1
|
Ozturk S, Davis AR, Seaton CC, Male L, Pike SJ. Solvatomorphism of a 2,6-pyridyldicarboxamide-based foldamer. Org Biomol Chem 2025. [PMID: 40114610 DOI: 10.1039/d5ob00342c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A detailed solvatomorphism study conducted on a diamine-terminated 2,6-pyridyldicarboxamide-based foldamer 1 is reported. This investigation establishes the influence of a diverse range of polar and non-polar solvents including chloroform (1A), a trifluorotoluene/dichloromethane mixture (1A), dimethylformamide/diethyl ether (1B), tetrahydrofuran (1·THF), butanone (1·butanone), dichloromethane (1·DCM), a methanol/dichloromethane mixture (1·MeOH) and dimethylsulfoxide (1·DMSO) on the solid-state conformation and crystal packing behaviour of this supramolecular scaffold. Single-crystal X-ray diffraction analysis of the seven solvatomorphs of the studied foldamer (1A, 1B, 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO) identified that 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO form supramolecular aggregates (e.g., channels/cavities) which incorporate solvent molecules within the voids of the system, leading them to adopt channels of differing dimensions between 3.5 and 9.0 Å. Solid-state analysis identified that a diverse array of intermolecular non-covalent interactions form between the foldamer and the solvent molecule, including N-H⋯O, N-H⋯Cl, O-H⋯O, N-H⋯Cl and C-H⋯O hydrogen-bonding interactions, stabilising the formation of these solvent-mediated channel aggregates within the different solvatomorphs of the studied foldamer. We envisage that these solvatomorphism studies will facilitate the future design of foldamers, particularly given the emerging solid-state applications of foldamers which could hold relevance in the field of crystal engineering or for the uptake of small molecules for long-term use in energy storage and materials chemistry.
Collapse
Affiliation(s)
- Sena Ozturk
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Alexander R Davis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Colin C Seaton
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Koehler V. From Double-Stranded Helicates to Abiotic Double Helical Supramolecular Assemblies. Chemistry 2025; 31:e202402222. [PMID: 39429111 DOI: 10.1002/chem.202402222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The folding of oligomeric strands is the method that nature has selected to generate ordered assemblies presenting spectacular functions. In the purpose to mimic these biomacromolecules and extend their properties and functions, chemists make important efforts to prepare artificial secondary, tertiary, and even quarternary structures based on folded abiotic backbones. A large variety of oligomers and polymers, encoded with chemical informations, were designed, synthesized and characterized, and the establishment of non-covalent interactions lead to complex and functional supramolecular architectures resulting from a spontaneous self-assembly process. The association of complementary molecular strands into double helical structures is a common structural pattern of nucleic acids and proteins, so the synthesis of bio-inspired double helices has emerged as an important subject. In recent years, a number of synthetic oligomers have been reported to form stable double helices and it was shown that the equilibrium between single and double helices can be controlled via different stimuli like the modification of the solvent or the temperature. This kind of structure presents highly interesting functions, such as molecular recognition within the cavity of double helices, and some other potential applications will emerge in the future.
Collapse
Affiliation(s)
- Victor Koehler
- Adionics, The Advanced Ionic Solution, 17 bis avenue des Andes, 91940, Les Ulis, France
| |
Collapse
|
3
|
Jin Y, Mandal PK, Wu J, Kiani A, Zhao R, Huc I, Otto S. Light-Mediated Interconversion between a Foldamer and a Self-Replicator. J Am Chem Soc 2024; 146:33395-33402. [PMID: 39590511 PMCID: PMC11638899 DOI: 10.1021/jacs.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Self-replicating molecules and well-defined folded macromolecules are of great significance in the emergence and evolution of life. How they may interconnect and affect each other remains largely elusive. Here, we demonstrate an abiotic system where a single building block can oligomerize to yield either a self-replicating molecule or a foldamer. Specifically, agitation of a disulfide-based dynamic combinatorial library at moderately elevated pH channels it selectively into a self-replicating hexamer assembled into fibers, after passing through a period where a 15-subunit macrocyclic foldamer existed transiently. Without mechanoagitation or at lower pH, the formation of hexamer fiber is suppressed, resulting in the accumulation of the 15mer foldamer. Foldamer and self-replicator can be interconverted in response to external stimuli, including agitation and a change in pH. Furthermore, upon the addition of a photoacid, the pH of the medium can be controlled by irradiation, driving the switching between replicator and foldamer and allowing a dissipative out-of-equilibrium state to be accessed, using light as a source of energy.
Collapse
Affiliation(s)
- Yulong Jin
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- State
Key Laboratory of Chemical Resource Engineering, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, College
of Chemistry, Beijing University of Chemical
Technology, 100029 Beijing, China
| | - Pradeep K. Mandal
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, 81377 Munich, Germany
| | - Juntian Wu
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Armin Kiani
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Rui Zhao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Ivan Huc
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, 81377 Munich, Germany
| | - Sijbren Otto
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Davis AR, Ozturk S, Seaton CC, Male L, Pike SJ. Controlling the Helical Pitch of Foldamers through Terminal Functionality: A Solid State Study. Chemistry 2024; 30:e202402892. [PMID: 39246096 DOI: 10.1002/chem.202402892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
Developing new methods to control the size and shape of the helical structures adopted by foldamers is highly important as the secondary structure displayed by these supramolecular scaffolds often dictates their activity and function. Herein, we report on a systematic study demonstrating that the helical pitch of ortho-azobenzene/2,6-pyridyldicarboxamide foldamers can be readily controlled through the nature of the terminal functionality. Remarkably, simply through varying the end group of the foldamer, and without modifying any other structural features of the scaffold, the helical pitch can be over doubled in magnitude (from 3.4 Å-7.3 Å). Additionally, crystallographic analysis of a library ten foldamers has identified general trends in the influence of a range of terminal functionalities, including carboxylbenzyl (Cbz), diphenylcarbamyl (N(Ph)2), ferrocene (Fc) and tert-butyloxycarbonyl (Boc), in controlling the folding behaviour of these supramolecular scaffolds. These studies could prove useful in the future development of functional foldamers which adopt specific sizes and shapes.
Collapse
Affiliation(s)
- Alexander R Davis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sena Ozturk
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Colin C Seaton
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
7
|
Iyoshi A, Ueda A, Umeno T, Kato T, Hirayama K, Doi M, Tanaka M. Conformational Analysis and Organocatalytic Activity of Helical Stapled Peptides Containing α-Carbocyclic α,α-Disubstituted α-Amino Acids. Molecules 2024; 29:4340. [PMID: 39339337 PMCID: PMC11434043 DOI: 10.3390/molecules29184340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Conformational freedom-restricted peptides, such as stapled peptides, play a crucial role in the advancement of functional peptide development. We synthesized stapled octapeptides using α-carbocyclic α,α-disubstituted α-amino acids, particularly 3-allyloxy-1-aminocyclopentane-1-carboxylic acid, as the crosslink motifs. The organocatalytic capabilities of the synthesized stapled peptides were assessed in an asymmetric nucleophilic epoxidation reaction because the catalytic activities are known to be proportional to α-helicity. Despite incorporating side-chain crosslinks, the enantioselectivities of the epoxidation reaction catalyzed by stapled octapeptides were found to be comparable to those obtained using unstapled peptides. Interestingly, the stapled peptides using α-carbocyclic α,α-disubstituted α-amino acids demonstrated higher reactivities and stereoselectivities (up to 99% ee) compared to stapled peptides derived from (S)-α-(4-pentenyl)alanine, a commonly used motif for stapled peptides. These differences could be attributed to the increased α-helicity of the former stapled peptide in contrast to the latter, as evidenced by the X-ray crystallographic structures of their N-tert-butoxycarbonyl derivatives.
Collapse
Affiliation(s)
- Akihiro Iyoshi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (A.I.); (T.U.)
| | - Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (A.I.); (T.U.)
| | - Tomohiro Umeno
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (A.I.); (T.U.)
| | - Takuma Kato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan; (T.K.); (M.D.)
| | - Kazuhiro Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (A.I.); (T.U.)
| | - Mitsunobu Doi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan; (T.K.); (M.D.)
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (A.I.); (T.U.)
| |
Collapse
|
8
|
Szatko M, Forysiak W, Kozub S, Andruniów T, Szweda R. Revealing the Effect of Stereocontrol on Intermolecular Interactions between Abiotic, Sequence-Defined Polyurethanes and a Ligand. ACS Biomater Sci Eng 2024; 10:3727-3738. [PMID: 38804015 PMCID: PMC11167595 DOI: 10.1021/acsbiomaterials.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
The development of precision polymer synthesis has facilitated access to a diverse library of abiotic structures wherein chiral monomers are positioned at specific locations within macromolecular chains. These structures are anticipated to exhibit folding characteristics similar to those of biotic macromolecules and possess comparable functionalities. However, the extensive sequence space and numerous variables make selecting a sequence with the desired function challenging. Therefore, revealing sequence-function dependencies and developing practical tools are necessary to analyze their conformations and molecular interactions. In this study, we investigate the effect of stereochemistry, which dictates the spatial location of backbone and pendant groups, on the interaction between sequence-defined oligourethanes and bisphenol A ligands. Various methods are explored to analyze the receptor-like properties of model oligomers and the ligand. The accuracy of molecular dynamics simulations and experimental techniques is assessed to uncover the impact of discrete changes in stereochemical arrangements on the structures of the resulting complexes and their binding strengths. Detailed computational investigations providing atomistic details show that the formed complexes demonstrate significant structural diversity depending on the sequence of stereocenters, thus affecting the oligomer-ligand binding strength. Among the tested techniques, the fluorescence spectroscopy data, fitted to the Stern-Volmer equation, are consistently aligned with the calculations, thus validating the developed simulation methodology. The developed methodology opens a way to engineer the structure of sequence-defined oligomers with receptor-like functionality to explore their practical applications, e.g., as sensory materials.
Collapse
Affiliation(s)
- Maksymilian Szatko
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Weronika Forysiak
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Sara Kozub
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
| | - Tadeusz Andruniów
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Roza Szweda
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Center
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
9
|
Sukumar G, Rahul, Nayani K, Mainkar PS, Prashanth J, Sridhar B, Sarma AVS, Bharatam J, Chandrasekhar S. 6-Strand to Stable 10/12 Helix Conformational Switch by Incorporating Flexible β-hGly in the Homooligomers of Camphor Derived β-Amino Acid: NMR and X-Ray Crystallographic Evidence. Angew Chem Int Ed Engl 2024; 63:e202403321. [PMID: 38482551 DOI: 10.1002/anie.202403321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 04/07/2024]
Abstract
Rational design of unnatural amino acid building blocks capable of stabilizing predictable secondary structures similar to protein fragments is pivotal for foldamer chemistry/catalysis. Here, we introduce novel β-amino acid building blocks: [1S,2R,4R]exoCDA and [1S,2S,4R]endoCDA, derived from the abundantly available R(+)-camphor, which is traditionally known for its medicinal value. Further, we demonstrate that the homooligomers of exoCDA adopt 6-strand conformation, which switches to a robust 10/12-helix simply by inserting flexible β-hGly spacer at alternate positions (1 : 1 β-hGly/exoCDA heterooligomers), as evident by DFT-calculations, solution-state NMR spectroscopy and X-ray crystallography. To the best of our knowledge, this is the first example of crystalline-state structure of left-handed 10/12-mixed helix, that is free from the conventional approach of employing β-amino acids of either alternate chirality or alternate β2/β3 substitutions, to access the 10/12-helix. The results also show that the homooligomers of heterochiral exoCDA don't adopt helical fold, instead exhibit banana-shaped strands, whereas the homodimers of the other diastereomer endoCDA, nucleate 8-membered turns. Furthermore, the homo-exoCDA and hetero-[β-hGly-exoCDA] oligomers are found to exhibit self-association properties with distinct morphological features. Overall, the results offer new possibilties of constructing discrete stable secondary and tertiary structures based on CDAs, which can accommodate flexible residues with desired side-chain substitutions.
Collapse
Affiliation(s)
- Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, Andhra Pradesh, 533296, India
| | - Rahul
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jupally Prashanth
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akella V S Sarma
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagadeesh Bharatam
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Just D, Palivec V, Bártová K, Bednárová L, Pazderková M, Císařová I, Martinez-Seara H, Jahn U. Foldamers controlled by functional triamino acids: structural investigation of α/γ-hybrid oligopeptides. Commun Chem 2024; 7:114. [PMID: 38796536 PMCID: PMC11128005 DOI: 10.1038/s42004-024-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
Peptide-like foldamers controlled by normal amide backbone hydrogen bonding have been extensively studied, and their folding patterns largely rely on configurational and conformational constraints induced by the steric properties of backbone substituents at appropriate positions. In contrast, opportunities to influence peptide secondary structure by functional groups forming individual hydrogen bond networks have not received much attention. Here, peptide-like foldamers consisting of alternating α,β,γ-triamino acids 3-amino-4-(aminomethyl)-2-methylpyrrolidine-3-carboxylate (AAMP) and natural amino acids glycine and alanine are reported, which were obtained by solution phase peptide synthesis. They form ordered secondary structures, which are dominated by a three-dimensional bridged triazaspiranoid-like hydrogen bond network involving the non-backbone amino groups, the backbone amide hydrogen bonds, and the relative configuration of the α,β,γ-triamino and α-amino acid building blocks. This additional stabilization leads to folding in both nonpolar organic as well as in aqueous environments. The three-dimensional arrangement of the individual foldamers is supported by X-ray crystallography, NMR spectroscopy, chiroptical methods, and molecular dynamics simulations.
Collapse
Affiliation(s)
- David Just
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Vladimír Palivec
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843, Prague 2, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic.
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic.
| |
Collapse
|
11
|
Laxio Arenas J, Lesma J, Ha-Duong T, Ranjan Sahoo B, Ramamoorthy A, Tonali N, Soulier JL, Halgand F, Giraud F, Crousse B, Kaffy J, Ongeri S. Composition and Conformation of Hetero- versus Homo-Fluorinated Triazolamers Influence their Activity on Islet Amyloid Polypeptide Aggregation. Chemistry 2024; 30:e202303887. [PMID: 38478740 DOI: 10.1002/chem.202303887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/11/2024]
Abstract
Novel fluorinated foldamers based on aminomethyl-1,4-triazolyl-difluoroacetic acid (1,4-Tz-CF2) units were synthesized and their conformational behaviour was studied by NMR and molecular dynamics. Their activity on the aggregation of the human islet amyloid polypeptide (hIAPP) amyloid protein was evaluated by fluorescence spectroscopy and mass spectrometry. The fluorine labelling of these foldamers allowed the analysis of their interaction with the target protein. We demonstrated that the preferred extended conformation of homotriazolamers of 1,4-Tz-CF2 unit increases the aggregation of hIAPP, while the hairpin-like conformation of more flexible heterotriazolamers containing two 1,4-Tz-CF2 units mixed with natural amino acids from the hIAPP sequence reduces it, and more efficiently than the parent natural peptide. The longer heterotriazolamers having three 1,4-Tz-CF2 units adopting more folded hairpin-like and ladder-like structures similar to short multi-stranded β-sheets have no effect. This work demonstrates that a good balance between the structuring and flexibility of these foldamers is necessary to allow efficient interaction with the target protein.
Collapse
Affiliation(s)
- José Laxio Arenas
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Jacopo Lesma
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Tap Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Bikash Ranjan Sahoo
- Biophysics, Department of Chemistry, Biomedical Engineering, Michigan Neuroscience Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Michigan Neuroscience Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Jean-Louis Soulier
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Frédéric Halgand
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - François Giraud
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN, CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190, Gif sur Yvette, France
| | - Benoît Crousse
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Julia Kaffy
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| |
Collapse
|
12
|
Park HS, Lee JY, Kang YK. Exploring helix structures of γ-peptides based on 2-(aminomethyl)cyclopentanecarboxylic acid. Biopolymers 2024; 115:e23575. [PMID: 38465777 DOI: 10.1002/bip.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Conformational search and density functional theory calculations were performed to explore the preferences of helical structures for chiro-specific oligo-γ-peptides of 2-(aminomethyl)cyclopentanecarboxylic acid (γAmc5) with a cyclopentyl constraint on the Cα-Cβ bond in solution. The dimer and tetramer of γAmc5 (1) with homochiral (1S, 2S) configurations exhibited a strong preference for the 9-membered helix foldamer in solution, except for the tetramer in water. However, the oligomers of γAmc5 (1) longer than tetramer preferentially adopted a right-handed (P)-2.614-helix (H1-14) as the peptide sequence becomes longer and as solvent polarity increases. The high stabilities for H1-14 foldamers of γAmc5 (1) in solution were ascribed to the favored solvation free energies. The calculated mean backbone torsion angles for H1-14 helix foldamers of γAmc5 (1) were similar to those calculated for oligomers of other γ-residues with cyclopentane or cyclohexane rings. However, the substitution of cyclopentane constraints on the Cα-Cβ bond of the γAmc5 (1) residue resulted in different conformational preferences and/or handedness of helix foldamers. In particular, the pyrrolidine-substituted analogs of the H1-14 foldamers of γAmc5 (1) with adjacent amine diads substituted at a proximal distance are expected to be potential catalysts for the crossed aldol condensation in nonpolar and polar solvents.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing, Cheju Halla University, Cheju, Republic of Korea
| | - Joo Yun Lee
- AI Team, Yunovia Co., Ltd., Hwaseong-si, Gyeonggi, Republic of Korea
| | - Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
13
|
Miura T, Malla TR, Brewitz L, Tumber A, Salah E, Lee KJ, Terasaka N, Owen CD, Strain-Damerell C, Lukacik P, Walsh MA, Kawamura A, Schofield CJ, Katoh T, Suga H. Cyclic β 2,3-amino acids improve the serum stability of macrocyclic peptide inhibitors targeting the SARS-CoV-2 main protease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2024; 97:uoae018. [PMID: 38828441 PMCID: PMC11141402 DOI: 10.1093/bulcsj/uoae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 06/05/2024]
Abstract
Due to their constrained conformations, cyclic β2,3-amino acids (cβAA) are key building blocks that can fold peptides into compact and rigid structures, improving peptidase resistance and binding affinity to target proteins, due to their constrained conformations. Although the translation efficiency of cβAAs is generally low, our engineered tRNA, referred to as tRNAPro1E2, enabled efficient incorporation of cβAAs into peptide libraries using the flexible in vitro translation (FIT) system. Here we report on the design and application of a macrocyclic peptide library incorporating 3 kinds of cβAAs: (1R,2S)-2-aminocyclopentane carboxylic acid (β1), (1S,2S)-2-aminocyclohexane carboxylic acid (β2), and (1R,2R)-2-aminocyclopentane carboxylic acid. This library was applied to an in vitro selection against the SARS-CoV-2 main protease (Mpro). The resultant peptides, BM3 and BM7, bearing one β2 and two β1, exhibited potent inhibitory activities with IC50 values of 40 and 20 nM, respectively. BM3 and BM7 also showed remarkable serum stability with half-lives of 48 and >168 h, respectively. Notably, BM3A and BM7A, wherein the cβAAs were substituted with alanine, lost their inhibitory activities against Mpro and displayed substantially shorter serum half-lives. This observation underscores the significant contribution of cβAA to the activity and stability of peptides. Overall, our results highlight the potential of cβAA in generating potent and highly stable macrocyclic peptides with drug-like properties.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tika R Malla
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Eidarus Salah
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Kang Ju Lee
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - C David Owen
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Claire Strain-Damerell
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Petra Lukacik
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Martin A Walsh
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Akane Kawamura
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
El Battioui K, Chakraborty S, Wacha A, Molnár D, Quemé-Peña M, Szigyártó IC, Szabó CL, Bodor A, Horváti K, Gyulai G, Bősze S, Mihály J, Jezsó B, Románszki L, Tóth J, Varga Z, Mándity I, Juhász T, Beke-Somfai T. In situ captured antibacterial action of membrane-incising peptide lamellae. Nat Commun 2024; 15:3424. [PMID: 38654023 PMCID: PMC11039730 DOI: 10.1038/s41467-024-47708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral β3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/18_046/0015974 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- This work was funded by the Momentum Program (LP2016-2 and LP2021-28) of the Hungarian Academy of Sciences, the National Competitiveness and Excellence Program (NVKP_16-1-2016-0007), the BIONANO_GINOP-2.3.2-15-2016-00017 project, and the National Research, Development and Innovation Office, Hungary (TKP2021-EGA-31, 2020-1.1.2-PIACI-KFI-2020-00021, 2019-2.1.11-TÉT-2019-00091, KKP_22 Project n.o. 144180, K131594 for J.M., K124900, K137940 for A.B., K142904 for Sz.B., and K138318 to J.T.). Support from Eötvös Loránd Research Network, Grant Nos. SA-87/2021 and KEP-5/2021, are also acknowledged. A.W. and Z.V. were supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors acknowledge support from ELTE Thematic Excellence Programme 2020, the Szint+ Program, National Challenges Subprogramme-TKP2020-NKA-06. CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium, funded by MEYS CR infrastructure project LM2018127, LM2023042 and European Regional Development Fund-Project „UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974), is gratefully acknowledged for the financial support of the measurements at the CF Cryo-Electron Microscopy and Tomography.
Collapse
Affiliation(s)
- Kamal El Battioui
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Sohini Chakraborty
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Mayra Quemé-Peña
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Csenge Lilla Szabó
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Andrea Bodor
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Kata Horváti
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Laboratory of Interfaces and Nanostructures, Budapest, H-1117, Hungary
| | - Szilvia Bősze
- HUN-REN ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Bálint Jezsó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Loránd Románszki
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - István Mándity
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, H-1092, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
| |
Collapse
|
15
|
Kovalenko V, Rudzińska-Szostak E, Ślepokura K, Berlicki Ł. Scalable Synthesis of All Stereoisomers of 2-Aminocyclopentanecarboxylic Acid─A Toolbox for Peptide Foldamer Chemistry. J Org Chem 2024; 89:4760-4767. [PMID: 38544408 PMCID: PMC11002926 DOI: 10.1021/acs.joc.3c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Although the construction of peptides with well-defined three-dimensional structures and predictable functions, including biological activity, using conformationally constrained β-amino acids has been shown to be a very successful strategy, their broad application is limited by access to the appropriate building blocks. In particular, trans- and cis-stereoisomers of 2-aminocyclopentanecarboxylic acid (ACPC) are of high interest. The scalable synthesis of all four stereoisomers of Fmoc derivatives of ACPC is presented with NMR-based analysis methods for their enantiomeric purity.
Collapse
Affiliation(s)
- Vitaly Kovalenko
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Ślepokura
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
16
|
Marković V, Shaik JB, Ożga K, Ciesiołkiewicz A, Lizandra Perez J, Rudzińska-Szostak E, Berlicki Ł. Peptide foldamer-based inhibitors of the SARS-CoV-2 S protein-human ACE2 interaction. J Enzyme Inhib Med Chem 2023; 38:2244693. [PMID: 37605435 PMCID: PMC10446788 DOI: 10.1080/14756366.2023.2244693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
The entry of the SARS-CoV-2 virus into a human host cell begins with the interaction between the viral spike protein (S protein) and human angiotensin-converting enzyme 2 (hACE2). Therefore, a possible strategy for the treatment of this infection is based on inhibiting the interaction of the two abovementioned proteins. Compounds that bind to the SARS-CoV-2 S protein at the interface with the alpha-1/alpha-2 helices of ACE2 PD Subdomain I are of particular interest. We present a stepwise optimisation of helical peptide foldamers containing trans-2-aminocylopentanecarboxylic acid residues as the folding-inducing unit. Four rounds of optimisation led to the discovery of an 18-amino-acid peptide with high affinity for the SARS-CoV-2 S protein (Kd = 650 nM) that inhibits this protein-protein interaction with IC50 = 1.3 µM. Circular dichroism and nuclear magnetic resonance studies indicated the helical conformation of this peptide in solution.
Collapse
Affiliation(s)
- Violeta Marković
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jeelan Basha Shaik
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Agnieszka Ciesiołkiewicz
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Juan Lizandra Perez
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
17
|
Yang Y, Xue M. Herringbone Helical Foldamers from Aromatic Ether Derived ϵ-Amino Acid Peptides. Chemistry 2023; 29:e202301832. [PMID: 37641870 DOI: 10.1002/chem.202301832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Oligomers based on an aromatic ether derived ϵ-amino acid peptides folded into herringbone helical structures, induced by successive NH-O-NH & O-NH-O bifurcated hydrogen bonding interactions and reinforced by π-π stacking between aryls from adjacent layers. The diaryl ether bonds -O- worked both as structural units to provide turn motifs for changing the amplitude of the slope along the axis of helix for herringbone formation, and also as acceptors for hydrogen bonding. Attachment of a single chiral carbon to the C-termini of the peptides induced excess of single-handed screw sense and amplification through the chain propagation as exemplified by chain length dependent circular dichroism (CD) investigations.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Min Xue
- School of Science, Department of Physics, Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
18
|
Hribernik N, Vargová D, Dal Colle MCS, Lim JH, Fittolani G, Yu Y, Fujihara J, Ludwig K, Seeberger PH, Ogawa Y, Delbianco M. Controlling the Assembly of Cellulose-Based Oligosaccharides through Sequence Modifications. Angew Chem Int Ed Engl 2023; 62:e202310357. [PMID: 37823670 DOI: 10.1002/anie.202310357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Peptides and nucleic acids with programmable sequences are widely explored for the production of tunable, self-assembling functional materials. Herein we demonstrate that the primary sequence of oligosaccharides can be designed to access materials with tunable shapes and properties. Synthetic cellulose-based oligomers were assembled into 2D or 3D rod-like crystallites. Sequence modifications within the oligosaccharide core influenced the molecular packing and led to the formation of square-like assemblies based on the rare cellulose IVII allomorph. In contrast, modifications at the termini generated elongated aggregates with tunable surfaces, resulting in self-healing supramolecular hydrogels.
Collapse
Affiliation(s)
- Nives Hribernik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Marlene C S Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jia Hui Lim
- Univ. Grenoble Alpes CNRS, CERMAV, 38000, Grenoble, France
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yang Yu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Junki Fujihara
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kai Ludwig
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yu Ogawa
- Univ. Grenoble Alpes CNRS, CERMAV, 38000, Grenoble, France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
19
|
Seo N, Son H, Kim Y, Guzei IA, Kang P, Choi SH. Exploring a β-Amino Acid with a Seven-Membered Ring Constraint as a Foldamer Building Block for Nontraditional Helices. Org Lett 2023; 25:7497-7501. [PMID: 37800878 DOI: 10.1021/acs.orglett.3c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
We explored trans- and cis-2-aminocycloheptanecarboxylic acid (ACHpC) as potential building blocks for helical foldamers. trans-ACHpC does not show sufficient folding propensity in unnatural peptides. cis-ACHpC promotes nontraditional helices of two unnatural peptide backbones: the 11/9-helix for 1:1 α/β-peptides and the 12/10-helix for β-peptides with interconvertible handedness. The two opposite-handed 12/10-helices rapidly interconvert in solution by pseudorotation of the two twist chair forms of the cycloheptane moiety in each cis-ACHpC residue.
Collapse
Affiliation(s)
- Nuri Seo
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoyang Son
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yonghan Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Philjae Kang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo Hyuk Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Pike SJ, Telford R, Male L. Reversible conformational switching of a photo-responsive ortho-azobenzene/2,6-pyridyldicarboxamide heterofoldamer. Org Biomol Chem 2023; 21:7717-7723. [PMID: 37565617 DOI: 10.1039/d3ob01137b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We report on a convenient synthetic route to rapidly access a new photo-responsive ortho-azobenzene/2,6-pyridyldicarboxamide heterofoldamer. The adoption of a stable helical conformation has been established for this scaffold in both the solid state and in solution using single crystal X-ray diffraction and circular dichroism (CD) spectroscopy respectively. Reversible control over the stimuli-driven structural re-ordering of the supramolecular scaffold, from a stable helical conformation under non-irradiative conditions, to a less well-ordered state under irradiative conditions, has been identified. The robust nature of the responsive, conformational, molecular switching behaviour has been determined using UV/Vis, 1H NMR and CD spectroscopy. Minimal loss in the efficiency of the stimuli-driven, structural re-ordering processes of the foldamer scaffold is observed, even upon multiple cyclic treatments with irradiative/non-irradiative conditions.
Collapse
Affiliation(s)
- Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Richard Telford
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
21
|
Debnath S, Rajalakshmi VS, Kumar D, Das B, Vasudev PG, Satpati P, Chatterjee S. Ambidexterity and Left-Handedness Induced by Geminally Disubstituted γ Amino Acid Residues in Chiral 3 10 Helices. ACS OMEGA 2023; 8:36370-36385. [PMID: 37810672 PMCID: PMC10552473 DOI: 10.1021/acsomega.3c05124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
Chirality is an omnipresent feature in nature's architecture starting from simple molecules like amino acids to complex higher-order structures viz. proteins, DNA, and RNA. The L configuration of proteinogenic amino acids gives rise to right-handed helices. Ambidexterity is as rare in organisms as in molecules. There are only a few reports of ambidexterity in single-peptide molecules composed of either mixed L and D or achiral residues. Here, we report, for the first time, the ambidextrous and left-handed helical conformations in the chiral nonapeptides P1-P3 (Boc-LUVUγx,xULUV-OMe where U = Aib, x,x = 2,2/3,3/4,4), containing chiral L α amino acid residues, in addition to the usually observed right-handed helical conformation. The centrally located achiral γ residue, capable of adopting both left and right-handed helical conformations, induces its handedness on the neighboring chiral and achiral residues, leading to the observation of both left and right-handed helices in P2 and P3. The presence of a single water molecule proximal to the γ residue induces the reversal of helix handedness by forming distinct and stable water-mediated hydrogen bonds. This gives rise to ambidextrous helices as major conformers in P1 and P2. The absence of the observation of ambidexterity in P3 might be due to the inability of γ4,4 in the recruitment of a water molecule. Experiments (NMR, X-ray, and CD) and density functional theory (DFT) calculations suggest that the position of geminal disubstitution is crucial for determining the population of the amenable helical conformations (ambidextrous, left and right-handed) in these chiral peptides.
Collapse
Affiliation(s)
- Swapna Debnath
- Department
of Chemistry, Indian Institute of Technology,
Guwahati, Guwahati, Assam 781039, India
| | | | - Dinesh Kumar
- Plant
Biotechnology Division, CSIR-Central Institute
of Medicinal and Aromatic Plants Lucknow, Uttar Pradesh 226015, India
| | - Babulal Das
- Department
of Chemistry, Indian Institute of Technology,
Guwahati, Guwahati, Assam 781039, India
| | - Prema G. Vasudev
- Plant
Biotechnology Division, CSIR-Central Institute
of Medicinal and Aromatic Plants Lucknow, Uttar Pradesh 226015, India
| | - Priyadarshi Satpati
- Biosciences
and Bioengineering, Indian Institute of
Technology, Guwahati, Guwahati, Assam 781039, India
| | - Sunanda Chatterjee
- Department
of Chemistry, Indian Institute of Technology,
Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
22
|
Shah SKH, Modi U, Patel K, James A, N S, De S, Vasita R, Prabhakaran P. Site-selective post-modification of short α/γ hybrid foldamers: a powerful approach for molecular diversification towards biomedical applications. Biomater Sci 2023; 11:6210-6222. [PMID: 37526301 DOI: 10.1039/d3bm00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The extensive research work in the exhilarating area of foldamers (artificial oligomers possessing well-defined conformation in solution) has shown them to be promising candidates in biomedical research and materials science. The post-modification approach is successful in peptides, proteins, and polymers to modulate their functions. To the best of our knowledge, site-selective post-modification of a foldamer affording molecules with different pendant functional groups within a molecular scaffold has not yet been reported. We demonstrate for the first time that late-stage site-selective functionalization of short hybrid oligomers is an efficient approach to afford molecules with diverse functional groups. In this article, we report the design and synthesis of hybrid peptides with repeating units of leucine (Leu) and 5-amino salicylic acid (ASA), regioselective post-modification, conformational analyses (based on solution-state NMR, circular dichroism and computational studies) and morphological studies of the peptide nanostructures. As a proof-of-concept, we demonstrate the applications of differently modified peptides as drug delivery agents, imaging probes, and anticancer agents. The novel feature of the work is that the difference in reactivity of two phenolic OH groups in short biomimetic peptides was utilized to achieve site-selective post-modification. It is challenging to apply the same approach to short α-peptides having a poor folding tendency, and their post-functionalization may considerably affect their conformation.
Collapse
Affiliation(s)
| | - Unnati Modi
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India
| | - Sreerag N
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut 673635, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
23
|
Castro TG, Melle-Franco M, Sousa CEA, Cavaco-Paulo A, Marcos JC. Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications. Biomolecules 2023; 13:981. [PMID: 37371561 PMCID: PMC10296201 DOI: 10.3390/biom13060981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This review provides a fresh overview of non-canonical amino acids and their applications in the design of peptidomimetics. Non-canonical amino acids appear widely distributed in nature and are known to enhance the stability of specific secondary structures and/or biological function. Contrary to the ubiquitous DNA-encoded amino acids, the structure and function of these residues are not fully understood. Here, results from experimental and molecular modelling approaches are gathered to classify several classes of non-canonical amino acids according to their ability to induce specific secondary structures yielding different biological functions and improved stability. Regarding side-chain modifications, symmetrical and asymmetrical α,α-dialkyl glycines, Cα to Cα cyclized amino acids, proline analogues, β-substituted amino acids, and α,β-dehydro amino acids are some of the non-canonical representatives addressed. Backbone modifications were also examined, especially those that result in retro-inverso peptidomimetics and depsipeptides. All this knowledge has an important application in the field of peptidomimetics, which is in continuous progress and promises to deliver new biologically active molecules and new materials in the near future.
Collapse
Affiliation(s)
- Tarsila G. Castro
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Melle-Franco
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cristina E. A. Sousa
- BioMark Sensor Research—School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal;
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - João C. Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
24
|
Zhang X, Yu T, Ding S. Iridium-Catalyzed Synthesis of Chiral 1,2,3-Triazoles Units and Precise Construction of Stereocontrolled Oligomers. Molecules 2023; 28:molecules28093726. [PMID: 37175140 PMCID: PMC10180159 DOI: 10.3390/molecules28093726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Iridium-catalyzed azide-thioalkyne cycloaddition reaction (IrAAC) has proved to be a powerful tool for the synthesis of fully substituted 1,2,3-triazole compounds with exclusive regioselectivity. Here we report its successful use in the precise construction of stereocontrolled oligomers that have great potential in diverse applications. Starting with the azide derived from L-prolinol and different functionalized thioalkynes, chiral 1,2,3-triazole units were fabricated with high efficiency under the IrAAC condition, which were further assembled into stereocontrolled oligotriazoles through metal-free exponential growth strategies. The structure and uniformity of these oligomers were well identified by 1H NMR, size-exclusion chromatography, and mass spectrometry, the stereoregularity of which were studied through circular dichroism and circular polarized luminescence analysis.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
25
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
26
|
Debnath S, Vignesh SR, Satpati P, Chatterjee S. Position of Geminal Substitution of γ Amino Acid Residues Modulates Their Ability to Form Isolated Non‐Helical C
12
β‐turn Mimics. ChemistrySelect 2023. [DOI: 10.1002/slct.202204255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Swapna Debnath
- Department of Chemistry Indian Institute of Technology, Guwahati Guwahati Assam India
| | - S. R. Vignesh
- Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati Assam India
| | - Priyadarshi Satpati
- Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati Assam India
| | - Sunanda Chatterjee
- Department of Chemistry Indian Institute of Technology, Guwahati Guwahati Assam India
| |
Collapse
|
27
|
Nagata M, Watanabe M, Doi R, Uemura M, Ochiai N, Ichinose W, Fujiwara K, Sato Y, Kameda T, Takeuchi K, Shuto S. Helix-forming aliphatic homo-δ-peptide foldamers based on the conformational restriction effects of cyclopropane. Org Biomol Chem 2023; 21:970-980. [PMID: 36426637 DOI: 10.1039/d2ob01715f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considerable effort has been directed toward developing artificial peptide-based foldamers. However, detailed structural analysis of δ-peptide foldamers consisting of only aliphatic δ-amino acids has not been reported. Herein, we rationally designed and stereoselectively synthesized aliphatic homo-δ-peptides forming a stable helical structure by using a chiral cyclopropane δ-amino acid as a monomer unit. Structural analysis of the homo-δ-peptides using circular dichroism, infrared, and NMR spectroscopy indicated that they form a stable 14-helical structure in solution. Furthermore, we successfully conducted X-ray crystallographic analysis of the homo-δ-peptides, demonstrating a right-handed 14-helical structure. This helical structure of the crystal was consistent with those predicted by theoretical calculations and those obtained based on NMR spectroscopy in solution. This stable helical structure is due to the effective restriction of the backbone conformation by the structural characteristics of cyclopropane. This work reports the first example of aliphatic homo-δ-peptide foldamers having a stable helical structure both in the solution and crystal states.
Collapse
Affiliation(s)
- Makoto Nagata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Ryohei Doi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mai Uemura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Nanase Ochiai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Wataru Ichinose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
28
|
Park HS, Kang YK. Impact of aza-substitutions on the preference of helix handedness for β-peptide oligomers: a DFT study. RSC Adv 2023; 13:3079-3082. [PMID: 36756412 PMCID: PMC9850699 DOI: 10.1039/d2ra07575j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
We studied the helix preference of the heterochiral pentamers of cis-2-aminocyclohexanecarboxylic acid (c-ACHC) and cis-2-aminocyclopentanecarboxylic acid (c-ACPC) with alternating backbone configurations by replacing Cβ-aza- or Cα-aza-peptide residues using DFT methods in solution. The helix-handedness preferences of two pentamers were strongly affected by the replacement positions (i.e., chiralities) but not depending on the solvent polarity.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing, Cheju Halla UniversityCheju 63092Republic of Korea
| | - Young Kee Kang
- Department of Chemistry, Chungbuk National University Cheongju Chungbuk 28644 Republic of Korea
| |
Collapse
|
29
|
Ur Rahim J, Ahmad SM, Amin T, Chowdhary R, Goswami A, Rai R. Synthesis, conformation and cytotoxic activity of short hybrid peptides containing conformationally constrained 1-(aminomethyl)cyclohexanecarboxylic acid and gabapentin. Peptides 2022; 158:170897. [PMID: 36279986 DOI: 10.1016/j.peptides.2022.170897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
The present work describes the synthesis,conformation and cytotoxic activities of short β/γ hybrid peptides, Boc-β2,2-Ac6c-Gpn-NHMe, BG1; Boc-(β2,2-Ac6c-Gpn)2-OMe, BG2; Boc-(β2,2-Ac6c-Gpn)3-OMe, BG3; H-β2,2-Ac6c-Gpn-NHMe, BG4; H-(β2,2-Ac6c-Gpn)2-OMe, BG5; H-(β2,2-Ac6c-Gpn)3-OMe, BG6, Boc-β2,2-Ac6c-Gpn-OMe, BG7 and H-β2,2-Ac6c-Gpn-OMe, BG8. Mixed C6/C7 conformations were observed for β/γ hybrid peptides. Further, BG1-BG8 were screened against MCF-7 (Breast cancer), A549 (Lung Cancer), PC-3 (Prostate cancer), HCT-116 (Colon cancer), and MDA-MB-231 (Breast cancer) cell lines. Among all, BG6 exhibited potent cytotoxicity against all cancer cell lines with IC50 ranging from 1.6 μM to 6.3 μM with relatively low cytotoxicity against normal epithelial breast cell line fR-2 and human embryonic kidney cell line HEK-293. Minimal hemolytic activity was observed for BG6 against human erythrocytes. Peptide BG6 displayed anti-migratory and anti-invasive potentials showing strong interactions with intrinsic apoptotic markers Bcl-2, Bax, and cleaved-PARP, as well as the induction of the mitochondria maladjustment mediated apoptosis.
Collapse
Affiliation(s)
- Junaid Ur Rahim
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Mudabir Ahmad
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rubina Chowdhary
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajkishor Rai
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
30
|
Abstract
The potential of miniproteins in the biological and chemical sciences is constantly increasing. Significant progress in the design methodologies has been achieved over the last 30 years. Early approaches based on propensities of individual amino acid residues to form individual secondary structures were subsequently improved by structural analyses using NMR spectroscopy and crystallography. Consequently, computational algorithms were developed, which are now highly successful in designing structures with accuracy often close to atomic range. Further perspectives include construction of miniproteins incorporating non-native secondary structures derived from sequences with units other than α-amino acids. Noteworthy, miniproteins with extended structures, which are now feasibly accessible, are excellent scaffolds for construction of functional molecules.
Collapse
|
31
|
Sang P, Shi Y, Wei L, Cai J. Helical sulfono-γ-AApeptides with predictable functions in protein recognition. RSC Chem Biol 2022; 3:805-814. [PMID: 35866163 PMCID: PMC9257604 DOI: 10.1039/d2cb00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Sulfono-γ-AApeptides are a subset of possible sequence-specific foldamers that might be considered for the design of biomimetic drug molecular structures. Although they have been studied for a relatively short period of time, a number of structures and functions have been designed or discovered within this class of unnatural peptides. Examples of utilizing these sulfono-γ-AApeptides have demonstrated the potential that sulfono-γ-AApeptides can offer, however, to date, their application in biomedical sciences yet remains unexplored. This review mainly summarizes the helical folding conformations of sulfono-γ-AApeptides and their biological application as helical mimetics in medicinally relevant protein-protein interactions (PPIs) and assesses their potential for the mimicry of other α-helices for protein recognition in the future.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Yan Shi
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Lulu Wei
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| |
Collapse
|
32
|
Tovillas P, Navo CD, Oroz P, Avenoza A, Corzana F, Zurbano MM, Jiménez-Osés G, Busto JH, Peregrina JM. Synthesis of β 2,2-Amino Acids by Stereoselective Alkylation of Isoserine Derivatives Followed by Nucleophilic Ring Opening of Quaternary Sulfamidates. J Org Chem 2022; 87:8730-8743. [PMID: 35732024 PMCID: PMC9490828 DOI: 10.1021/acs.joc.2c01034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral bicyclic N,O-acetal isoserine derivatives have been synthesized by an acid-catalyzed tandem N,O-acetalization/intramolecular transcarbamoylation reaction between conveniently protected l-isoserine and 2,2,3,3-tetramethoxybutane. The delicate balance of the steric interactions between the different functional groups on each possible diastereoisomer controls their thermodynamic stability and hence the experimental product distribution. These chiral isoserine derivatives undergo diastereoselective alkylation at the α position, proceeding with either retention or inversion of the configuration depending on the relative configuration of the stereocenters. Quantum mechanical calculations revealed that a concave-face alkylation is favored due to smaller torsional and steric interactions at the bicyclic scaffold. This synthetic methodology gives access to chiral β2,2-amino acids, attractive compounds bearing a quaternary stereocenter at the α position with applications in peptidomimetic and medicinal chemistry. Thus, enantiopure α-alkylisoserine derivatives were produced upon acidic hydrolysis of these alkylated scaffolds. In addition, α-benzylisoserine was readily transformed into a five-membered ring cyclic sulfamidate, which was ring opened regioselectively with representative nucleophiles to yield other types of enantiopure β2,2-amino acids such as α-benzyl-α-heterofunctionalized-β-alanines and α-benzylnorlanthionine derivatives.
Collapse
Affiliation(s)
- Pablo Tovillas
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Paula Oroz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - María M Zurbano
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
33
|
Okano S, Kawaguchi Y, Kawano K, Hirose H, Imanishi M, Futaki S. Split luciferase-based estimation of cytosolic cargo concentration delivered intracellularly via attenuated cationic amphiphilic lytic peptides. Bioorg Med Chem Lett 2022; 72:128875. [DOI: 10.1016/j.bmcl.2022.128875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
|
34
|
Fischer JL, Blodgett KN, Harrilal CP, Walsh PS, Davis ZS, Choi S, Choi SH, Zwier TS. Conformer-Specific Spectroscopy and IR-Induced Isomerization of a Model γ-Peptide: Ac-γ 4-Phe-NHMe. J Phys Chem A 2022; 126:1837-1847. [PMID: 35275624 DOI: 10.1021/acs.jpca.2c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-conformation IR and UV spectroscopy of the prototypical capped γ-peptide Ac-γ4-Phe-NHMe (γ4F) was carried out under jet-cooled conditions in the gas phase in order to understand its innate conformational preferences in the absence of a solvent. We obtained conformer-specific IR and UV spectra and compared the results with calculations to make assignments and explore the differences between the γ2- and γ4-substituted molecules. We found four conformers of γ4F in our experiment. Three conformers form nine-membered hydrogen-bonded rings (C9) enclosed by an NH···O═C H-bond but differing in their phenyl ring positions (a, g+, and g-). The fourth conformer forms a strained seven-membered hydrogen-bonded ring in which the amide groups lie in a nominally anti-parallel arrangement stacked on top of one another (labeled S7). This conformer is a close analogue of the amide-stacked conformer (S) found previously in γ2F, in which the Phe side chain is substituted at the γ2 position, Ac-γ2-Phe-NHMe (J. Am. Chem. Soc. 2009, 131, 14243-14245). IR population transfer spectroscopy was used to determine the fractional abundances of the γ4F conformers in the expansion. A combination of force field and density functional theory calculations is used to map out the conformational potential energy surfaces for γ4F and compare it with its γ2F counterpart. Based on this analysis, the phenyl ring prefers to take up structures that facilitate NH···π interactions in γ4F or avoid phenyl interactions with the C═O group in γ2F. The disconnectivity graph for γ4F reveals separate basins associated with the C9 and amide-stacked conformational families, which are separated by a barrier of about 42 kJ/mol. The overall shape of the potential energy surface bears a resemblance to peptides and proteins that have a misfolding pathway that competes with the formation of the native structure.
Collapse
Affiliation(s)
- Joshua L Fischer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Karl N Blodgett
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Christopher P Harrilal
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Patrick S Walsh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Zachary S Davis
- Department of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - Sunglim Choi
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Soo Hyuk Choi
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States.,Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
35
|
Shankar S, Jyothi D, Rahim JU, Pal PC, Singh UP, Rai R. Conformation of Achiral α/β Hybrid Peptides Containing Glycine and 1‐Aminocyclohexaneacetic Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sudha Shankar
- Natural Products & Medicinal Chemistry Division (NPMC) CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM) Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Deeti Jyothi
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB) Kolkata 700032 India
| | - Junaid ur Rahim
- Natural Products & Medicinal Chemistry Division (NPMC) CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM) Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Purna Chandra Pal
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB) Kolkata 700032 India
| | - Umesh Prasad Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB) Kolkata 700032 India
| | - Rajkishor Rai
- Natural Products & Medicinal Chemistry Division (NPMC) CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM) Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
36
|
Ueda A, Makura Y, Kakazu S, Kato T, Umeno T, Hirayama K, Doi M, Oba M, Tanaka M. E-Selective Ring-Closing Metathesis in α-Helical Stapled Peptides Using Carbocyclic α,α-Disubstituted α-Amino Acids. Org Lett 2022; 24:1049-1054. [PMID: 35073100 DOI: 10.1021/acs.orglett.1c04256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an E-selective ring-closing metathesis reaction in α-helical stapled peptides at positions i and i + 4. The use of two chiral carbocyclic α,α-disubstituted α-amino acids, (1S,3S)-Ac5c3OAll and (1R,3S)-Ac5c3OAll, provides a high E-selectivity of a ≤59:1 E:Z ratio, while mixtures with E:Z ratios of 2.1-0.5:1 were produced with standard acyclic (S)-(4-pentenyl)alanine amino acids. A stapled octapeptide composed of (1S,3S)- and (1R,3S)-Ac5c3OAll amino acids showed a right-handed α-helical crystal structure.
Collapse
Affiliation(s)
- Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Sana Kakazu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takuma Kato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Tomohiro Umeno
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuhiro Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsunobu Doi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
37
|
Szefczyk M, Ożga K, Drewniak-Świtalska M, Rudzińska-Szostak E, Hołubowicz R, Ożyhar A, Berlicki Ł. Controlling the conformational stability of coiled-coil peptides with a single stereogenic center of a peripheral β-amino acid residue. RSC Adv 2022; 12:4640-4647. [PMID: 35425498 PMCID: PMC8981378 DOI: 10.1039/d2ra00111j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
The key issue in the research on foldamers remains the understanding of the relationship between the monomers structure and conformational properties at the oligomer level. In peptidomimetic foldamers, the main goal of which is to mimic the structure of proteins, a main challenge is still better understanding of the folding of peptides and the factors that influence their conformational stability. We probed the impact of the modification of the peptide periphery with trans- and cis-2-aminocyclopentanecarboxylic acid (ACPC) on the structure and stability of the model coiled-coil using circular dichroism (CD), analytical ultracentrifugation (AUC) and two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). Although, trans-ACPC and cis-ACPC-containing mutants differ by only one peripheral stereogenic center, their conformational stability is strikingly different.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Magda Drewniak-Świtalska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
38
|
Park HS, Kang YK. Exploring Helical Folding in Oligomers of Cyclopentane-Based ϵ-Amino Acids: A Computational Study. Chemistry 2022; 11:e202100253. [PMID: 35083888 PMCID: PMC8886640 DOI: 10.1002/open.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Indexed: 11/28/2022]
Abstract
The conformational preferences of oligopeptides of an ϵ‐amino acid (2‐((1R,3S)‐3‐(aminomethyl)cyclopentyl)acetic acid, Amc5a) with a cyclopentane substituent in the Cβ−Cγ−Cδ sequence of the backbone were investigated using DFT methods in chloroform and water. The most preferred conformation of Amc5a oligomers (dimer to hexamer) was the H16 helical structure both in chloroform and water. Four residues were found to be sufficient to induce a substantial H16 helix population in solution. The Amc5a hexamer adopted a stable left‐handed (M)‐2.316 helical conformation with a rise of 4.8 Å per turn. The hexamer of Ampa (an analogue of Amc5a with replacing cyclopentane by pyrrolidine) adopted the right‐handed mixed (P)‐2.918/16 helical conformation in chloroform and the (M)‐2.416 helical conformation in water. Therefore, hexamers of ϵ‐amino acid residues exhibited different preferences of helical structures depending on the substituents in peptide backbone and the solvent polarity as well as the chain length.
Collapse
Affiliation(s)
- Hae Sook Park
- Department of Nursing, Cheju Halla University, Cheju, 63092, Republic of Korea
| | - Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| |
Collapse
|
39
|
Peddi S, Bookout MC, Vemuri GN, Hartley CS. Guest-Driven Control of Folding in a Crown-Ether-Functionalized ortho-Phenylene. J Org Chem 2022; 87:3686-3690. [PMID: 35023738 DOI: 10.1021/acs.joc.1c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A crown-ether-functionalized o-phenylene tetramer has been synthesized and coassembled with monotopic and ditopic, achiral and chiral secondary ammonium ion guests. NMR spectroscopy shows that the o-phenylene forms both 1:1 and 1:2 complexes with monotopic guests while remaining well-folded. Binding of an elongated ditopic guest, however, forces the o-phenylene to misfold by pulling the terminal rings apart. A chiral ditopic guest biases the o-phenylene twist sense.
Collapse
Affiliation(s)
- Sumalatha Peddi
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Molly C Bookout
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gopi Nath Vemuri
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
40
|
Wang S, Zheng L, Song S, Wang S, Zhang Z, Xiang J. Catalyst-Controlled Regiodivergent Synthesis of α/β-Dipeptide Derivatives via N-Allylic Alkylation of O-Alkyl Hydroxamates with MBH Carbonates. Chem Asian J 2022; 17:e202101186. [PMID: 34811892 DOI: 10.1002/asia.202101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Indexed: 11/06/2022]
Abstract
A controllable and regiodivergent N-allylation reaction involving readily available O-alkyl hydroxamates derived from natural α-amino acids has been developed, allowing regiospecific access to α/β-dipeptides containing α-unsaturated β-amino acids moieties in moderate to good yields. The regioselectivity could be conveniently switched by alternation of the catalysts and solvents.
Collapse
Affiliation(s)
- Shutao Wang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Lianyou Zheng
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Shaoli Song
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Siyu Wang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Zhuoqi Zhang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Jinbao Xiang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
41
|
Roy Chowdhury S, Haldar D. A gama-turn mimetic for selective sensing of Cu(II) and combinatorial multiple logic gate. CrystEngComm 2022. [DOI: 10.1039/d2ce00462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have designed and synthesized a gama-turn mimetic using fenamic acid and α-aminoisobutyricacid (Aib), the conformation and optoelectronic properties of which can be changed by appropriate external stimuli. From single-crystal...
Collapse
|
42
|
Nagano Y, Arafiles JVV, Kuwata K, Kawaguchi Y, Imanishi M, Hirose H, Futaki S. Grafting Hydrophobic Amino Acids Critical for Inhibition of Protein-Protein Interactions on a Cell-Penetrating Peptide Scaffold. Mol Pharm 2021; 19:558-567. [PMID: 34958576 DOI: 10.1021/acs.molpharmaceut.1c00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stapled peptides are a promising class of conformationally restricted peptides for modulating protein-protein interactions (PPIs). However, the low membrane permeability of these peptides is an obstacle to their therapeutic applications. It is common that only a few hydrophobic amino acid residues are mandatory for stapled peptides to bind to their target proteins. Hoping to create a novel class of membrane-permeable PPI inhibitors, the phenylalanine, tryptophan, and leucine residues that play a critical role in inhibiting the p53-HDM2 interaction were grafted into the framework of CADY2─a cell-penetrating peptide (CPP) having a helical propensity. Two analogues (CADY-3FWL and CADY-10FWL) induced apoptotic cell death but lacked the intended HDM2 interaction. Pull-down experiments followed by proteomic analysis led to the elucidation of nesprin-2 as a candidate binding target. Nesprin-2 is considered to play a role in the nuclear translocation of β-catenin upon activation of the Wnt signaling pathway, which leads to the expression of antiapoptosis proteins and cell survival. Cells treated with the two analogues showed decreased nuclear localization of β-catenin and reduced mRNA expression of related antiapoptotic proteins. These data suggest inhibition of β-catenin nuclear translocation as a possible mode of action of the described cell-penetrating stapled peptides.
Collapse
Affiliation(s)
- Yuki Nagano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
43
|
Choi S, Choi SH. Synthesis and conformational analysis of an
anti
‐β
2,
3
‐amino
acid as a building block for unnatural peptide helices. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sunglim Choi
- Department of Chemistry Yonsei University Seoul Korea
| | - Soo Hyuk Choi
- Department of Chemistry Yonsei University Seoul Korea
| |
Collapse
|
44
|
Kiss L, Benke Z, Nonn M, Remete AM, Fustero S. Diversity-Oriented Synthesis of Highly Functionalized Alicycles across Dipolar Cycloaddition/Metathesis Reaction. Synlett 2021. [DOI: 10.1055/s-0040-1706041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractThis Account gives an insight into the selective functionalization of some readily available commercial cyclodienes across simple chemical transformations into functionalized small-molecular scaffolds. The syntheses involved selective cycloadditions, followed by ring-opening metathesis (ROM) of the resulting azetidin-2-one derivatives or isoxazoline frameworks and selective cross metathesis (CM) by discrimination of the C=C bonds on the alkenylated heterocycles. The CM protocols have been described when investigated under various conditions with the purpose on exploring chemodifferentiation of the olefin bonds and a study on the access of the corresponding functionalized β-lactam or isoxazoline derivatives is presented. Due to the expanding importance of organofluorine chemistry in drug research as well as of the high biological potential of β-lactam derivatives several illustrative examples to the access of some fluorine-containing molecular entities is also presented in this synopsis.1 Introduction2 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Chlorosulfonyl Isocyanate Cycloaddition3 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Nitrile Oxide Cycloaddition4 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Metathesis5 Functionalization of sSome Cyclodienes across Nitrile Oxide Cycloaddition6 Selective Synthesis of Functionalized Alicycles across Ring-Opening Metathesis7 Selective Synthesis of Functionalized Alicycles through Cross Metathesis8 Summary and Outlook9 List of Abbreviations
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged
- University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged
- University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged
- University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry
| | - Attila M. Remete
- Institute of Pharmaceutical Chemistry, University of Szeged
- University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty
| |
Collapse
|
45
|
Goldschmidt Gőz V, Duong KHY, Horváth D, Ferentzi K, Farkas V, Perczel A. Application of Sugar Amino Acids: Flow Chemistry Used for α/β‐Chimera Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Viktória Goldschmidt Gőz
- MTA-ELTE Protein Modeling Research Group Eötvös Loránd Research Network (ELKH) ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - Kim Hoang Yen Duong
- Laboratory of Structural Chemistry and Biology Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
- Hevesy György PhD School of Chemistry Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - Dániel Horváth
- Laboratory of Structural Chemistry and Biology Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - Kristóf Ferentzi
- Laboratory of Structural Chemistry and Biology Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
- Hevesy György PhD School of Chemistry Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - Viktor Farkas
- MTA-ELTE Protein Modeling Research Group Eötvös Loránd Research Network (ELKH) ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - András Perczel
- MTA-ELTE Protein Modeling Research Group Eötvös Loránd Research Network (ELKH) ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
- Laboratory of Structural Chemistry and Biology Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| |
Collapse
|
46
|
Venugopal N, Moser J, Vojtíčková M, Císařová I, König B, Jahn U. Single Electron Transfer‐Induced Selective α‐Oxygenation of Glycine Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Navyasree Venugopal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Johannes Moser
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstr. 31 93040 Regensburg Germany
| | - Margaréta Vojtíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 12843 Prague 2 Czech Republic
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstr. 31 93040 Regensburg Germany
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
47
|
Walker CC, Meek GA, Fobe TL, Shirts MR. Using a Coarse-Grained Modeling Framework to Identify Oligomeric Motifs with Tunable Secondary Structure. J Chem Theory Comput 2021; 17:6018-6035. [PMID: 34495659 DOI: 10.1021/acs.jctc.1c00528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coarse-grained modeling can be used to explore general theories that are independent of specific chemical detail. In this paper, we present cg_openmm, a Python-based simulation framework for modeling coarse-grained hetero-oligomers and screening them for structural and thermodynamic characteristics of cooperative secondary structures. cg_openmm facilitates the building of coarse-grained topology and random starting configurations, setup of GPU-accelerated replica exchange molecular dynamics simulations with the OpenMM software package, and features a suite of postprocessing thermodynamic and structural analysis tools. In particular, native contact analysis, heat capacity calculations, and free energy of folding calculations are used to identify and characterize cooperative folding transitions and stable secondary structures. In this work, we demonstrate the capabilities of cg_openmm on a simple 1-1 Lennard-Jones coarse-grained model, in which each residue contains 1 backbone and 1 side-chain bead. By scanning both nonbonded and bonded force-field parameter spaces at the coarse-grained level, we identify and characterize sets of parameters which result in the formation of stable helices through cooperative folding transitions. Moreover, we show that the geometries and stabilities of these helices can be tuned by manipulating the force-field parameters.
Collapse
Affiliation(s)
- Christopher C Walker
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Garrett A Meek
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Theodore L Fobe
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
48
|
Wang X, Zhang X, Sun Y, Ding S. Stereocontrolled Sequence-Defined Oligotriazoles through Metal-Free Elongation Strategies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaojun Wang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueyan Zhang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunxin Sun
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
49
|
Bejger M, Fortuna P, Drewniak-Switalska M, Plewka J, Rypniewski W, Berlicki Ł. A computationally designed β-amino acid-containing miniprotein. Chem Commun (Camb) 2021; 57:6015-6018. [PMID: 34032224 DOI: 10.1039/d1cc02192c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new miniprotein built from three helices, including one structure based on the ααβαααβ sequence pattern was developed. Its crystal structure revealed a compact conformation with a well-packed hydrophobic core of unprecedented structure. The miniprotein formed dimers that were stabilized by the interaction of their hydrophobic surfaces.
Collapse
Affiliation(s)
- Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Paulina Fortuna
- Department of Bioorganic Chemistry Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland. and Department of Medical Biochemistry, Wrocław Medical University, Pausteura 1, Wroclaw 50-368, Poland
| | - Magda Drewniak-Switalska
- Department of Bioorganic Chemistry Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian Univeristy, Gronostajowa 2, Kraków 30-387, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| |
Collapse
|
50
|
Choi S, Guzei IA, Kim Y, Kang P, Choi SH. Helical Structures of Nylon-Like Oligomers Consisting of 1,2-Diamine and 1,2-Dicarboxylic Acid Building Blocks Containing a Five-Membered Ring Constraint. Chempluschem 2021; 86:1069-1073. [PMID: 34352153 DOI: 10.1002/cplu.202100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Indexed: 11/05/2022]
Abstract
A series of nylon-like oligomers was synthesized, which consisted of alternating cyclic 1,2-diamine and 1,2-dicarboxylic acid building blocks with a five-membered ring constraint. The nylon 2 4 oligomers are symmetric and display helical structures similar to the β-peptide 12-helix with intramolecular 12-membered ring hydrogen bonds. The cyclopentane moiety allows each building block to promote 12-helical folding. In addition, a tartaric acid derivative with the acetonide moiety increases the solubility of oligomers in common organic solvents and promotes helical folding.
Collapse
Affiliation(s)
- Sunglim Choi
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Younghun Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Philjae Kang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Soo Hyuk Choi
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|