• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4600961)   Today's Articles (6108)   Subscriber (49361)
For: Anglada JM, González J, Torrent-Sucarrat M. Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water. Phys Chem Chem Phys 2011;13:13034-45. [PMID: 21687896 DOI: 10.1039/c1cp20872a] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Number Cited by Other Article(s)
1
Lade R, Onel L, Blitz MA, Seakins PW, Stone D. Kinetics of the Gas-Phase Reactions of syn- and anti-CH3CHOO Criegee Intermediate Conformers with SO2 as a Function of Temperature and Pressure. J Phys Chem A 2024;128:2815-2824. [PMID: 38551990 PMCID: PMC11017318 DOI: 10.1021/acs.jpca.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
2
Shabin M, Kumar A, Hakkim H, Rudich Y, Sinha V. Sources, sinks, and chemistry of Stabilized Criegee Intermediates in the Indo-Gangetic Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;896:165281. [PMID: 37406701 DOI: 10.1016/j.scitotenv.2023.165281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
3
Wu YJ, Takahashi K, Lin JJM. Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect. J Phys Chem A 2023;127:8059-8072. [PMID: 37734061 DOI: 10.1021/acs.jpca.3c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
4
Takahashi K. Substituent Dependence on the Reactions of Criegee Intermediates with Carbon Dioxide and Carbon Monoxide. Chempluschem 2023;88:e202300354. [PMID: 37635074 DOI: 10.1002/cplu.202300354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
5
Huang JH, Zhang F, Shi YP, Cai JR, Chuang YH, Hu WP, Lee YY, Wang CC. Water Plays Multifunctional Roles in the Intervening Formation of Secondary Organic Aerosols in Ozonolysis of Limonene: A Valence Photoelectron Spectroscopy and Density Functional Theory Study. J Phys Chem Lett 2023;14:3765-3776. [PMID: 37052309 DOI: 10.1021/acs.jpclett.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
6
Wang G, Liu T, Zou M, Karsili TNV, Lester MI. UV photodissociation dynamics of the acetone oxide Criegee intermediate: experiment and theory. Phys Chem Chem Phys 2023;25:7453-7465. [PMID: 36848133 DOI: 10.1039/d3cp00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
7
Karsili TNV, Marchetti B, Lester MI, Ashfold MNR. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem Photobiol 2023;99:4-18. [PMID: 35713380 DOI: 10.1111/php.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023]
8
Li W, Chen J, Lin Q, An T. Bridged-ozonolysis of mixed aromatic hydrocarbons and organic amines: Inter-inhibited decay rate, altered product yield and synergistic-effect-enhanced secondary organic aerosol formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;843:156872. [PMID: 35752231 DOI: 10.1016/j.scitotenv.2022.156872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
9
Wei Y, Zhang Q, Huo X, Wang W, Wang Q. The reaction of Criegee intermediates with formamide and its implication to atmospheric aerosols. CHEMOSPHERE 2022;296:133717. [PMID: 35077731 DOI: 10.1016/j.chemosphere.2022.133717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
10
Lin YH, Takahashi K, Lin JJM. Absolute photodissociation cross sections of thermalized methyl vinyl ketone oxide and methacrolein oxide. Phys Chem Chem Phys 2022;24:10439-10450. [PMID: 35441630 DOI: 10.1039/d2cp00476c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
McCoy JC, Léger SJ, Frey CF, Vansco MF, Marchetti B, Karsili TNV. Modeling the Conformer-Dependent Electronic Absorption Spectra and Photolysis Rates of Methyl Vinyl Ketone Oxide and Methacrolein Oxide. J Phys Chem A 2022;126:485-496. [PMID: 35049299 DOI: 10.1021/acs.jpca.1c08381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Wei Y, Xu F, Ma X, Li L, Wang W, Huo X, Zhang Q, Wang W. Theoretical study of the reaction mechanism between Criegee intermediates and hydroxyl radicals in the presence of ammonia and amine. CHEMOSPHERE 2022;287:131877. [PMID: 34523463 DOI: 10.1016/j.chemosphere.2021.131877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
13
Esposito VJ, Werba O, Bush SA, Marchetti B, Karsili TNV. Insights into the Ultrafast Dynamics of CH2 OO and CH3 CHOO Following Excitation to the Bright 1 ππ* State: The Role of Singlet and Triplet States. Photochem Photobiol 2021;98:763-772. [PMID: 34767632 DOI: 10.1111/php.13560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
14
Wang G, Liu T, Caracciolo A, Vansco MF, Trongsiriwat N, Walsh PJ, Marchetti B, Karsili TNV, Lester MI. Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. J Chem Phys 2021;155:174305. [PMID: 34742186 DOI: 10.1063/5.0068664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
15
Conrad AR, Hansen N, Jasper AW, Thomason NK, Hidaldo-Rodrigues L, Treshock SP, Popolan-Vaida DM. Identification of the acetaldehyde oxide Criegee intermediate reaction network in the ozone-assisted low-temperature oxidation of trans-2-butene. Phys Chem Chem Phys 2021;23:23554-23566. [PMID: 34651147 DOI: 10.1039/d1cp03126k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Li L, Zhang R, Ma X, Wei Y, Zhao X, Zhang R, Xu F, Li Y, Huo X, Zhang Q, Wang W. Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study. CHEMOSPHERE 2021;280:130709. [PMID: 34162082 DOI: 10.1016/j.chemosphere.2021.130709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
17
Adjieufack AI, Bake MM, Nguimkeu CN, Pilmé J, Ndassa IM. Exploring The Sequence of Electron Density Along The Chemical Reactions Between Carbonyl Oxides And Ammonia/Water Using Bond Evolution Theory. Chemphyschem 2021;22:1792-1801. [PMID: 34197684 DOI: 10.1002/cphc.202100221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Indexed: 11/10/2022]
18
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee‐Intermediate über die Ozonolyse hinaus: Ein Einblick in Synthesen und Mechanismen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
19
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights. Angew Chem Int Ed Engl 2021;60:15138-15152. [PMID: 33283439 PMCID: PMC8359312 DOI: 10.1002/anie.202014974] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
20
Wang R, Wen M, Liu S, Lu Y, Makroni L, Muthiah B, Zhang T, Wang Z, Wang Z. The favorable routes for the hydrolysis of CH2OO with (H2O)n (n = 1-4) investigated by global minimum searching combined with quantum chemical methods. Phys Chem Chem Phys 2021;23:12749-12760. [PMID: 34041511 DOI: 10.1039/d0cp00028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
21
Long B, Wang Y, Xia Y, He X, Bao JL, Truhlar DG. Atmospheric Kinetics: Bimolecular Reactions of Carbonyl Oxide by a Triple-Level Strategy. J Am Chem Soc 2021;143:8402-8413. [PMID: 34029069 DOI: 10.1021/jacs.1c02029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
McCoy JC, Marchetti B, Thodika M, Karsili TNV. A Simple and Efficient Method for Simulating the Electronic Absorption Spectra of Criegee Intermediates: Benchmarking on CH2OO and CH3CHOO. J Phys Chem A 2021;125:4089-4097. [PMID: 33970629 DOI: 10.1021/acs.jpca.1c01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
23
Wang R, Wen M, Chen X, Mu R, Zeng Z, Chai G, Lily M, Wang Z, Zhang T. Atmospheric Chemistry of CH2OO: The Hydrolysis of CH2OO in Small Clusters of Sulfuric Acid. J Phys Chem A 2021;125:2642-2652. [PMID: 33755485 DOI: 10.1021/acs.jpca.1c02006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
24
Sandhiya L, Senthilkumar K. Unimolecular decomposition of acetyl peroxy radical: a potential source of tropospheric ketene. Phys Chem Chem Phys 2020;22:26819-26827. [PMID: 33231595 DOI: 10.1039/d0cp04590j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Li YZ, Yang JW, Makroni L, Wang WL, Liu FY. Photodynamics of methyl-vinyl Criegee intermediate: Different conical intersections govern the fates of syn/anti configurations. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
26
Zhou X, Liu Y, Chen Y, Li X, Xiao C, Dong W, Yang X. Kinetic Studies for the Reaction of syn-CH3CHOO with CF3CH═CH2. J Phys Chem A 2020;124:6125-6132. [PMID: 32614580 DOI: 10.1021/acs.jpca.0c03534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
27
Cabezas C, Nakajima M, Endo Y. Criegee intermediates meet rotational spectroscopy. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1782651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
28
Du B, Zhang W. Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2. Molecules 2020;25:molecules25133041. [PMID: 32635243 PMCID: PMC7412395 DOI: 10.3390/molecules25133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]  Open
29
Ma X, Zhao X, Wei Y, Wang W, Xu F, Zhang Q, Wang W. Effect of multifunctional compound monoethanolamine on Criegee intermediates reactions and its atmospheric implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020;715:136812. [PMID: 32041039 DOI: 10.1016/j.scitotenv.2020.136812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
30
Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Proc Natl Acad Sci U S A 2020;117:9733-9740. [PMID: 32321826 DOI: 10.1073/pnas.1916711117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
31
Chen Y, Zhou XH, Liu YQ, Jin YQ, Dong WR, Yang XM. Kinetics of the simplest criegee intermediate CH2OO reacting with CF3CF=CF2. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2002025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
32
The role of ammonia and amines in the isomerization of Criegee intermediates: A theoretical study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Reaction kinetics of CH2OO with 1,3-butadiene: Mechanistic investigation with RRKM calculations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
34
Maranzana A, Tonachini G. Multireference Study of the H2COO (Criegee Intermediate) + O3 Addition: A Reaction of Possible Tropospheric Interest. J Phys Chem A 2020;124:1112-1120. [DOI: 10.1021/acs.jpca.9b11430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
35
Lian HY, Pang SF, He X, Yang M, Ma JB, Zhang YH. Heterogeneous reactions of isoprene and ozone on α-Al2O3: The suppression effect of relative humidity. CHEMOSPHERE 2020;240:124744. [PMID: 31557643 DOI: 10.1016/j.chemosphere.2019.124744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
36
Kumar A, Kumar P. CO2 as an auto-catalyst for the oxidation of CO by a Criegee intermediate (CH2OO). Phys Chem Chem Phys 2020;22:6975-6983. [DOI: 10.1039/d0cp00027b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
37
Li YL, Kuo MT, Lin JJM. Unimolecular decomposition rates of a methyl-substituted Criegee intermediate syn-CH3CHOO. RSC Adv 2020;10:8518-8524. [PMID: 35497839 PMCID: PMC9049986 DOI: 10.1039/d0ra01406k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/18/2020] [Indexed: 11/23/2022]  Open
38
Cabezas C, Endo Y. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy. Phys Chem Chem Phys 2020;22:13756-13763. [DOI: 10.1039/d0cp02174a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
39
Stephenson TA, Lester MI. Unimolecular decay dynamics of Criegee intermediates: Energy-resolved rates, thermal rates, and their atmospheric impact. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2020.1688530] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
40
Cai J, Lu Y, Wang W, Chen L, Liu F, Wang W. Reaction mechanism and kinetics of Criegee intermediate CH2OO with CH2 = C(CH3)CHO. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
41
Wagner JP. Gauging stability and reactivity of carbonyl O-oxide Criegee intermediates. Phys Chem Chem Phys 2019;21:21530-21540. [PMID: 31536065 DOI: 10.1039/c9cp03790j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Vansco MF, Marchetti B, Trongsiriwat N, Bhagde T, Wang G, Walsh PJ, Klippenstein SJ, Lester MI. Synthesis, Electronic Spectroscopy, and Photochemistry of Methacrolein Oxide: A Four-Carbon Unsaturated Criegee Intermediate from Isoprene Ozonolysis. J Am Chem Soc 2019;141:15058-15069. [PMID: 31446755 DOI: 10.1021/jacs.9b05193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
43
Bracco LLB, Tucceri ME, Escalona A, Díaz-de-Mera Y, Aranda A, Rodríguez AM, Rodríguez D. New particle formation from the reactions of ozone with indene and styrene. Phys Chem Chem Phys 2019;21:11214-11225. [PMID: 31099372 DOI: 10.1039/c9cp00912d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
44
Wei WM, Hong S, Fang WJ, Zheng RH, Qin YD. Formation of OH radicals from the simplest Criegee intermediate CH2OO and water. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
45
Marchetti B, Karsili TNV, Ashfold MNR. Exploring Norrish type I and type II reactions: an ab initio mechanistic study highlighting singlet-state mediated chemistry. Phys Chem Chem Phys 2019;21:14418-14428. [DOI: 10.1039/c8cp07292b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
46
Rousso AC, Hansen N, Jasper AW, Ju Y. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Phys Chem Chem Phys 2019;21:7341-7357. [DOI: 10.1039/c9cp00473d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
47
Aroeira GJR, Abbott AS, Elliott SN, Turney JM, Schaefer HF. The addition of methanol to Criegee intermediates. Phys Chem Chem Phys 2019;21:17760-17771. [DOI: 10.1039/c9cp03480c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
48
Kumar M, Francisco JS. Elucidating the molecular mechanisms of Criegee-amine chemistry in the gas phase and aqueous surface environments. Chem Sci 2019. [DOI: 10.1039/c8sc03514h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
49
Watson NAI, Black JA, Stonelake TM, Knowles PJ, Beames JM. An Extended Computational Study of Criegee Intermediate-Alcohol Reactions. J Phys Chem A 2018;123:218-229. [PMID: 30507197 DOI: 10.1021/acs.jpca.8b09349] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
50
Kaipara R, Rajakumar B. Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation. J Phys Chem A 2018;122:8433-8445. [DOI: 10.1021/acs.jpca.8b06603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA