang C. Two‐Dimensional Metal–Organic Frameworks‐Based Electrocatalysts for Oxygen Evolution and Oxygen Reduction Reactions. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/aesr.202000067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qianglong Qi
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Jue Hu
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Yingjie Zhang
- The Engineering Laboratory of Advanced Battery and Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Wei Li
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR 999077 China
| | - Chengxu Zhang
- The Engineering Laboratory of Advanced Battery and Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
24
|
Brunner J, Maier B, Rosenberg R, Sturm S, Cölfen H, Sturm EV. Nonclassical Recrystallization. Chemistry 2020; 26:15242-15248. [PMID: 32569441 PMCID: PMC7756702 DOI: 10.1002/chem.202002873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 11/17/2022]
Abstract
Applications in the fields of materials science and nanotechnology increasingly demand monodisperse nanoparticles in size and shape. Up to now, no general purification procedure exists to thoroughly narrow the size and shape distributions of nanoparticles. Here, we show by analytical ultracentrifugation (AUC) as an absolute and quantitative high‐resolution method that multiple recrystallizations of nanocrystals to mesocrystals is a very efficient tool to generate nanocrystals with an excellent and so‐far unsurpassed size‐distribution (PDIc=1.0001) and shape. Similar to the crystallization of molecular building blocks, nonclassical recrystallization removes “colloidal” impurities (i.e., nanoparticles, which are different in shape and size from the majority) by assembling them into a mesocrystal. In the case of nanocrystals, this assembly can be size‐ and shape‐selective, since mesocrystals show both long‐range packing ordering and preferable crystallographic orientation of nanocrystals. Besides the generation of highly monodisperse nanoparticles, these findings provide highly relevant insights into the crystallization of mesocrystals.
Collapse
Affiliation(s)
- Julian Brunner
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Britta Maier
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Rose Rosenberg
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Sebastian Sturm
- Institute for Solid State Research, Leibniz Institute for Solid State and Materials Research Dresden, Helmholzstraße 20, 01069, Dresden, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Elena V Sturm
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
25
|
Kanižaj L, Šenjug P, Pajić D, Pavić L, Molčanov K, Jurić M. Magnetic and Electrical Behaviors of the Homo- and Heterometallic 1D and 3D Coordination Polymers Based on the Partial Decomposition of the [Cr(C 2O 4) 3] 3- Building Block. MATERIALS 2020; 13:ma13235341. [PMID: 33255776 PMCID: PMC7728352 DOI: 10.3390/ma13235341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
One-dimensional (1D) oxalate-bridged homometallic {[Mn(bpy)(C2O4)]·1.5H2O}n (1) (bpy = 2,2’-bipyridine) and heterodimetallic {[CrCu3(bpy)3(CH3OH)(H2O)(C2O4)4][Cu(bpy)Cr(C2O4)3]·CH2Cl2·CH3OH·H2O}n (2) coordination polymers, as well as the three-dimensional (3D) heterotrimetallic {[CaCr2Cu2(phen)4(C2O4)6]·4CH3CN·2H2O}n (3) (1,10-phenanthroline) network, have been synthesized by a building block approach using a layering technique, and characterized by single-crystal X-ray diffraction, infrared (IR) and impedance spectroscopies and magnetization measurements. During the crystallization process partial decomposition of the tris(oxalato)chromate(III) happened and 1D polymers 1 and 2 were formed. The antiferromagnetic interactions between the manganese(II) ions were mediated by oxalate ligands in the chain [Mn(bpy)(C2O4)]n of 1, with intra-chain super-exchange interaction 𝐽 = (−3.134 ± 0.004) K; magnetic interaction between neighbouring chains is negligible making this system closer than other known Mn-chains to the ideal 1D Heisenberg antiferromagnet. Compound 2 comprises a 1D coordination anion [Cu(bpy)Cr(C2O4)3]nn− (Cr2–Cu4) with alternating [Cr(C2O4)3]3− and [Cu(bpy)]2+ units mutually bridged through the oxalate group. Another chain (Cr1–Cu3) is similar, but involves a homodinuclear unit [Cu(bpy)(H2O)(µ-C2O4)Cu(bpy)(CH3OH)]2+ (Cu1–Cu2) coordinated as a pendant group to a terminal oxalate oxygen. Magnetic measurements showed that the Cu1−Cu2 cationic unit is a strongly coupled antiferromagnetic dimer, independent from the other magnetic ions within ferromagnetic chains Cr1–Cu3 and Cr2–Cu4. A 3D polymer {[CaCr2Cu2(phen)4(C2O4)6]·4CH3CN·2H2O}n (3) comprising three different metal centers (Ca2+, Cr3+ and Cu2+) oxalate-bridged, contains Ca2+ atoms as nodes connected with four Cr3+ atoms through oxalate ligands. The network thus formed can be reduced to an underlying graph of diamondoid (dia) or (66) topology. Magnetization of 3 shows the ferromagnetic oxalate-bridged dimers [CuIICrIII], whose mutual interaction could possibly originate through the spin polarization of Ca2+ orbitals. Compounds 1 and 3 exhibit lower electrical conductivity at room temperature (RT) in comparison to compound 2.
Collapse
Affiliation(s)
- Lidija Kanižaj
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.K.); (L.P.); (K.M.)
| | - Pavla Šenjug
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia; (P.Š.); (D.P.)
| | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia; (P.Š.); (D.P.)
| | - Luka Pavić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.K.); (L.P.); (K.M.)
| | - Krešimir Molčanov
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.K.); (L.P.); (K.M.)
| | - Marijana Jurić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.K.); (L.P.); (K.M.)
- Correspondence: ; Tel.: +385-1-456-1189
| |
Collapse
|
26
|
Padrutt R, Babu V, Klingler S, Kalt M, Schumer F, Anania MI, Schneider L, Spingler B. Highly Phototoxic Transplatin-Modified Distyryl-BODIPY Photosensitizers for Photodynamic Therapy. ChemMedChem 2020; 16:694-701. [PMID: 33164336 DOI: 10.1002/cmdc.202000702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Indexed: 12/16/2022]
Abstract
We report the synthesis of the first transplatin-BODIPY conjugates for application in photodynamic therapy (PDT). The distyryl BODIPYs containing two iodine atoms were designed to absorb in the red region, easily undergo intersystem crossing for efficient singlet oxygen generation, and additionally offer the possibility for coordination with mono-activated transplatin. We were able to demonstrate that coordination of the BODIPYs with a mono-activated transplatin increases the phototoxic index of the photosensitizers significantly, giving rise to highly phototoxic distyryl BODIPY derivatives, of which one was shown to have the highest ever reported phototoxic index against any cell line. Furthermore, the photophysical mechanism of singlet oxygen generation in distyryl BODIPYs undergoing intramolecular charge transfer was studied experimentally and using time-dependent density functional theory.
Collapse
Affiliation(s)
- Roxane Padrutt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vipin Babu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martina Kalt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Frank Schumer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maria I Anania
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lukas Schneider
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
27
|
Yuan D, Cai N, Xu J, Miao D, Zhang S, Woodfine SE, Plana D, Hawes CS, Watkinson M. A Series of Manganese(III) Salen Complexes as a Result of Team-Based Inquiry in a Transnational Education Programme. Chempluschem 2020; 85:1210-1219. [PMID: 32515150 DOI: 10.1002/cplu.202000337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/12/2020] [Indexed: 11/10/2022]
Abstract
The development of a team-based approach to research-led transnational practical chemistry teaching is described in which a team of five Chinese students on an articulated transnational degree programme, supported by a team of academic and technical staff, carried out a study examining the structural chemistry of a series of manganese(III) salen complexes. A series of four crystallographically characterized manganese(III) salen complexes with ancillary carboxylate ligands are reported here. The carboxylate coordination modes range from the bridging syn-anti μ2 -κO : κO' mode observed in the predominant cyclohexanoate and isobutyrate species, to a capping terminal monodentate mode for the adamantanoate species, and an unusual mixture of bridging and terminal coordination modes observed in a second minor phase of the cyclohexanoate species. The variation on extended structures based on the weakly interacting aliphatic backbones may provide a useful basis for further structural studies.
Collapse
Affiliation(s)
- Danlei Yuan
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom.,Nanjing Xiaozhuang University, Nanjing Shi, Jiangsu Sheng, P. R. China
| | - Ningqi Cai
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom.,Nanjing Xiaozhuang University, Nanjing Shi, Jiangsu Sheng, P. R. China
| | - Jingxi Xu
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom.,Nanjing Xiaozhuang University, Nanjing Shi, Jiangsu Sheng, P. R. China
| | - Danyang Miao
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom.,Nanjing Xiaozhuang University, Nanjing Shi, Jiangsu Sheng, P. R. China
| | - Sheng Zhang
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom.,Nanjing Xiaozhuang University, Nanjing Shi, Jiangsu Sheng, P. R. China
| | - Sian E Woodfine
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom
| | - Daniela Plana
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom
| | - Chris S Hawes
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom
| | - Michael Watkinson
- The Lennard Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele, ST5 5BG, United Kingdom
| |
Collapse
|
28
|
Saito F, Schreiner PR. Determination of the Absolute Configurations of Chiral Alkanes – An Analysis of the Available Tools. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fumito Saito
- Institute of Organic Chemistry Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| |
Collapse
|
29
|
Encapsulated Nanodroplet Crystallization of Organic-Soluble Small Molecules. Chem 2020; 6:1755-1765. [PMID: 32685768 PMCID: PMC7357602 DOI: 10.1016/j.chempr.2020.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022]
Abstract
Single-crystal X-ray diffraction analysis (SCXRD) constitutes a universal approach for the elucidation of molecular structure and the study of crystalline forms. However, the discovery of viable crystallization conditions remains both experimentally challenging and resource intensive in both time and the quantity of analyte(s). We report a robot-assisted, high-throughput method for the crystallization of organic-soluble small molecules in which we employ only micrograms of analyte per experiment. This allows hundreds of crystallization conditions to be screened in parallel with minimal overall sample requirements. Crystals suitable for SCXRD are grown from nanoliter droplets of a solution of analyte in organic solvent(s), each of which is encapsulated within an inert oil to control the rate of solvent loss. This encapsulated nanodroplet crystallization methodology can also be used to search for new crystal forms, as exemplified through both our discovery of a new (13th) polymorph of the olanzapine precursor ROY and SCXRD analysis of the “uncrystallizable” agrochemical dithianon. Single crystals of small molecules are grown from nanoscale droplets of organic solvent Discovery of the 13th polymorph (R18) of olanzapine precursor ROY X-ray diffraction analysis of “uncrystallizable” agrochemical dithianon
Small molecules can form crystalline solids, in which individual molecules pack together into ordered three-dimensional arrays. Once a suitable crystal is grown, the packing and atomic connectivity of the constituent molecules can be studied by X-ray diffraction. However, the discovery of experimental conditions for successful crystal growth is often challenging. We have developed a nanoscale crystallization technique for organic-soluble small molecules by using high-throughput liquid-handling robotics to undertake multiple crystallization experiments simultaneously with minimal sample requirements and high success rates. We showcase our methodology through the crystallization of a diverse set of small molecules, including “uncrystallizables,” combined with structural analysis by X-ray diffraction. We anticipate that this rapid and reliable method for small-molecule crystallization will have far-reaching impact, facilitating academic and industrial research in the molecular sciences.
Collapse
|
30
|
Kaźmierczak M, Koroniak H. Efficient synthesis of dipeptide analogues of α-fluorinated β-aminophosphonates. Beilstein J Org Chem 2020; 16:756-762. [PMID: 32362949 PMCID: PMC7176923 DOI: 10.3762/bjoc.16.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022] Open
Abstract
Herein, we present an efficient synthesis of dipeptide analogues of α-fluorinated β-aminophosphonates. Each step of the synthesis was optimized to provide excellent yields. Moreover, the absolute configuration of the obtained compounds was determined by X-ray analysis, which proved the stereochemistry that was proposed based on NMR studies.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
31
|
Yadav P, Jakubaszek M, Spingler B, Goud B, Gasser G, Zelder F. Fe III -Salen-Based Probes for the Selective and Sensitive Detection of E450 in Foodstuff. Chemistry 2020; 26:5717-5723. [PMID: 31991020 DOI: 10.1002/chem.201905686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/23/2020] [Indexed: 12/19/2022]
Abstract
Inorganic pyrophosphate (PPi) is considered as a diagnostic marker for various diseases such as cancer and vascular calcification. PPi also plays an important preservative role as an additive E450 in foodstuff. In this work, a selective FeIII -salen-based probe for PPi is described; this probe disassembles in the presence of the target analyte into its molecular blocks, 1,2-propanediamine and 3-chloro-5-formyl-4-hydroxybenzenesulfonic acid. The latter signaling unit leads to a fluorometric response. Compared with a related prototype, the new complex shows a 2.3-times stronger emission at 500 nm and a 155-times better selectivity of PPi over adenosine triphosphate (ATP). Importantly, the new probe was successfully applied for detecting E450 in foodstuff.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 11, Rue Pierre et Marie Curie, 75005, Paris, France.,Institut Curie, PSL University, CNRS UMR 144, 75005, Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Bruno Goud
- Institut Curie, PSL University, CNRS UMR 144, 75005, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 11, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Felix Zelder
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
32
|
Alvarez R, Nievergelt PP, Slyshkina E, Müller P, Alberto R, Spingler B. Single crystal growth of water-soluble metal complexes with the help of the nano-crystallization method. Dalton Trans 2020; 49:9632-9640. [DOI: 10.1039/d0dt01236j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Let pipetting robots set up nano crystallization trials of water-soluble metal complexes in order to obtain single crystals!
Collapse
Affiliation(s)
- Ricardo Alvarez
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | | | | | - Peter Müller
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Roger Alberto
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | | |
Collapse
|
33
|
de Moura TR, Zanetti RD, Silva DES, de Farias RL, Mauro AE, Pereira JCM, de Souza AA, da Silva Siqueira F, de Souza Júdice WA, Lima MA, Rocha FV, Deflon VM, Vieira de Godoy Netto A. Palladium( ii) complexes bearing 1-iminothiolate-3,5-dimethylpyrazoles: synthesis, cytotoxicity, DNA binding and enzymatic inhibition studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj02825h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work describes the enzymatic inhibitory activity of four novel Pd(ii) complexes towards topoisomerase IIα and cathepsins B and L.In silicostudies agree well with the enhancedin vitrocathepsin B inhibition induced by compound4(58% at 10 μM).
Collapse
Affiliation(s)
- Thales Reggiani de Moura
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Renan Diego Zanetti
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Debora Eduarda Soares Silva
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Renan Lira de Farias
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Antonio Eduardo Mauro
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - José Clayston Melo Pereira
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Aline Aparecida de Souza
- UMC - Univ. de Mogi das Cruzes
- Centro Interdisciplinar de Investigação Bioquímica
- Mogi das Cruzes
- Brazil
| | - Fábio da Silva Siqueira
- UMC - Univ. de Mogi das Cruzes
- Centro Interdisciplinar de Investigação Bioquímica
- Mogi das Cruzes
- Brazil
| | | | - Mauro Almeida Lima
- UFSCar – Univ. Federal de São Carlos
- Departamento de Química
- São Carlos
- Brazil
| | | | | | | |
Collapse
|
34
|
Xu Y, Huang R, Liu H, Yan T, Ding W, Jiang Y, Wang P, Zheng D, Xu J. New Polyketides from the Marine-Derived Fungus Letendraea sp. 5XNZ4-2. Mar Drugs 2019; 18:md18010018. [PMID: 31878313 PMCID: PMC7024145 DOI: 10.3390/md18010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 01/10/2023] Open
Abstract
Marine-derived fungi have been reported to have great potential to produce structurally unique metabolites. Our investigation on secondary metabolites from marine-derived fungi resulted in the isolation of seven new polyketides (phomopsiketones D–G (1–4) and letendronols A–C (5–7)) as well as one known xylarinol (8) in the cultural broth of Letendraea sp. Their structures and absolute configurations were elucidated using a set of spectroscopic and chemical methods, including HRESIMS, NMR, single-crystal X-ray diffraction, ECD calculation, and a modified version of Mosher’s method. Compound 2 showed weak inhibition against nitric oxide production in lipopolysaccaride-activated macrophages with an IC50 value of 86 μM.
Collapse
Affiliation(s)
- Yan Xu
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (Y.X.); (R.H.); (T.Y.); (W.D.); (Y.J.); (P.W.); (D.Z.)
| | - Ruibao Huang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (Y.X.); (R.H.); (T.Y.); (W.D.); (Y.J.); (P.W.); (D.Z.)
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Tingting Yan
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (Y.X.); (R.H.); (T.Y.); (W.D.); (Y.J.); (P.W.); (D.Z.)
| | - Wanjing Ding
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (Y.X.); (R.H.); (T.Y.); (W.D.); (Y.J.); (P.W.); (D.Z.)
| | - Yongjun Jiang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (Y.X.); (R.H.); (T.Y.); (W.D.); (Y.J.); (P.W.); (D.Z.)
| | - Pinmei Wang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (Y.X.); (R.H.); (T.Y.); (W.D.); (Y.J.); (P.W.); (D.Z.)
| | - Daoqiong Zheng
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (Y.X.); (R.H.); (T.Y.); (W.D.); (Y.J.); (P.W.); (D.Z.)
| | - Jinzhong Xu
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; (Y.X.); (R.H.); (T.Y.); (W.D.); (Y.J.); (P.W.); (D.Z.)
- Correspondence: ; Tel.: +86-158-5816-8018
| |
Collapse
|
35
|
Karges J, Heinemann F, Maschietto F, Patra M, Blacque O, Ciofini I, Spingler B, Gasser G. A Ru(II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers. Bioorg Med Chem 2019; 27:2666-2675. [PMID: 31103403 DOI: 10.1016/j.bmc.2019.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
The use of Photodynamic Therapy (PDT) for the treatment of several kinds of cancer as well as bacterial, fungal or viral infections has received increasing attention during the last decade. However, the currently clinically approved photosensitizers (PSs) have several drawbacks, including photobleaching, slow clearance from the organism and poor water solubility. To overcome these shortcomings, many efforts have been made in the development of new types of PSs, such as Ru(II) polypyridyl complexes. Nevertheless, most studied Ru(II) polypyridyl complexes have a low absorbance in the spectral therapeutic window. In this work, we show that, by carefully selecting substituents on the polypyridyl complex, it is possible to prepare a complex absorbing at a much higher wavelength. Specifically, we report on the synthesis as well as in-depth experimental and theoretical characterisation of a Ru(II) polypyridyl complex (complex 3) combining a shift in absorbance towards the spectral therapeutic window with a high 1O2 production. To overcome the absence or poor selectivity of most approved PSs into targeted cells/bacteria, they can be linked to targeting moieties. In this line, compound 3 was designed with reactive aldehyde groups, which can be used as a highly versatile synthetic precursor for further conjugation. As a proof of concept, 3 was reacted with benzylamine and the stability of the resulting conjugate 4 was investigated in DMSO, PBS and cell media. 4 showed an impressive ability to act as a PDT PS with no measurable dark cytotoxicity and photocytotoxicity in the low micromolar range against cancerous HeLa cells from 450 nm up to 540 nm.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Franz Heinemann
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Federica Maschietto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Malay Patra
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
36
|
Wang X, Anton N, Ashokkumar P, Anton H, Fam TK, Vandamme T, Klymchenko AS, Collot M. Optimizing the Fluorescence Properties of Nanoemulsions for Single Particle Tracking in Live Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13079-13090. [PMID: 30844230 DOI: 10.1021/acsami.8b22297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoemulsions (NEs) are biocompatible lipid nanoparticles composed of an oily core stabilized by a surfactant shell. It is acknowledged that the surface decoration with poly(ethylene glycol), through the use of nonionic surfactants, confers high stealth in biological medium with reduced nonspecific interactions. Tracking individual NE by fluorescence microscopy techniques would lead to a better understanding of their behavior in cells and thus require the development of bright single particles with enhanced photostability. However, the understanding of the relationship between the physicochemical properties and chemical composition of the NEs, on the one hand, and its fluorescence properties of encapsulated dyes, on the other hand, remains limited. Herein, we synthesized three new dioxaborine barbituryl styryl (DBS) dyes that displayed high molar extinction coefficients (up to 120 000 M-1 cm-1) with relatively low quantum yields in solvents and impressive fluorescence enhancement when dissolved in viscous oils (up to 0.98). The reported screening of nine different oils allowed disclosing a range of efficient "oil/dye" couples and understanding the main parameters that lead to the brightest NEs. We determine vitamin E acetate/DBS-C8 as the representative most efficient couple, combining high dye loading capabilities and low aggregation-induced quenching, leading to <50 nm ultrabright NEs (with brightness as high as 30 × 106 M-1 cm-1) with negligible dye leakage in biological media. Beyond a comprehensive optical and physicochemical characterization of fluorescent NEs, cellular two-photon excitation imaging was performed with polymer-coated cell penetrating NEs. Thanks to their impressive brightness and photostability, NEs displaying different charge surfaces were microinjected in HeLa cells and were individually tracked in the cytosol to study their relative velocity.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Pichandi Ashokkumar
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| | - Halina Anton
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| | - Tkhe Kyong Fam
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Andrey S Klymchenko
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| |
Collapse
|
37
|
|
38
|
Wen MJ, Jackson MT, Garner CM. A quantitative study of vapor diffusions for crystallizations: rates and solvent parameter changes. Dalton Trans 2019; 48:11575-11582. [PMID: 31298229 DOI: 10.1039/c8dt01891j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vapor diffusion crystallizations are among the most versatile methods for growing X-ray quality crystals. While many experimental sections describe the successful use of various solvent combinations, the literature has been entirely lacking in quantitative data (rates, measures of solvent strength changes) that might allow more informed planning rather than simple trial-and-error approaches. We here report the diffusion-induced volume changes for 44 solvent combinations over the first 60 h under standardized conditions, plus six more combinations that exhibit little or no volume changes. Additionally, the inner and outer vial compositions at 24 h were determined, and the resulting changes in solvation parameters were quantified using Hansen solubility parameters. Some general preliminary effects of changes in volume ratios and scale are described. These results identify two dozen solvent combinations with larger changes in solvent parameters than the very commonly used diethyl ether/dichloromethane example. These results should allow a more informed approach to the execution of vapor diffusion crystallizations than has previously been possible.
Collapse
Affiliation(s)
- Michael J Wen
- Dept. of Chemistry & Biochemistry, Baylor University, Waco, TX, USA
| | | | | |
Collapse
|
39
|
Patel EN, Arthur RB, Nicholas AD, Reinheimer EW, Omary MA, Brichacek M, Patterson HH. Synthesis, structure and photophysical properties of a 2D network with gold dicyanide donors coordinated to aza[5]helicene viologen acceptors. Dalton Trans 2019; 48:10288-10297. [DOI: 10.1039/c9dt01823a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of a gold-heli viologen network shows the presence of [Au(CN)2]− dimers and monomers within the 2D framework, and quenching of the [Au(CN)2]− luminescence by the helicene.
Collapse
Affiliation(s)
| | | | | | - Eric W. Reinheimer
- Department of Chemistry and Biochemistry and the W.M. Keck Foundation Center for Molecular Structure
- California State University
- San Marcos
- USA
- Department of Chemistry
| | | | | | | |
Collapse
|
40
|
|
41
|
Karagöz AÇ, Leidenberger M, Hahn F, Hampel F, Friedrich O, Marschall M, Kappes B, Tsogoeva SB. Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorg Med Chem 2018; 27:110-115. [PMID: 30503412 DOI: 10.1016/j.bmc.2018.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Severe malaria and viral infections cause life-threatening diseases in millions of people worldwide every year. In search for effective bioactive hybrid molecules, which may possess improved properties compared to their parent compounds, a series of betulinic acid/betulin based dimer and hybrid compounds carrying ferrocene and/or artesunic acid moieties, was designed and, synthesized de novo. Furthermore, they were analyzed in vitro against malaria parasites (growth inhibition of 3D7-strain P. falciparum-infected erythrocytes) and human cytomegalovirus (HCMV). From this series of hybrids/dimers, the betulinic acid/betulin and artesunic acid hybrids 11 and 12 showed the most potent activities against P. falciparum and HCMV. On the strength of results, additive and/or synergistic effects between the natural or semisynthetic products, such as betulinic acid-/betulin- and artesunic acid-derived compounds, are suggested on the basis of putatively complex modes of antimicrobial action. This advantage may be taken into account in future drug development.
Collapse
Affiliation(s)
- Aysun Çapcı Karagöz
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Frank Hampel
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
42
|
Ferreira AP, Gamble JF, Leane MM, Park H, Olusanmi D, Tobyn M. Enhanced Understanding of Pharmaceutical Materials Through Advanced Characterisation and Analysis. AAPS PharmSciTech 2018; 19:3462-3480. [PMID: 30411240 DOI: 10.1208/s12249-018-1198-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022] Open
Abstract
The impact of pharmaceutical materials properties on drug product quality and manufacturability is well recognised by the industry. An ongoing effort across industry and academia, the Manufacturing Classification System consortium, aims to gather the existing body of knowledge in a common framework to provide guidance on selection of appropriate manufacturing technologies for a given drug and/or guide optimization of the physical properties of the drug to facilitate manufacturing requirements for a given processing route. Simultaneously, material scientists endeavour to develop characterisation methods such as size, shape, surface area, density, flow and compactibility that enable a stronger understanding of materials powder properties. These properties are routinely tested drug product development and advances in instrumentation and computing power have enabled novel characterisation methods which generate larger, more complex data sets leading to a better understanding of the materials. These methods have specific requirements in terms of data management and analysis. An appropriate data management strategy eliminates time-consuming data collation steps and enables access to data collected for multiple methods and materials simultaneously. Methods ideally suited to extract information from large, complex data sets such as multivariate projection methods allow simpler representation of the variability contained within the data and easier interpretation of the key information it contains. In this review, an overview of the current knowledge and challenges introduced by modern pharmaceutical material characterisation methods is provided. Two case studies illustrate how the incorporation of multivariate analysis into the material sciences workflow facilitates a better understanding of materials.
Collapse
|
43
|
Sharninghausen LS, Sinha SB, Shopov DY, Brudvig GW, Crabtree RH. Some crystal growth strategies for diffraction structure studies of iridium complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Çapcı Karagöz A, Reiter C, Seo EJ, Gruber L, Hahn F, Leidenberger M, Klein V, Hampel F, Friedrich O, Marschall M, Kappes B, Efferth T, Tsogoeva SB. Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and artemisinin. Bioorg Med Chem 2018; 26:3610-3618. [PMID: 29887512 DOI: 10.1016/j.bmc.2018.05.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/27/2023]
Abstract
Hybridization of natural products has high potential to further improve their activities and may produce synergistic effects between linked pharmacophores. Here we report synthesis of nine new hybrids of natural products egonol, homoegonol, thymoquinone and artemisinin and evaluation of their activities against P. falciparum 3D7 parasites, human cytomegalovirus, sensitive and multidrug-resistant human leukemia cells. Most of the new hybrids exceed their parent compounds in antimalarial, antiviral and antileukemia activities and in some cases show higher in vitro efficacy than clinically used reference drugs chloroquine, ganciclovir and doxorubicin. Combined, our findings stress the high potency of these hybrids and encourages further use of the hybridization concept in applied pharmacological research.
Collapse
Affiliation(s)
- Aysun Çapcı Karagöz
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Christoph Reiter
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Lisa Gruber
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Volker Klein
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Frank Hampel
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
45
|
Jurić M, Androš Dubraja L, Popović J, Molčanov K, Torić F, Pajić D, Lončarić I. From a square core to square opening: structural diversity and magnetic properties of the oxo-bridged [Cr IIINb V] complexes. Dalton Trans 2018; 47:4183-4190. [PMID: 29479599 DOI: 10.1039/c7dt04724j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three heterometallic oxo-bridged compounds, [Cr2(phen)4(μ-O)4Nb2(C2O4)4]·2H2O (1; phen = 1,10-phenanthroline), [Cr2(terpy)2(H2O)2(μ-O)4Nb2(C2O4)4]·4H2O (2; terpy = 2,2';6',2''-terpyridine) and [Cr(terpy)(C2O4)(H2O)][Cr2(terpy)2(C2O4)2(μ-O)2Nb(C2O4)2]·3H2O (3), have been synthesized using a building block approach and characterized by IR spectroscopy, single-crystal and powder X-ray diffraction, magnetization measurements, and DFT calculations. The molecular structures of 1 and 2, crystallizing in P42212 and P21/n space groups, respectively, contain a square-shaped {Cr(μ-O)4Nb} unit, while that of complex salt 3 (P1[combining macron] space group) consists of a mononuclear cation containing CrIII and trinuclear anions in which two CrIII ions are bridged by a -O-NbV-O- fragment. Besides hydrogen-bonding patterns resulting in a 1D- or 3D-supramolecular arrangement in 1-3, an unusual intermolecular contact has been noticed between parallel oxalate moieties occurring due to the electrostatic attraction of electron-rich carbonyl oxygen and severely electron-depleted carbon atoms in the crystal packing of 2. The antiferromagnetic coupling observed in all three compounds, determined from magnetization measurements (J = -13.51(2), -8.41(1) and -7.44(4) cm-1 for 1, 2 and 3, respectively) and confirmed by DFT calculations, originates from two CrIII ions with spin 3/2 interacting through diamagnetic -O-NbV-O- bridge(s).
Collapse
Affiliation(s)
- Marijana Jurić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | | | - Jasminka Popović
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Krešimir Molčanov
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Filip Torić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
46
|
Nievergelt PP, Babor M, Čejka J, Spingler B. A high throughput screening method for the nano-crystallization of salts of organic cations. Chem Sci 2018; 9:3716-3722. [PMID: 29780503 PMCID: PMC5939191 DOI: 10.1039/c8sc00783g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/29/2023] Open
Abstract
The generation of solid salts of organic molecules is important to the chemical and pharmaceutical industry. Commonly used salt screening methods consume a lot of resources. We employed a combination of ion exchange screening and vapour diffusion for crystallization. This technique is semi-automatic and requires just nanoliters of the solution of the analyte to be crystallized. This high throughput screening yielded single crystals of sufficient size and quality for single-crystal X-ray structure determination using an in-house X-ray diffractometer. The broad scope of our method has been shown by challenging it with 7 very different organic cations, whose aqueous solubilities vary by a factor of almost 1000. At least one crystal structure for 6 out of 7 tested cations was determined; 4 out of the successful 6 ones had never been crystallized before. Our method is extremely attractive for high throughput salt screening, especially for active pharmaceutical ingredients (APIs), as about 40% of all APIs are cationic salts. Additionally, our screening is a new and very promising procedure for the crystallization of salts of organic cations.
Collapse
Affiliation(s)
- Philipp P Nievergelt
- Department of Chemistry , University of Zurich , Winterthurerstr. 190 , 8057 Zurich , Switzerland . ; http://www.chem.uzh.ch/en/research/groups/spingler.html
| | - Martin Babor
- Department of Chemistry , University of Zurich , Winterthurerstr. 190 , 8057 Zurich , Switzerland . ; http://www.chem.uzh.ch/en/research/groups/spingler.html.,Department of Solid State Chemistry , University of Chemistry and Technology Prague , Prague 6 , 166 28 , Czech Republic
| | - Jan Čejka
- Department of Solid State Chemistry , University of Chemistry and Technology Prague , Prague 6 , 166 28 , Czech Republic
| | - Bernhard Spingler
- Department of Chemistry , University of Zurich , Winterthurerstr. 190 , 8057 Zurich , Switzerland . ; http://www.chem.uzh.ch/en/research/groups/spingler.html
| |
Collapse
|
47
|
Collot M, Fam TK, Ashokkumar P, Faklaris O, Galli T, Danglot L, Klymchenko AS. Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues. J Am Chem Soc 2018; 140:5401-5411. [PMID: 29446627 DOI: 10.1021/jacs.7b12817] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipid droplets (LDs) are intracellular lipid-rich organelles that regulate the storage of neutral lipids and were recently found to be involved in many physiological processes, metabolic disorders, and diseases including obesity, diabetes, and cancers. Herein we present a family of new fluorogenic merocyanine fluorophores based on an indolenine moiety and a dioxaborine barbiturate derivative. These so-called StatoMerocyanines (SMCy) fluoresce from yellow to the near-infrared (NIR) in oil with an impressive fluorescence enhancement compared to aqueous media. Additionally, SMCy display remarkably high molar extinction coefficients (up to 390 000 M-1 cm-1) and high quantum yield values (up to 100%). All the members of this new family specifically stain the LDs in live cells with very low background noise. Unlike Nile Red, a well-known lipid droplet marker, SMCy dyes possess narrow absorption and emission bands in the visible, thus allowing multicolor imaging. SMCy proved to be compatible with fixation and led to high-quality 3D images of lipid droplets in cells and tissues. Their high brightness allowed efficient tissue imaging of adipocytes and circulating LDs. Moreover their remarkably high two-photon absorption cross-section, especially SMCy5.5 (up to 13 300 GM), as well as their capacity to efficiently fluoresce in the NIR region led to two-photon multicolor tissue imaging (liver). Taking advantage of the available color palette, lipid droplet exchange between cells was tracked and imaged, thus demonstrating intercellular communication.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213 , Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin , 67401 Illkirch , France
| | - Tkhe Kyong Fam
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213 , Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin , 67401 Illkirch , France
| | - Pichandi Ashokkumar
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213 , Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin , 67401 Illkirch , France
| | - Orestis Faklaris
- ImagoSeine Core Facility, Institut Jacques Monod , Université Paris Diderot/CNRS, UMR 7593 , 15 Rue Hélène Brion , 75205 Paris CEDEX 13 , France
| | - Thierry Galli
- INSERM U894 , Centre de Psychiatrie et Neurosciences, "Membrane Traffic in Health and Diseased Brain" Team , 102-108 Rue de la Santé , 75014 Paris , France.,Université Paris Descartes , 75014 Paris , France
| | - Lydia Danglot
- INSERM U894 , Centre de Psychiatrie et Neurosciences, "Membrane Traffic in Health and Diseased Brain" Team , 102-108 Rue de la Santé , 75014 Paris , France.,Université Paris Descartes , 75014 Paris , France
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213 , Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin , 67401 Illkirch , France
| |
Collapse
|
48
|
Thoresen EM, Balcells D, Øien-Ødegaard S, Hylland KT, Tilset M, Amedjkouh M. Cyclometalated ruthenium complexes with carboxylated ligands from a combined experimental/computational perspective. Dalton Trans 2018; 47:2589-2601. [PMID: 29384547 DOI: 10.1039/c7dt03935b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The syntheses and characterization of nine new cyclometalated ruthenium complexes are reported. These structures consist of Ru(ii) with bipyridine and phenylpyridine ligands which are substituted with ester or carboxylate groups. Two of the complexes were extensively studied and their properties were compared to those of two previously reported structures. The identities of the compounds were confirmed by NMR, HR-MS and single crystal XRD, and the electronic properties were investigated by UV-Vis spectroscopy. DFT and TD-DFT calculations showed that the intense absorbances in the visible region of the spectrum of these cyclometalated complexes are due to electronic excitations to virtual orbitals located on the carboxylated ligands. These results indicate that the compounds are promising candidates as sensitizers for more efficient photocatalysis with sunlight. Further, the carboxylate groups should facilitate their use as linkers in metal-organic frameworks.
Collapse
Affiliation(s)
- Eirik Mydske Thoresen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway. and Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318 Oslo, Norway.
| | - David Balcells
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway. and Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Sigurd Øien-Ødegaard
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway. and Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318 Oslo, Norway.
| | - Knut Tormodssønn Hylland
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway. and Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318 Oslo, Norway.
| | - Mats Tilset
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway. and Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318 Oslo, Norway.
| | - Mohamed Amedjkouh
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway. and Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318 Oslo, Norway.
| |
Collapse
|
49
|
Abstract
By controlling nucleation and growth through choice of crystallization conditions, the stable co-crystal or metastable salt can be reproducibly obtained in accordance with Ostwald's rule of stages and the concept of ‘disappearing polymorphs’.
Collapse
Affiliation(s)
- E. A. Losev
- Group of Reactivity of Solids
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk
- Russian Federation
- Laboratory of Solid State Reactivity
| | - E. V. Boldyreva
- Group of Reactivity of Solids
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk
- Russian Federation
- Department of Solid State Chemistry
| |
Collapse
|
50
|
Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem Soc Rev 2018; 47:6267-6295. [DOI: 10.1039/c8cs00268a] [Citation(s) in RCA: 733] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis and applications of two-dimensional metal–organic framework nanosheets and their composites are summarized.
Collapse
Affiliation(s)
- Meiting Zhao
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Ying Huang
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yongwu Peng
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Zhiqi Huang
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Qinglang Ma
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Hua Zhang
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|