1
|
Mabela CM, Gouws C, Pheiffer W. Overcoming obstacles in three-dimensional cell culture model establishment: Approaches for growing A549 non-small cell lung cancer spheroids using a clinostat system. J Pharmacol Toxicol Methods 2024; 130:107564. [PMID: 39326518 DOI: 10.1016/j.vascn.2024.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) accounts for 80-85 % of lung cancer cases globally. And the A549 cell line is widely used in pharmacological and toxicity screening. Due to its popularity as a NSCLC model, it was inevitable that three-dimensional (3D) cultures of A549 cells would be established. 3D models increase physiological relevance, and their advanced structure allows researchers to obtain more translatable and reliable results. However, establishing this cell line as a 3D model may come with challenges, like clumping. METHODS In this study, A549 spheroids were established using a clinostat-based rotating bioreactor system and were characterised in terms of morphology, planimetry, and viability. RESULTS The main challenge faced included continuous aggregation of the spheroids, which constrained growth and development. This challenge was successfully overcome by supplementation with ascorbic acid, foetal bovine serum coating, and minimising handling, and a NSCLC mini-tumour model was established and semi-characterised. The spheroids survived for 25 days and had a significant increase in growth. CONCLUSION The A549 spheroid model cultured in a clinostat-based microgravity system was shown to be stable, viable, and suitable to be used in pharmacological and toxicological investigations.
Collapse
Affiliation(s)
- Charity M Mabela
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Wihan Pheiffer
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
2
|
Mengji R, Paladugu D, Saha B, Jana A. Single-Photon Deep-Red Light-Triggered Direct Release of an Anticancer Drug: An Investigative Tumor Regression Study on a Breast Cancer Spheroidal Tumor Model. J Med Chem 2024; 67:11069-11085. [PMID: 38913981 DOI: 10.1021/acs.jmedchem.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Breast adenocarcinoma ranks high among the foremost lethal cancers affecting women globally, with its triple-negative subtype posing the greatest challenge due to its aggressiveness and resistance to treatment. To enhance survivorship and patients' quality of life, exploring advanced therapeutic approaches beyond conventional chemotherapies is imperative. To address this, innovative nanoscale drug delivery systems have been developed, offering precise, localized, and stimuli-triggered release of anticancer agents. Here, we present perylenemonoimide nanoparticle-based vehicles engineered for deep-red light activation, enabling direct chlorambucil release. Synthesized via the reprecipitation technique, these nanoparticles were thoroughly characterized. Light-induced drug release was monitored via spectroscopic and reverse-phase HPLC. The efficacy of the said drug delivery system was evaluated in both two-dimensional and three-dimensional spheroidal cancer models, demonstrating significant tumor regression attributed to apoptotic cell death induced by efficient drug release within cells and spheroids. This approach holds promise for advancing targeted breast cancer therapy, enhancing treatment efficacy and minimizing adverse effects.
Collapse
Affiliation(s)
- Rakesh Mengji
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dileep Paladugu
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Biswajit Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Avijit Jana
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Wu J, Liyarita BR, Zhu H, Liu M, Hu X, Shao F. Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49705-49712. [PMID: 34658242 DOI: 10.1021/acsami.1c14445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With inherent biocompatibility, biodegradability, and unique programmability, hydrogels with a DNA framework show great potential in three-dimensional (3D) cell culture. Here, a DNA hydrogel was assembled by a dendritic DNA with four branches. The hydrogel showed tunable mechanical strength and reversible thixotropy even under a nanomolar DNA concentration. The cell culture medium can be converted into the hydrogel isothermally at physiological temperature. This DNA hydrogel allows both cancer and somatic cells to be seeded in situ and to achieve high proliferation and viability. The bis-entity of dendritic branches enabled the specific loading of bioactive clues to regulate cell behaviors. Thus, the dendritic DNA-assembled hydrogel could serve as a highly biocompatible, readily functionalizing, and easy-casting gel platform for 3D cell culture.
Collapse
Affiliation(s)
- Jingyuan Wu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371 Singapore
| | - Bella Rosa Liyarita
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371 Singapore
| | - Haishuang Zhu
- ZJU-UIUC Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Ming Liu
- Temasek Laboratories@NTU, Nanyang Technological University, 637371 Singapore
| | - Xiao Hu
- School of Materials Science and Engineering and Environment Chemistry and Materials Centre, NEWRI, Nanyang Technological University, 637371 Singapore
| | - Fangwei Shao
- ZJU-UIUC Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| |
Collapse
|
4
|
Gabasa M, Radisky ES, Ikemori R, Bertolini G, Arshakyan M, Hockla A, Duch P, Rondinone O, Llorente A, Maqueda M, Davalos A, Gavilán E, Perera A, Ramírez J, Gascón P, Reguart N, Roz L, Radisky DC, Alcaraz J. MMP1 drives tumor progression in large cell carcinoma of the lung through fibroblast senescence. Cancer Lett 2021; 507:1-12. [PMID: 33684534 PMCID: PMC8026696 DOI: 10.1016/j.canlet.2021.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Large cell carcinoma (LCC) is a rare and aggressive lung cancer subtype with poor prognosis and no targeted therapies. Tumor-associated fibroblasts (TAFs) derived from LCC tumors exhibit premature senescence, and coculture of pulmonary fibroblasts with LCC cell lines selectively induces fibroblast senescence, which in turn drives LCC cell growth and invasion. Here we identify MMP1 as overexpressed specifically in LCC cell lines, and we show that expression of MMP1 by LCC cells is necessary for induction of fibroblast senescence and consequent tumor promotion in both cell culture and mouse models. We also show that MMP1, in combination with TGF-β1, is sufficient to induce fibroblast senescence and consequent LCC promotion. Furthermore, we implicate PAR-1 and oxidative stress in MMP1/TGF-β1-induced TAF senescence. Our results establish an entirely new role for MMP1 in cancer, and support a novel therapeutic strategy in LCC based on targeting senescent TAFs.
Collapse
Affiliation(s)
- Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Giulia Bertolini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Marselina Arshakyan
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Ornella Rondinone
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Maria Maqueda
- Department of ESAII, Center for Biomedical Engineering Research, Technical University of Catalonia (UPC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08028, Spain
| | | | - Elena Gavilán
- Cell Dynamics and Signaling Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), CSIC, Sevilla, 41092, Spain
| | - Alexandre Perera
- Department of ESAII, Center for Biomedical Engineering Research, Technical University of Catalonia (UPC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08028, Spain
| | - Josep Ramírez
- Pathology Service, Hospital Clínic de Barcelona, Barcelona, 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain
| | - Pere Gascón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain.
| |
Collapse
|
5
|
Liu Z, Sun D, Zhu Q, Liu X. The screening of immune-related biomarkers for prognosis of lung adenocarcinoma. Bioengineered 2021; 12:1273-1285. [PMID: 33870858 PMCID: PMC8806236 DOI: 10.1080/21655979.2021.1911211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) accounts for a frequently seen non-small cell lung cancer (NSCLC) histological subtype, and it is associated with dismal prognostic outcome. However, the benefits of traditional treatment are still limited, and the efficacies of immunotherapy are quite different. Therefore, it is of great significance to identify novel immune-related therapeutic targets in lung adenocarcinoma. In this study, we identified a set of immune-related biomarkers for prognosis of lung adenocarcinoma, which could provide new ideas for immunotherapy of lung adenocarcinoma. Datasets related to LUAD were filtered from the GEO database. The appropriate packages were used to identify differentially expressed genes (DEGs) and to carry out enrichment analysis, followed by the construction of prognostic biomarkers. The Kaplan-Meier (K-M) curves were plotted to analyze patient survival based on hub genes. Associations between the expression of selected biomarkers and six types of tumor-infiltrating immune cells were evaluated based on the online tool TIMER. After analyzing five GEO datasets(GSE32867, GSE46539, GSE63459, GSE75037 and GSE116959), we discovered altogether 67 DEGs, among which, 15 showed up-regulation while 52 showed down-regulation. Enrichments of integrated DEGs were identified in the ontology categories. CAV1, CFD, FMO2 and CLEC3B were eventually selected as independent prognostic biomarkers, they were correlated with clinical outcomes of LUAD patients. Moreover, a positive correlation was observed between biomarker expression and all different types of immune infiltration, and the expression level of the four biomarkers was all positively related to macrophage.
Collapse
Affiliation(s)
- Zhonghui Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Dan Sun
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Qing Zhu
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Rocha S, Carvalho J, Oliveira P, Voglstaetter M, Schvartz D, Thomsen AR, Walter N, Khanduri R, Sanchez J, Keller A, Oliveira C, Nazarenko I. 3D Cellular Architecture Affects MicroRNA and Protein Cargo of Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800948. [PMID: 30828519 PMCID: PMC6382357 DOI: 10.1002/advs.201800948] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/30/2018] [Indexed: 05/05/2023]
Abstract
The success of malignant tumors is conditioned by the intercellular communication between tumor cells and their microenvironment, with extracellular vesicles (EVs) acting as main mediators. While the value of 3D conditions to study tumor cells is well established, the impact of cellular architecture on EV content and function is not investigated yet. Here, a recently developed 3D cell culture microwell array is adapted for EV production and a comprehensive comparative analysis of biochemical features, RNA and proteomic profiles of EVs secreted by 2D vs 3D cultures of gastric cancer cells, is performed. 3D cultures are significantly more efficient in producing EVs than 2D cultures. Global upregulation of microRNAs and downregulation of proteins in 3D are observed, indicating their dynamic coregulation in response to cellular architecture, with the ADP-ribosylation factor 6 signaling pathway significantly downregulated in 3D EVs. The data strengthen the biological relevance of cellular architecture for production and cargo of EVs.
Collapse
Affiliation(s)
- Sara Rocha
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen 2084200‐135PortoPortugal
- Ipatimup—Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 454200‐135PortoPortugal
- ICBAS—Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoR. Jorge de Viterbo Ferreira 2284050‐313PortoPortugal
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen 2084200‐135PortoPortugal
- Ipatimup—Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 454200‐135PortoPortugal
| | - Patrícia Oliveira
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen 2084200‐135PortoPortugal
- Ipatimup—Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 454200‐135PortoPortugal
| | - Maren Voglstaetter
- Institute for Infection Prevention and Hospital EpidemiologyMedical Center—University of FreiburgFaculty of MedicineUniversity of FreiburgBreisacherstr. 115b79106FreiburgGermany
| | - Domitille Schvartz
- Department of Human Protein SciencesCentre Médical UniversitaireRue Michel‐Servet 1CH1211GenevaSwitzerland
| | - Andreas R. Thomsen
- Department of Radiation OncologyMedical Center—University of FreiburgHugstaetterstr 55Freiburg79106Germany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Nadia Walter
- Department of Human Protein SciencesCentre Médical UniversitaireRue Michel‐Servet 1CH1211GenevaSwitzerland
| | - Richa Khanduri
- Institute for Infection Prevention and Hospital EpidemiologyMedical Center—University of FreiburgFaculty of MedicineUniversity of FreiburgBreisacherstr. 115b79106FreiburgGermany
| | - Jean‐Charles Sanchez
- Department of Human Protein SciencesCentre Médical UniversitaireRue Michel‐Servet 1CH1211GenevaSwitzerland
| | - Andreas Keller
- Clinical BioinformaticsUniversity HospitalSaarland UniversityKirrberger Straße, Building E2.166123SaarbrückenGermany
| | - Carla Oliveira
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen 2084200‐135PortoPortugal
- Ipatimup—Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 454200‐135PortoPortugal
- Department Pathology and OncologyFaculty of MedicineUniversity of PortoAlameda Prof. Hernâni Monteiro4200‐319PortoPortugal
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital EpidemiologyMedical Center—University of FreiburgFaculty of MedicineUniversity of FreiburgBreisacherstr. 115b79106FreiburgGermany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| |
Collapse
|
7
|
Movia D, Bazou D, Volkov Y, Prina-Mello A. Multilayered Cultures of NSCLC cells grown at the Air-Liquid Interface allow the efficacy testing of inhaled anti-cancer drugs. Sci Rep 2018; 8:12920. [PMID: 30150787 PMCID: PMC6110800 DOI: 10.1038/s41598-018-31332-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence supports the advantages of inhalation over other drug-administration routes in the treatment of lung diseases, including cancer. Although data obtained from animal models and conventional in vitro cultures are informative, testing the efficacy of inhaled chemotherapeutic agents requires human-relevant preclinical tools. Such tools are currently unavailable. Here, we developed and characterized in vitro models for the efficacy testing of inhaled chemotherapeutic agents against non-small-cell lung cancer (NSCLC). These models recapitulated key elements of both the lung epithelium and the tumour tissue, namely the direct contact with the gas phase and the three-dimensional (3D) architecture. Our in vitro models were formed by growing, for the first time, human adenocarcinoma (A549) cells as multilayered mono-cultures at the Air-Liquid Interface (ALI). The in vitro models were tested for their response to four benchmarking chemotherapeutics, currently in use in clinics, demonstrating an increased resistance to these drugs as compared to sub-confluent monolayered 2D cell cultures. Chemoresistance was comparable to that detected in 3D hypoxic tumour spheroids. Being cultured in ALI conditions, the multilayered monocultures demonstrated to be compatible with testing drugs administered as a liquid aerosol by a clinical nebulizer, offering an advantage over 3D tumour spheroids. In conclusion, we demonstrated that our in vitro models provide new human-relevant tools allowing for the efficacy screening of inhaled anti-cancer drugs.
Collapse
Affiliation(s)
- Dania Movia
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.
| | - Despina Bazou
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Yuri Volkov
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
- Department of Histology, Cytology and Embryology, First Moscow State Sechenov Medical University, Moskva, Russian Federation
| | - Adriele Prina-Mello
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Prina-Mello A, Jain N, Liu B, Kilpatrick JI, Tutty MA, Bell AP, Jarvis SP, Volkov Y, Movia D. Culturing substrates influence the morphological, mechanical and biochemical features of lung adenocarcinoma cells cultured in 2D or 3D. Tissue Cell 2017; 50:15-30. [PMID: 29429514 DOI: 10.1016/j.tice.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Accepted: 11/26/2017] [Indexed: 01/04/2023]
Abstract
Alternative models such as three-dimensional (3D) cell cultures represent a distinct milestone towards capturing the realities of cancer biology in vitro and reduce animal experimentation in the preclinical stage of drug discovery. Significant work remains to be done to understand how substrates used in in vitro alternatives influence cancer cells phenotype and drug efficacy responses, so that to accurately link such models to specific in vivo disease scenarios. Our study describes how the morphological, mechanical and biochemical properties of adenocarcinoma (A549) cells change in response to a 3D environment and varying substrates. Confocal Laser Scanning (LSCM), He-Ion (HIM) and Atomic Force (AFM) microscopies, supported by ELISA and Western blotting, were used. These techniques enabled us to evaluate the shape, cytoskeletal organization, roughness, stiffness and biochemical signatures of cells grown within soft 3D matrices (PuraMatrix™ and Matrigel™), and to compare them to those of cells cultured on two-dimensional glass substrates. Cell cultures are also characterized for their biological response to docetaxel, a taxane-type drug used in Non-Small-Cell Lung Cancer (NSCLC) treatment. Our results offer an advanced biophysical insight into the properties and potential application of 3D cultures of A549 cells as in vitro alternatives in lung cancer research.
Collapse
Affiliation(s)
- Adriele Prina-Mello
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Namrata Jain
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland
| | - Baiyun Liu
- School of Physics, University College Dublin, Ireland
| | - Jason I Kilpatrick
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Ireland
| | - Melissa A Tutty
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Alan P Bell
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Advanced Microscopy Laboratory (AML), Trinity College Dublin, Ireland
| | - Suzanne P Jarvis
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; School of Physics, University College Dublin, Ireland
| | - Yuri Volkov
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
9
|
Kwakwa KA, Vanderburgh JP, Guelcher SA, Sterling JA. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments. Curr Osteoporos Rep 2017; 15:247-254. [PMID: 28646444 PMCID: PMC5960271 DOI: 10.1007/s11914-017-0385-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. RECENT FINDINGS 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes.
Collapse
Affiliation(s)
- Kristin A Kwakwa
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, 1235 MRBIV, Nashville, TN, 37232, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Joseph P Vanderburgh
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, 1235 MRBIV, Nashville, TN, 37232, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Scott A Guelcher
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, 1235 MRBIV, Nashville, TN, 37232, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Julie A Sterling
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, 1235 MRBIV, Nashville, TN, 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Roudsari LC, Jeffs SE, West JL. Lung Adenocarcinoma Cell Responses in a 3D in Vitro Tumor Angiogenesis Model Correlate with Metastatic Capacity. ACS Biomater Sci Eng 2017; 4:368-377. [DOI: 10.1021/acsbiomaterials.7b00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laila C. Roudsari
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| | - Sydney E. Jeffs
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| | - Jennifer L. West
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| |
Collapse
|
11
|
Arya AD, Hallur PM, Karkisaval AG, Gudipati A, Rajendiran S, Dhavale V, Ramachandran B, Jayaprakash A, Gundiah N, Chaubey A. Gelatin Methacrylate Hydrogels as Biomimetic Three-Dimensional Matrixes for Modeling Breast Cancer Invasion and Chemoresponse in Vitro. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22005-17. [PMID: 27494432 DOI: 10.1021/acsami.6b06309] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent studies have shown that three-dimensional (3D) culture environments allow the study of cellular responses in a setting that more closely resembles the in vivo milieu. In this context, hydrogels have become popular scaffold options for the 3D cell culture. Because the mechanical and biochemical properties of culture matrixes influence crucial cell behavior, selecting a suitable matrix for replicating in vivo cellular phenotype in vitro is essential for understanding disease progression. Gelatin methacrylate (GelMA) hydrogels have been the focus of much attention because of their inherent bioactivity, favorable hydration and diffusion properties, and ease-of-tailoring of their physicochemical characteristics. Therefore, in this study we examined the efficacy of GelMA hydrogels as a suitable platform to model specific attributes of breast cancer. We observed increased invasiveness in vitro and increased tumorigenic ability in vivo in breast cancer cells cultured on GelMA hydrogels. Further, cells cultured on GelMA matrixes were more resistant to paclitaxel treatment, as shown by the results of cell-cycle analysis and gene expression. This study, therefore, validates GelMA hydrogels as inexpensive, cell-responsive 3D platforms for modeling key characteristics associated with breast cancer metastasis, in vitro.
Collapse
Affiliation(s)
- Anuradha D Arya
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Hosur Road, Bangalore 560 099, India
| | - Pavan M Hallur
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Hosur Road, Bangalore 560 099, India
| | - Abhijith G Karkisaval
- Department of Mechanical Engineering, Indian Institute of Science , Bangalore 560 012, India
| | - Aditi Gudipati
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Hosur Road, Bangalore 560 099, India
| | - Satheesh Rajendiran
- In Vivo Pharmacology-Oncology, Syngene International Ltd. , Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Vaibhav Dhavale
- In Vivo Pharmacology-Oncology, Syngene International Ltd. , Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Balaji Ramachandran
- In Vivo Pharmacology-Oncology, Syngene International Ltd. , Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Aravindakshan Jayaprakash
- In Vivo Pharmacology-Oncology, Syngene International Ltd. , Plot Nos. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science , Bangalore 560 012, India
| | - Aditya Chaubey
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Hosur Road, Bangalore 560 099, India
| |
Collapse
|
12
|
Santo VE, Estrada MF, Rebelo SP, Abreu S, Silva I, Pinto C, Veloso SC, Serra AT, Boghaert E, Alves PM, Brito C. Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J Biotechnol 2016; 221:118-29. [PMID: 26815388 DOI: 10.1016/j.jbiotec.2016.01.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/29/2022]
Abstract
Currently there is an effort toward the development of in vitro cancer models more predictive of clinical efficacy. The onset of advanced analytical tools and imaging technologies has increased the utilization of spheroids in the implementation of high throughput approaches in drug discovery. Agitation-based culture systems are commonly proposed as an alternative method for the production of tumor spheroids, despite the scarce experimental evidence found in the literature. In this study, we demonstrate the robustness and reliability of stirred-tank cultures for the scalable generation of 3D cancer models. We developed standardized protocols to a panel of tumor cell lines from different pathologies and attained efficient tumor cell aggregation by tuning hydrodynamic parameters. Large numbers of spheroids were obtained (typically 1000-1500 spheroids/mL) presenting features of native tumors, namely morphology, proliferation and hypoxia gradients, in a cell line-dependent mode. Heterotypic 3D cancer models, based on co-cultures of tumor cells and fibroblasts, were also established in the absence or presence of additional physical support from an alginate matrix, with maintenance of high cell viability. Altogether, we demonstrate that 3D tumor cell model production in stirred-tank culture systems is a robust and versatile approach, providing reproducible tools for drug screening and target verification in pre-clinical oncology research.
Collapse
Affiliation(s)
- Vítor E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia Abreu
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Inês Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Catarina Pinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Susana C Veloso
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | | | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
13
|
Guiro K, Arinzeh TL. Bioengineering Models for Breast Cancer Research. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 9:57-70. [PMID: 26792996 PMCID: PMC4712981 DOI: 10.4137/bcbcr.s29424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023]
Abstract
Despite substantial advances in early diagnosis, breast cancer (BC) still remains a clinical challenge. Most BC models use complex in vivo models and two-dimensional monolayer cultures that do not fully mimic the tumor microenvironment. The integration of cancer biology and engineering can lead to the development of novel in vitro approaches to study BC behavior and quantitatively assess different features of the tumor microenvironment that may influence cell behavior. In this review, we present tissue engineering approaches to model BC in vitro. Recent advances in the use of three-dimensional cell culture models to study various aspects of BC disease in vitro are described. The emerging area of studying BC dormancy using these models is also reviewed.
Collapse
Affiliation(s)
- Khadidiatou Guiro
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Treena L Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
14
|
Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010022. [PMID: 26703669 PMCID: PMC4730413 DOI: 10.3390/ijerph13010022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/02/2015] [Indexed: 11/16/2022]
Abstract
African American (AA) breast cancer patients often have triple negative breast cancer (TNBC) that contains mutations in the TP53 gene. The point mutations at amino acid residues R273 and R248 both result in oncogenic gain-of-function (GOF) phenotypes. Expression of mutant p53 (mtp53) R273H associates with increased cell elasticity, survival under serum deprivation conditions, and increased Poly (ADP ribose) polymerase 1 (PARP1) on the chromatin in the AA-derived TNBC breast cancer cell line MDA-MB-468. We hypothesized that GOF mtp53 R248Q expression could stimulate a similar phenotype in the AA-derived TNBC cell line HCC70. To test this hypothesis we depleted the R248Q protein in the HCC70 cell line using shRNA-mediated knockdown. Using impedance-based real-time analysis we correlated the expression of mtp53 R248Q with increased cell deformability. We also documented that depletion of mtp53 R248Q increased PARP1 in the cytoplasm and decreased PARP1 on the chromatin. We conclude that in the AA-derived TNBC HCC70 cells mtp53 R248Q expression results in a causative tumor associated phenotype. This study supports using the biological markers of high expression of mtp53 R273H or R248Q as additional diagnostics for TNBC resistant subtypes often found in the AA community. Each mtp53 protein must be considered separately and this work adds R248Q to the increasing list of p53 mutations that can be used for diagnostics and drug targeting. Here we report that when R248Q mtp53 proteins are expressed in TNBC, then targeting the gain-of-function pathways may improve treatment efficacy.
Collapse
|
15
|
Eke I, Hehlgans S, Sandfort V, Cordes N. 3D matrix-based cell cultures: Automated analysis of tumor cell survival and proliferation. Int J Oncol 2015; 48:313-21. [PMID: 26549537 PMCID: PMC4734598 DOI: 10.3892/ijo.2015.3230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional ex vivo cell cultures mimic physiological in vivo growth conditions thereby significantly contributing to our understanding of tumor cell growth and survival, therapy resistance and identification of novel potent cancer targets. In the present study, we describe advanced three-dimensional cell culture methodology for investigating cellular survival and proliferation in human carcinoma cells after cancer therapy including molecular therapeutics. Single cells are embedded into laminin-rich extracellular matrix and can be treated with cytotoxic drugs, ionizing or UV radiation or any other substance of interest when consolidated and approximating in vivo morphology. Subsequently, cells are allowed to grow for automated determination of clonogenic survival (colony number) or proliferation (colony size). The entire protocol of 3D cell plating takes ~1 h working time and pursues for ~7 days before evaluation. This newly developed method broadens the spectrum of exploration of malignant tumors and other diseases and enables the obtainment of more reliable data on cancer treatment efficacy.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Stephanie Hehlgans
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Veit Sandfort
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
16
|
Walker ND, Patel J, Munoz JL, Hu M, Guiro K, Sinha G, Rameshwar P. The bone marrow niche in support of breast cancer dormancy. Cancer Lett 2015; 380:263-71. [PMID: 26546045 DOI: 10.1016/j.canlet.2015.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Despite the success in detecting breast cancer (BC) early and, with aggressive therapeutic intervention, BC remains a clinical problem. The bone marrow (BM) is a favorable metastatic site for breast cancer cells (BCCs). In BM, the survival of BCCs is partly achieved by the supporting microenvironment, including the presence of immune suppressive cells such as mesenchymal stem cells (MSCs). The heterogeneity of BCCs brings up the question of how each subset interacts with the BM microenvironment. The cancer stem cells (CSCs) survive in the BM as cycling quiescence cells and, forming gap junctional intercellular communication (GJIC) with the hematopoietic supporting stromal cells and MSCs. This type of communication has been identified close to the endosteum. Additionally, dormancy can occur by soluble mediators such as cytokines and also by the exchange of exosomes. These latter mechanisms are reviewed in the context of metastasis of BC to the BM for transition as dormant cells. The article also discusses how immune cells such as macrophages and regulatory T-cells facilitate BC dormancy. The challenges of studying BC dormancy in 2-dimensional (2-D) system are also incorporated by proposing 3-D system by engineering methods to recapitulate the BM microenvironment.
Collapse
Affiliation(s)
- Nykia D Walker
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Jimmy Patel
- Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Jessian L Munoz
- Ob/Gyn and Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Madeleine Hu
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Khadidiatou Guiro
- Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Garima Sinha
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
17
|
Guiro K, Patel SA, Greco SJ, Rameshwar P, Arinzeh TL. Investigating breast cancer cell behavior using tissue engineering scaffolds. PLoS One 2015; 10:e0118724. [PMID: 25837691 PMCID: PMC4383476 DOI: 10.1371/journal.pone.0118724] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Despite early detection through the use of mammograms and aggressive intervention, breast cancer (BC) remains a clinical dilemma. BC can resurge after >10 years of remission. Studies indicate that BC cells (BCCs) with self-renewal and chemoresistance could be involved in dormancy. The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment. Thus, to determine the effect of three-dimensional (3-D) microenvironment on BCCs, this study fabricated tissue engineering scaffolds made of poly (ε-caprolactone) (PCL) having aligned or random fibers. Random and aligned fibers mimic, respectively, the random and highly organized collagen fibers found in the tumor extracellular matrix. Chemoresistant BCCs were obtained by treating with carboplatin. Western blot analysis of carboplatin resistant (treated) MDA-MB-231 (highly invasive, basal-like) and T47D (low-invasive, luminal) BCCs showed an increase in Bcl-2, Oct-4 and Sox-2, suggesting protection from apoptosis and increase in stem-like markers. Further studies with MDA-MB-231 BCCs seeded on the scaffolds showed little to no change in cell number over time for non-treated BCCs whereas on tissue culture polystyrene (TCP), non-treated BCCs displayed a significant increase in cell number at days 4 and 7 as compared to day 1 (p<0.05). Treated BCCs did not proliferate on TCP and the fibrous scaffolds. Little to no cyclin D1 was expressed for non-treated BCCs on TCP. On fibrous scaffolds, non-treated BCCs stained for cyclin D1 during the 7-day culture period. Treated BCCs expressed cyclin D1 on TCP and fibrous scaffolds during the 7-day culture period. Proliferation, viability and cell cycle analysis indicated that this 3-D culture prompted the aggressive BCCs to adopt a dormant phenotype, while the treated BCCs retained their phenotype. The findings indicate that random and aligned fibrous PCL scaffolds may provide a useful system to study how the 3-D microenvironment affects the behavior of BCCs.
Collapse
Affiliation(s)
- Khadidiatou Guiro
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Shyam A. Patel
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Steven J. Greco
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Treena L. Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
18
|
ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. Oncotarget 2015; 5:2827-38. [PMID: 24811539 PMCID: PMC4058048 DOI: 10.18632/oncotarget.1940] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is characterized by loss of cell-cell junctions, polarity and epithelial markers, and in turn, acquisition of mesenchymal features and motility. Changes associated with this developmental process have been extensively implicated in breast cancer progression and metastasis. Matrix metalloproteinases (MMPs) have been identified as specific inducers of EMT in mammary epithelial cells. MMP-3 induces EMT associated with malignant transformation via a pathway dependent upon production of reactive oxygen species (ROS). While the process by which exposure to MMP-3 leads to induction of ROS has been extensively studied, exactly how the MMP-3-induced ROS stimulate EMT remains unknown. Here, we used profiling methods to identify MMP-3-induced transcriptional alterations in mouse mammary epithelial cells, finding common overlap with changes mediated by nuclear factor-κB (NF-κB) and found in advanced breast cancer. In cultured cells, we found that Snail, an ROS-dependent key mediator of MMP-3-induced changes, is regulated by NF-κB in response to MMP-3. More specifically, we found MMP-3 to cause binding of p65 and cRel NF-κB subunits to the Snail promoter, leading to its transcription. Our results identify a specific pathway by which MMPs induce EMT and malignant characteristics, and provide insight into potential therapeutic approaches to target MMP-associated breast cancers.
Collapse
|
19
|
Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 2015; 5:2736-49. [PMID: 24811362 PMCID: PMC4058041 DOI: 10.18632/oncotarget.1932] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been implicated in diverse roles in breast cancer development and progression. While many of the different MMPs expressed in breast cancer are produced by stromal cells MMP-9 is produced mainly by the tumor cells themselves. To date, the functional role of tumor cell-produced MMP-9 has remained unclear. Here, we show that human breast cancer cell-produced MMP-9 is specifically required for invasion in cell culture and for pulmonary metastasis in a mouse orthotopic model of basal-like breast cancer. We also find that tumor cell-produced MMP-9 promotes tumor vascularization with only modest impact on primary tumor growth, and that silencing of MMP-9 expression in tumor cells leads to an altered transcriptional program consistent with reversion to a less malignant phenotype. MMP-9 is most highly expressed in human basal-like and triple negative tumors, where our data suggest that it contributes to metastatic progression. Our results suggest that MMP9 may offer a target for anti-metastatic therapies for basal-like triple negative breast cancers, a poor prognosis subtype with few available molecularly targeted therapeutic options.
Collapse
|
20
|
Cichon MA, Nelson CM, Radisky DC. Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion. Cancer Inform 2015; 14:1-13. [PMID: 25698877 PMCID: PMC4325704 DOI: 10.4137/cin.s18965] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell-cell interactions is a key step in the earliest stages of cancer development.
Collapse
Affiliation(s)
- Magdalena A Cichon
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL USA
| |
Collapse
|
21
|
Mehner C, Miller E, Khauv D, Nassar A, Oberg AL, Bamlet WR, Zhang L, Waldmann J, Radisky ES, Crawford HC, Radisky DC. Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma. Mol Cancer Res 2014; 12:1430-9. [PMID: 24850902 PMCID: PMC4201965 DOI: 10.1158/1541-7786.mcr-13-0557-t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDA) arises at the convergence of genetic alterations in KRAS with a fostering microenvironment shaped by immune cell influx and fibrotic changes; identification of the earliest tumorigenic molecular mediators evokes the proverbial chicken and egg problem. Matrix metalloproteinases (MMP) are key drivers of tumor progression that originate primarily from stromal cells activated by the developing tumor. Here, MMP3, known to be expressed in PDA, was found to be associated with expression of Rac1b, a tumorigenic splice isoform of Rac1, in all stages of pancreatic cancer. Using a large cohort of human PDA tissue biopsies specimens, both MMP3 and Rac1b are expressed in PDA cells, that the expression levels of the two markers are highly correlated, and that the subcellular distribution of Rac1b in PDA is significantly associated with patient outcome. Using transgenic mouse models, coexpression of MMP3 with activated KRAS in pancreatic acinar cells stimulates metaplasia and immune cell infiltration, priming the stromal microenvironment for early tumor development. Finally, exposure of cultured pancreatic cancer cells to recombinant MMP3 stimulates expression of Rac1b, increases cellular invasiveness, and activation of tumorigenic transcriptional profiles. IMPLICATIONS MMP3 acts as a coconspirator of oncogenic KRAS in pancreatic cancer tumorigenesis and progression, both through Rac1b-mediated phenotypic control of pancreatic cancer cells themselves, and by giving rise to the tumorigenic microenvironment; these findings also point to inhibition of this pathway as a potential therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Christine Mehner
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Erin Miller
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Davitte Khauv
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Aziza Nassar
- Department of Pathology, Mayo Clinic, Jacksonville, Florida
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research
| | - Lizhi Zhang
- Department of Pathology, Mayo Clinic, Rochester, Minnesota; and
| | - Jens Waldmann
- Department of Visceral-, Thoracic- and Vascular Surgery, Unikliniken Marburg Und Giessen, Marburg, Germany
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Howard C Crawford
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 U S A;
| |
Collapse
|
22
|
Mishra DK, Creighton CJ, Zhang Y, Gibbons DL, Kurie JM, Kim MP. Gene expression profile of A549 cells from tissue of 4D model predicts poor prognosis in lung cancer patients. Int J Cancer 2013; 134:789-98. [PMID: 23934967 DOI: 10.1002/ijc.28428] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/17/2013] [Accepted: 07/24/2013] [Indexed: 11/07/2022]
Abstract
The tumor microenvironment plays an important role in regulating cell growth and metastasis. Recently, we developed an ex vivo lung cancer model (four dimensional, 4D) that forms perfusable tumor nodules on a lung matrix that mimics human lung cancer histopathology and protease secretion pattern. We compared the gene expression profile (Human OneArray v5 chip) of A549 cells, a human lung cancer cell line, grown in a petri dish (two-dimensional, 2D), and of the same cells grown in the matrix of our ex vivo model (4D). Furthermore, we obtained gene expression data of A549 cells grown in a petri dish (2D) and matrigel (three-dimensional, 3D) from a previous study and compared the 3D expression profile with that of 4D. Expression array analysis showed 2,954 genes differentially expressed between 2D and 4D. Gene ontology (GO) analysis showed upregulation of several genes associated with extracellular matrix, polarity and cell fate and development. Moreover, expression array analysis of 2D vs. 3D showed 1,006 genes that were most differentially expressed, with only 36 genes (4%) having similar expression patterns as observed between 2D and 4D. Finally, the differential gene expression signature of 4D cells (vs. 2D) correlated significantly with poor survival in patients with lung cancer (n = 1,492), while the expression signature of 3D vs. 2D correlated with better survival in lung cancer patients with lung cancer. As patients with larger tumors have a worse rate of survival, the ex vivo 4D model may be a good mimic of natural progression of tumor growth in lung cancer patients.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Animals
- Animals, Newborn
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/mortality
- Cell Culture Techniques
- Disease Models, Animal
- Gene Expression Profiling
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Oligonucleotide Array Sequence Analysis
- Prognosis
- RNA, Messenger/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Dhruva K Mishra
- Department of Surgery, The Methodist Hospital Research Institute, Houston, TX
| | | | | | | | | | | |
Collapse
|
23
|
Alge DL, Anseth KS. Thiol‐X Reactions in Tissue Engineering. THIOL‐X CHEMISTRIES IN POLYMER AND MATERIALS SCIENCE 2013. [DOI: 10.1039/9781849736961-00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Thiol‐based click reactions have played a key role in the synthesis of biomaterial scaffolds for regenerative medicine applications. Of particular importance has been their use in creating cell‐laden hydrogel matrices for both fundamental and translational applications. Thiol‐X reactions are often exploited in biological applications as they allow for the facile incorporation of biofunctional components, which has led to many key advancements for the field of tissue engineering. In this chapter, we summarize the important considerations for cytocompatible macromolecular monomer design and subsequent cellular encapsulation in hydrogel formulations. Briefly, we review the main thiol‐X reactions that have been used to synthesize hydrogel cell scaffold systems; provide a generalized protocol for the preparation of cell‐laden hydrogels; present highlights that demonstrate specific advantages of thiol‐X reactions and advances in their application in regenerative medicine research; and conclude with a prospectus on future directions for the field in using thiol‐X chemistries to engineer more advanced hydrogel materials.
Collapse
Affiliation(s)
- Daniel L. Alge
- Department of Chemical and Biological Engineering University of Colorado, Boulder, CO 80303‐1904 USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering University of Colorado, Boulder, CO 80303‐1904 USA
| |
Collapse
|
24
|
Wen Z, Liao Q, Hu Y, You L, Zhou L, Zhao Y. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay. Braz J Med Biol Res 2013; 46:634-42. [PMID: 23903680 PMCID: PMC3859338 DOI: 10.1590/1414-431x20132647] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/15/2013] [Indexed: 01/29/2023] Open
Abstract
Current therapy for pancreatic cancer is multimodal, involving surgery and
chemotherapy. However, development of pancreatic cancer therapies requires a
thorough evaluation of drug efficacy in vitro before animal
testing and subsequent clinical trials. Compared to two-dimensional culture of
cell monolayer, three-dimensional (3-D) models more closely mimic native
tissues, since the tumor microenvironment established in 3-D models often plays
a significant role in cancer progression and cellular responses to the drugs.
Accumulating evidence has highlighted the benefits of 3-D in
vitro models of various cancers. In the present study, we have
developed a spheroid-based, 3-D culture of pancreatic cancer cell lines
MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase
assay. Drug efficacy testing showed that spheroids had much higher drug
resistance than monolayers. This model, which is characteristically reproducible
and easy and offers rapid handling, is the preferred choice for filling the gap
between monolayer cell cultures and in vivo models in the
process of drug development and testing for pancreatic cancer.
Collapse
Affiliation(s)
- Z Wen
- Tsinghua University, Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, Downey GP, Radisky ES, Fields AP, Radisky DC. Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression. Sci Transl Med 2013; 4:142ra95. [PMID: 22786680 DOI: 10.1126/scitranslmed.3004062] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lung cancer is more deadly than colon, breast, and prostate cancers combined, and treatment improvements have failed to improve prognosis significantly. Here, we identify a critical mediator of lung cancer progression, Rac1b, a tumor-associated protein with cell-transforming properties that are linked to the matrix metalloproteinase (MMP)-induced epithelial-mesenchymal transition (EMT) in lung epithelial cells. We show that expression of mouse Rac1b in lung epithelial cells of transgenic mice stimulated EMT and spontaneous tumor development and that activation of EMT by MMP-induced expression of Rac1b gave rise to lung adenocarcinoma in the transgenic mice through bypassing oncogene-induced senescence. Rac1b is expressed abundantly in stages 1 and 2 of human lung adenocarcinomas and, hence, is an attractive molecular target for the development of new therapies that prevent progression to later-stage lung cancers.
Collapse
|
26
|
Xiong G, Luo H, Gu F, Zhang J, Hu D, Wan Y. A Novel <i>in Vitro</i> Three-Dimensional Macroporous Scaffolds from Bacterial Cellulose for Culture of Breast Cancer Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbnb.2013.44040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|