1
|
Zhao R, Yan B, Li D, Guo Z, Huang Y, Wang D, Yao X. An Ultramicroelectrode Electrochemistry and Surface Plasmon Resonance Coupling Method for Cell Exocytosis Study. Anal Chem 2024; 96:10228-10236. [PMID: 38867346 DOI: 10.1021/acs.analchem.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Exocytosis of a single cell has been extensively researched in recent years due to its close association with numerous diseases. However, current methods only investigate exocytosis at either the single-cell or multiple-cell level, and a method for simultaneously studying exocytosis at both levels has yet to be established. In this study, a combined device incorporating ultramicroelectrode (UME) electrochemistry and surface plasmon resonance (SPR) was developed, enabling the simultaneous monitoring of single-cell and multiple-cell exocytosis. PC12 cells were cultured directly on the SPR sensing Au film, with a carboxylated carbon nanopipette (c-CNP) electrode employed for electrochemical detection in the SPR reaction cell. Upon exocytosis, the released dopamine diffuses onto the inner wall of c-CNP, undergoing an electrochemical reaction to generate a current peak. Concurrently, exocytosis can also induce changes in the refractive index of the Au film surface, leading to the SPR signal. Consequently, the device enables real-time monitoring of exocytosis from both single and multiple cells with a high spatiotemporal resolution. The c-CNP electrode exhibited excellent resistance to protein contamination, high sensitivity for dopamine detection, and the capability to continuously monitor dopamine exocytosis over an extended period. Analysis of both SPR and electrochemical signals revealed a positive correlation between changes in the SPR signal and the frequency of exocytosis. This study introduces a novel method and platform for the simultaneous investigation of single-cell and multiple-cell exocytosis.
Collapse
Affiliation(s)
- Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Bei Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yubiao Huang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology Research Center for Environment Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
3
|
Bouret Y, Guille-Collignon M, Lemaître F. Simulations of amperometric monitoring of exocytosis: moderate pH variations within the cell-electrode cleft with the buffer diffusion. Anal Bioanal Chem 2021; 413:6769-6776. [PMID: 34120197 DOI: 10.1007/s00216-021-03443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Amperometry with ultramicroelectrodes is nowadays a routine technique to investigate neurotransmitter secretion by vesicular exocytosis at the single-cell level. This electroanalytical tool allows one to understand many aspects of the vesicular release in terms of mechanisms. However, the electrochemical detection relies on the oxidation of released neurotransmitters that produce 2H+ and thus the possible acidification of the cell-electrode cleft. In a previous work, we considered a model involving the H+ diffusion or/and its reaction with buffer species. In this article, we report a more general model which takes into account the ability of buffer species to move and to be regenerated within the cell-electrode cleft. As a consequence, the pH within the cleft is still equal to its physiological value regardless of the electrochemical detection of the vesicular release for usual exocytotic cell frequencies. This confirms that amperometry at the single-cell level is a very robust technique for investigating vesicular exocytosis.
Collapse
Affiliation(s)
- Yann Bouret
- CNRS-UMR 7010 Institut de Physique de Nice, Université Nice Côte d'Azur, Av. Joseph Vallot, 06100, Nice, France
| | - Manon Guille-Collignon
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
4
|
Hoang S, Olivier S, Cuenot S, Montillet A, Bellettre J, Ishow E. Microfluidic Assisted Flash Precipitation of Photocrosslinkable Fluorescent Organic Nanoparticles for Fine Size Tuning and Enhanced Photoinduced Processes. Chemphyschem 2020; 21:2502-2515. [PMID: 33073929 DOI: 10.1002/cphc.202000633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/27/2020] [Indexed: 01/05/2023]
Abstract
Highly concentrated dispersions of fluorescent organic nanoparticles (FONs), broadly used for optical tracking, bioimaging and drug delivery monitoring, are obtained using a newly designed micromixer chamber involving high impacting flows. Fine size tuning and narrow size distributions are easily obtained by varying independently the flow rates of the injected fluids and the concentration of the dye stock solution. The flash nanoprecipitation process employed herein is successfully applied to the fabrication of bicomposite FONs designed to allow energy transfer. Considerable enhancement of the emission signal of the energy acceptors is promoted and its origin is found to result from polarity rather than steric effects. Finally, we exploit the high spatial confinement encountered in FONs and their ability to encapsulate hydrophobic photosensitizers to induce photocrosslinking. An increase in the photocrosslinked FON stiffness is evidenced by measuring the elastic modulus at the nanoscale using atomic force microscopy. These results pave the way toward the straightforward fabrication of multifunctional and mechanically photoswitchable FONs, opening novel opportunities in sensing, multimodal imaging, and theranostics.
Collapse
Affiliation(s)
- Stéphane Hoang
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Simon Olivier
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France.,Current address: Air Liquide, Air Liquide Facility, 28 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Stéphane Cuenot
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000, Nantes, France
| | - Agnès Montillet
- GEPEA UMR CNRS 6144, IUT Saint Nazaire, Université de Nantes, 58 rue Michel Ange, 44600, Saint Nazaire, France
| | - Jérôme Bellettre
- LTeN UMR CNRS 6607, Polytech Nantes, Université de Nantes, rue Christian Pauc, 44306, Nantes, France
| | - Eléna Ishow
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| |
Collapse
|
5
|
Guille-Collignon M, Lemaître F. Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Tosat-Bitrián C, Palomo V. CdSe quantum dots evaluation in primary cellular models or tissues derived from patients. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102299. [PMID: 32931928 DOI: 10.1016/j.nano.2020.102299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
In recent years quantum dots (QDs) have risen as useful luminescent nanoparticles with multiple applications ranging from laser, image displays and biomedical applications. Here we review and discuss the studies of these nanoparticles in patient derived cellular samples or tissues, including cellular models from iPSCs from patients, biopsied and post-mortem tissue. QD-based multiplexed imaging has been proved to overcome most of the major drawbacks of conventional techniques, exhibiting higher sensitivity, reliability, accuracy and simultaneous labeling of key biomarkers. In this sense, QDs are very promising tools to be further used in clinical applications including diagnosis and therapy approaches. Analyzing the possibilities of these materials in these biological samples gives an overview of the future applications of the nanoparticles in models closer to patients and their specific disease.
Collapse
Affiliation(s)
| | - Valle Palomo
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Keighron JD, Wang Y, Cans AS. Electrochemistry of Single-Vesicle Events. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:159-181. [PMID: 32151142 DOI: 10.1146/annurev-anchem-061417-010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neuronal transmission relies on electrical signals and the transfer of chemical signals from one neuron to another. Chemical messages are transmitted from presynaptic neurons to neighboring neurons through the triggered fusion of neurotransmitter-filled vesicles with the cell plasma membrane. This process, known as exocytosis, involves the rapid release of neurotransmitter solutions that are detected with high affinity by the postsynaptic neuron. The type and number of neurotransmitters released and the frequency of vesicular events govern brain functions such as cognition, decision making, learning, and memory. Therefore, to understand neurotransmitters and neuronal function, analytical tools capable of quantitative and chemically selective detection of neurotransmitters with high spatiotemporal resolution are needed. Electrochemistry offers powerful techniques that are sufficiently rapid to allow for the detection of exocytosis activity and provides quantitative measurements of vesicle neurotransmitter content and neurotransmitter release from individual vesicle events. In this review, we provide an overview of the most commonly used electrochemical methods for monitoring single-vesicle events, including recent developments and what is needed for future research.
Collapse
Affiliation(s)
- Jacqueline D Keighron
- Department of Chemical and Biological Sciences, New York Institute of Technology, Old Westbury, New York 11568, USA
| | - Yuanmo Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| |
Collapse
|
8
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Pandard J, Pan N, Ebene DH, Le Saux T, Ait-Yahiatène E, Liu X, Grimaud L, Buriez O, Labbé E, Lemaître F, Guille-Collignon M. A Fluorescent False Neurotransmitter as a Dual Electrofluorescent Probe for Secretory Cell Models. Chempluschem 2020; 84:1578-1586. [PMID: 31943921 DOI: 10.1002/cplu.201900385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
A dual electrofluorescent probe (FFN42) belonging to the fluorescent false neurotransmitter family was rationally designed for investigating cell secretion. This probe, which comprises a coumarin core with one amino and two hydroxy groups, is very promising due to its electroactive and fluorescent properties. The optimal excitation and emission wavelengths (380 nm and 470 nm respectively) make this probe adapted for use in fluorescence microscopy. FFN42 has a quantum yield of 0.18, a molar absorption coefficient of 12000 M-1 cm-1 and pKa values of 5.4 and 6.7 for the hydroxy groups. The electroactivity of FFN42 was evidenced on carbon fiber and ITO electrodes at relatively low oxidation potentials (0.24 V and 0.45 V vs Ag/AgCl respectively). Epifluorescence observations showed that FFN42 accumulated into secretory vesicles of PC12 and N13 cells. Toxicity tests further revealed that FFN42 had no lethal effect on these cells. Amperometric data obtained on carbon fiber electrodes proved that the probe is released by N13 cells.
Collapse
Affiliation(s)
- Justine Pandard
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Na Pan
- Laboratoire de biomolécules (LBM) Département de Chimie, Sorbonne Université École Normale Supérieure PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Dina H Ebene
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Thomas Le Saux
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Eric Ait-Yahiatène
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Xiaoqing Liu
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Laurence Grimaud
- Laboratoire de biomolécules (LBM) Département de Chimie, Sorbonne Université École Normale Supérieure PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Olivier Buriez
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Eric Labbé
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| | - Manon Guille-Collignon
- Laboratoire PASTEUR, Département de Chimie Ecole Normale Supérieure, PSL University Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
10
|
Zhang F, Guan Y, Yang Y, Hunt A, Wang S, Chen HY, Tao N. Optical Tracking of Nanometer-Scale Cellular Membrane Deformation Associated with Single Vesicle Release. ACS Sens 2019; 4:2205-2212. [PMID: 31348853 DOI: 10.1021/acssensors.9b01201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Exocytosis involves interactions between secretory vesicles and the plasma membrane. Studying the membrane response is thus critical to understand this important cellular process and to differentiate different mediator release patterns. Here we introduce a label-free optical imaging method to detect the vesicle-membrane-interaction-induced membrane deformation associated with single exocytosis in mast cells. We show that the plasma membrane expands by a few tens of nanometers accompanying each vesicle-release event, but the dynamics of the membrane deformation varies from cell to cell, which reflect different exocytosis processes. Combining the temporal and spatial information allows us to resolve complex vesicle-release processes, such as two vesicle-release events that occur closely in time and location. Simultaneous following a vesicle release with fluorescence and membrane deformation tracking further allows us to determine the propagation speed of the vesicle-release-induced membrane deformation along the cell surface, which has an average value of 5.2 ± 1.8 μm/s.
Collapse
Affiliation(s)
- Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Guan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Ashley Hunt
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Liu X, Tong Y, Fang PP. Recent development in amperometric measurements of vesicular exocytosis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Shen M, Qu Z, DesLaurier J, Welle TM, Sweedler JV, Chen R. Single Synaptic Observation of Cholinergic Neurotransmission on Living Neurons: Concentration and Dynamics. J Am Chem Soc 2018; 140:7764-7768. [PMID: 29883110 DOI: 10.1021/jacs.8b01989] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acetylcholine, the first neurotransmitter identified more than a century ago, plays critical roles in human activities and health; however, its synaptic concentration dynamics have remained unknown. Here, we demonstrate the in situ simultaneous measurements of synaptic cholinergic transmitter concentration and release dynamics. We used nanoscale electroanalytical methods: nanoITIES electrode of 15 nm in radius and nanoresolved scanning electrochemical microscopy (SECM). Time-resolved in situ measurements unveiled information on synaptic acetylcholine concentration and release dynamics of living Aplysia neurons. The measuring technique enabled the quantitative sensing of acetylcholine with negligible interference of other ionic and redox-active species. We measured cholinergic transmitter concentrations very close to the synapse, with values as high as 2.4 mM. We observed diverse synaptic transmitter concentration dynamics consisting of singlet, doublet and multiplet events with a signal-to-noise ratio of 6 to 130. The unprecedented details about synaptic neurotransmission unveiled are instrumental for understanding brain communication and diseases in a way distinctive from extra-synaptic studies.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Zizheng Qu
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Justin DesLaurier
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Theresa M Welle
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Ran Chen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
13
|
Moreira B, Tuoriniemi J, Kouchak Pour N, Mihalčíková L, Safina G. Surface Plasmon Resonance for Measuring Exocytosis from Populations of PC12 Cells: Mechanisms of Signal Formation and Assessment of Analytical Capabilities. Anal Chem 2017; 89:3069-3077. [DOI: 10.1021/acs.analchem.6b04811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Beatriz Moreira
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
| | - Jani Tuoriniemi
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
| | - Naghmeh Kouchak Pour
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
| | - Lýdia Mihalčíková
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
| | - Gulnara Safina
- Department
of Chemistry and Molecular Biology, University of Gothenburg, Kemigården
4, 412 96 Gothenburg, Sweden
- Division
of Biological Physics, Department of Physics, Chalmers University of Technology, Kemigården 1, 412 96 Gothenburg, Sweden
| |
Collapse
|
14
|
High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc Natl Acad Sci U S A 2017; 114:1789-1794. [PMID: 28179565 DOI: 10.1073/pnas.1613541114] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Intercellular communication via chemical signaling proceeds with both spatial and temporal components, but analytical tools, such as microfabricated electrodes, have been limited to just a few probes per cell. In this work, we use a nonphotobleaching fluorescent nanosensor array based on single-walled carbon nanotubes (SWCNTs) rendered selective to dopamine to study its release from PC12 neuroprogenitor cells at a resolution exceeding 20,000 sensors per cell. This allows the spatial and temporal dynamics of dopamine release, following K+ stimulation, to be measured at exceedingly high resolution. We observe localized, unlabeled release sites of dopamine spanning 100 ms to seconds that correlate with protrusions but not predominately the positive curvature associated with the tips of cellular protrusions as intuitively expected. The results illustrate how directionality of chemical signaling is shaped by membrane morphology, and highlight the advantages of nanosensor arrays that can provide high spatial and temporal resolution of chemical signaling.
Collapse
|
15
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
16
|
In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats. Part Fibre Toxicol 2016; 13:45. [PMID: 27542346 PMCID: PMC4992249 DOI: 10.1186/s12989-016-0156-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 12/01/2022] Open
Abstract
Background Cerium oxide (CeO2) nanoparticles used as a diesel fuel additive can be emitted into the ambient air leading to human inhalation. Although biological studies have shown CeO2 nanoparticles can cause adverse health effects, the extent of the biodistribution of CeO2 nanoparticles through inhalation has not been well characterized. Furthermore, freshly emitted CeO2 nanoparticles can undergo an aging process by interaction with other ambient airborne pollutants that may influence the biodistribution after inhalation. Therefore, understanding the pharmacokinetic of newly-generated and atmospherically-aged CeO2 nanoparticles is needed to assess the risks to human health. Methods A novel experimental system was designed to integrate the generation, aging, and inhalation exposure of Sprague Dawley rats to combustion-generated CeO2 nanoparticles (25 and 90 nm bimodal distribution). Aging was done in a chamber representing typical ambient urban air conditions with UV lights. Following a single 4-hour nose-only exposure to freshly emitted or aged CeO2 for 15 min, 24 h, and 7 days, ICP-MS detection of Ce in the blood, lungs, gastrointestinal tract, liver, spleen, kidneys, heart, brain, olfactory bulb, urine, and feces were analyzed with a mass balance approach to gain an overarching understanding of the distribution. A physiologically based pharmacokinetic (PBPK) model that includes mucociliary clearance, phagocytosis, and entry into the systemic circulation by alveolar wall penetration was developed to predict the biodistribution kinetic of the inhaled CeO2 nanoparticles. Results Cerium was predominantly recovered in the lungs and feces, with extrapulmonary organs contributing less than 4 % to the recovery rate at 24 h post exposure. No significant differences in biodistribution patterns were found between fresh and aged CeO2 nanoparticles. The PBPK model predicted the biodistribution well and identified phagocytizing cells in the pulmonary region accountable for most of the nanoparticles not eliminated by feces. Conclusions The biodistribution of fresh and aged CeO2 nanoparticles followed the same patterns, with the highest amounts recovered in the feces and lungs. The slow decrease of nanoparticle concentrations in the lungs can be explained by clearance to the gastrointestinal tract and then to the feces. The PBPK model successfully predicted the kinetic of CeO2 nanoparticles in various organs measured in this study and suggested most of the nanoparticles were captured by phagocytizing cells. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0156-2) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Luo N, Yan A, Yang Z. Measuring Exocytosis Rate Using Corrected Fluorescence Recovery After Photoconversion. Traffic 2016; 17:554-64. [PMID: 26822068 DOI: 10.1111/tra.12380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
Exocytosis plays crucial roles in regulating the distribution and function of plasma membrane (PM) and extracellular matrix proteins. However, measuring the exocytosis rate of a specific protein by conventional methods is very difficult because of exocytosis-independent trafficking such as endocytosis, which also affects membrane protein distribution. Here, we describe a novel method, corrected fluorescence recovery after photoconversion, in which exocytosis-dependent and -independent trafficking events are measured simultaneously to accurately determine exocytosis rate. In this method, the protein-of-interest is tagged with Dendra2, a green-to-red photoconvertible fluorescent protein. Following the photoconversion of PM-localized Dendra2, both the recovery of the green signal and the changes in the photoconverted red signal are measured, and the rate of exocytosis is calculated from the changing rates of these two signals.
Collapse
Affiliation(s)
- Nan Luo
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - An Yan
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.,Current address: Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
18
|
Amatore C, Delacotte J, Guille-Collignon M, Lemaître F. Vesicular exocytosis and microdevices - microelectrode arrays. Analyst 2016; 140:3687-95. [PMID: 25803190 DOI: 10.1039/c4an01932f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Among all the analytical techniques capable of monitoring exocytosis in real time at the single cell level, electrochemistry (particularly amperometry at a constant potential) using ultramicroelectrodes has been demonstrated to be an important and convenient tool for more than two decades. Indeed, because the electrochemical sensor is located in the close vicinity of the emitting cell ("artificial synapse" configuration), much data can be gathered from the whole cell activity (secretion frequency) to the individual vesicular release (duration, fluxes or amount of molecules released) with an excellent sensitivity. However, such a single cell analysis and its intrinsic benefits are at the expense of the spatial resolution and/or the number of experiments. The quite recent development of microdevices/microsystems (and mainly the microelectrode arrays (MEAs)) offers in some way a complementary approach either by combining spectroscopy-microscopy or by implementing a multianalysis. Such developments are described and discussed in the present review over the 2005-2014 period.
Collapse
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | |
Collapse
|
19
|
Wigström J, Dunevall J, Najafinobar N, Lovrić J, Wang J, Ewing AG, Cans AS. Lithographic Microfabrication of a 16-Electrode Array on a Probe Tip for High Spatial Resolution Electrochemical Localization of Exocytosis. Anal Chem 2016; 88:2080-7. [PMID: 26771211 DOI: 10.1021/acs.analchem.5b03316] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the lithographic microfabrication of a movable thin film microelectrode array (MEA) probe consisting of 16 platinum band electrodes placed on top of a supporting borosilicate glass substrate. These 1.2 μm wide electrodes were tightly packed and positioned parallel in two opposite rows within a 20 μm × 25 μm square area and with a distance less than 10 μm from the edge of the glass substrate. We demonstrate the ability to control and place the probe in close proximity to the surface of adherent bovine chromaffin cells and to amperometrically record single exocytosis release events with high spatiotemporal resolution. The two-dimensional position of single exocytotic events occurring in the center gap area separating the two rows of MEA band electrodes and that were codetected by electrodes in both rows was determined by analysis of the fractional detection of catecholamine released between electrodes and exploiting random walk simulations. Hence, two-dimensional electrochemical imaging recording of exocytosis release between the electrodes within this area was achieved. Similarly, by modeling the current spikes codetected by parallel adjacent band electrodes positioned in the same electrode row, a one-dimensional imaging of exocytosis with submicrometer resolution was accomplished within the area. The one- and two-dimensional electrochemical imaging using the MEA probe allowed for high spatial resolution of exocytosis activity and revealed heterogeneous release of catecholamine at the chromaffin cell surface.
Collapse
Affiliation(s)
- Joakim Wigström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Neda Najafinobar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Jelena Lovrić
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Jun Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
20
|
Nanosensors for neurotransmitters. Anal Bioanal Chem 2015; 408:2727-41. [DOI: 10.1007/s00216-015-9160-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 01/14/2023]
|
21
|
Klockow JL, Hettie KS, Secor KE, Barman DN, Glass TE. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters. Chemistry 2015; 21:11446-51. [DOI: 10.1002/chem.201501379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jessica L. Klockow
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Kenneth S. Hettie
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Kristen E. Secor
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Dipti N. Barman
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Timothy E. Glass
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| |
Collapse
|
22
|
Neto BAD, Carvalho PHPR, Correa JR. Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds. Acc Chem Res 2015; 48:1560-9. [PMID: 25978615 DOI: 10.1021/ar500468p] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Account describes the origins, features, importance, and trends of the use of fluorescent small-molecule 2,1,3-benzothiadiazole (BTD) derivatives as a new class of bioprobes applied to bioimaging analyses of several (live and fixed) cell types. BTDs have been successfully used as probes for a plethora of biological analyses for only a few years, and the impressive responses obtained by using this important class of heterocycle are fostering the development of new fluorescent BTDs and expanding the biological applications of such derivatives. The first use of a fluorescent small-molecule BTD derivative as a selective cellular probe dates back to 2010, and since then impressive advances have been described by us and others. The well-known limitations of classical scaffolds urged the development of new classes of bioprobes. Although great developments have been achieved by using classical scaffolds such as coumarins, BODIPYs, fluoresceins, rhodamines, cyanines, and phenoxazines, there is still much to be done, and BTDs aim to succeed where these dyes have shown their limitations. Important organelles and cell components such as nuclear DNA, mitochondria, lipid droplets, and others have already been successfully labeled by fluorescent small-molecule BTD derivatives. New technological systems that use BTDs as the fluorophores for bioimaging experiments have been described in recent scientific literature. The successful application of BTDs as selective bioprobes has led some groups to explore their potential for use in studying membrane pores or tumor cells under hypoxic conditions. Finally, BTDs have also been used as fluorescent tags to investigate the action mechanism of some antitumor compounds. The attractive photophysical data typically observed for π-extended BTD derivatives is fostering interest in the use of this new class of bioprobes. Large Stokes shifts, large molar extinction coefficients, high quantum yields, high stability when stored in solution or as pure solids, no fading even after long periods of irradiation, bright emissions with no blinking, good signal-to-noise ratios, efficiency to transpose the cell membrane, and irradiation preferentially in the visible-light region are just some features noted by using BTDs. As the pioneering group in the use of fluorescent small-molecule BTDs for bioimaging purposes, we feel pleased to share our experience, results, advances, and personal perspectives with the readers of this Account. The readers will clearly note the huge advantages of using fluorescent BTDs over classical scaffolds, and hopefully they will be inspired and motivated to further BTD technology in the fields of molecular and cellular biology.
Collapse
Affiliation(s)
- Brenno A. D. Neto
- Laboratory
of Medicinal and
Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitario Darcy
Ribeiro, Brasilia 70904970, P.O. Box 4478, DF, Brazil
| | - Pedro H. P. R. Carvalho
- Laboratory
of Medicinal and
Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitario Darcy
Ribeiro, Brasilia 70904970, P.O. Box 4478, DF, Brazil
| | - Jose R. Correa
- Laboratory
of Medicinal and
Technological Chemistry, University of Brasília (IQ-UnB), Campus Universitario Darcy
Ribeiro, Brasilia 70904970, P.O. Box 4478, DF, Brazil
| |
Collapse
|
23
|
Lemaître F, Guille Collignon M, Amatore C. Recent advances in Electrochemical Detection of Exocytosis. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Pierzyńska-Mach A, Janowski PA, Dobrucki JW. Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles. Cytometry A 2014; 85:729-37. [PMID: 24953340 DOI: 10.1002/cyto.a.22495] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 05/18/2014] [Indexed: 01/10/2023]
Abstract
Acidic vesicles can be imaged and tracked in live cells after staining with several low molecular weight fluorescent probes, or with fluorescently labeled proteins. Three fluorescent dyes, acridine orange, LysoTracker Red DND-99, and quinacrine, were evaluated as acidic vesicle tracers for confocal fluorescence imaging and quantitative analysis. The stability of fluorescent signals, achievable image contrast, and phototoxicity were taken into consideration. The three tested tracers exhibit different advantages and pose different problems in imaging experiments. Acridine orange makes it possible to distinguish acidic vesicles with different internal pH but is fairly phototoxic and can cause spectacular bursts of the dye-loaded vesicles. LysoTracker Red is less phototoxic but its rapid photobleaching limits the range of useful applications considerably. We demonstrate that quinacrine is most suitable for long-term imaging when a high number of frames is required. This capacity made it possible to trace acidic vesicles for several hours, during a process of drug-induced apoptosis. An ability to record the behavior of acidic vesicles over such long periods opens a possibility to study processes like autophagy or long-term effects of drugs on endocytosis and exocytosis.
Collapse
Affiliation(s)
- Agnieszka Pierzyńska-Mach
- Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Cell Biophysics, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
25
|
Amperometric detection of vesicular exocytosis from BON cells at carbon fiber microelectrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Li D, Johanson G, Emond C, Carlander U, Philbert M, Jolliet O. Physiologically based pharmacokinetic modeling of polyethylene glycol-coated polyacrylamide nanoparticles in rats. Nanotoxicology 2014; 8 Suppl 1:128-37. [PMID: 24392664 DOI: 10.3109/17435390.2013.863406] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticles' health risks depend on their biodistribution in the body. Phagocytosis may greatly affect this distribution but has not yet explicitly accounted for in whole body pharmacokinetic models. Here, we present a physiologically based pharmacokinetic model that includes phagocytosis of nanoparticles to explore the biodistribution of intravenously injected polyethylene glycol-coated polyacrylamide nanoparticles in rats. The model explains 97% of the observed variation in nanoparticles amounts across organs. According to the model, phagocytizing cells quickly capture nanoparticles until their saturation and thereby constitute a major reservoir in richly perfused organs (spleen, liver, bone marrow, lungs, heart and kidneys), storing 83% of the nanoparticles found in these organs 120 h after injection. Key determinants of the nanoparticles biodistribution are the uptake capacities of phagocytizing cells in organs, the partitioning between tissue and blood, and the permeability between capillary blood and tissues. This framework can be extended to other types of nanoparticles by adapting these determinants.
Collapse
Affiliation(s)
- Dingsheng Li
- Department of Environmental Health Sciences, University of Michigan , Ann Arbor, MI , USA
| | | | | | | | | | | |
Collapse
|
27
|
The plasma membrane proton pump PMA-1 is incorporated into distal parts of the hyphae independently of the Spitzenkörper in Neurospora crassa. EUKARYOTIC CELL 2013; 12:1097-105. [PMID: 23729384 DOI: 10.1128/ec.00328-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most models for fungal growth have proposed a directional traffic of secretory vesicles to the hyphal apex, where they temporarily aggregate at the Spitzenkörper before they fuse with the plasma membrane (PM). The PM H(+)-translocating ATPase (PMA-1) is delivered via the classical secretory pathway (endoplasmic reticulum [ER] to Golgi) to the cell surface, where it pumps H(+) out of the cell, generating a large electrochemical gradient that supplies energy to H(+)-coupled nutrient uptake systems. To characterize the traffic and delivery of PMA-1 during hyphal elongation, we have analyzed by laser scanning confocal microscopy (LSCM) strains of Neurospora crassa expressing green fluorescent protein (GFP)-tagged versions of the protein. In conidia, PMA-1-GFP was evenly distributed at the PM. During germination and germ tube elongation, PMA-1-GFP was found all around the conidial PM and extended to the germ tube PM, but fluorescence was less intense or almost absent at the tip. Together, the data indicate that the electrochemical gradient driving apical nutrient uptake is generated from early developmental stages. In mature hyphae, PMA-1-GFP localized at the PM at distal regions (>120 μm) and in completely developed septa, but not at the tip, indicative of a distinct secretory route independent of the Spitzenkörper occurring behind the apex.
Collapse
|
28
|
Otterstrom J, van Oijen AM. Visualization of membrane fusion, one particle at a time. Biochemistry 2013; 52:1654-68. [PMID: 23421412 DOI: 10.1021/bi301573w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-mediated fusion between phospholipid bilayers is a fundamental and necessary mechanism for many cellular processes. The short-lived nature of the intermediate states visited during fusion makes it challenging to capture precise kinetic information using classical, ensemble-averaging biophysical techniques. Recently, a number of single-particle fluorescence microscopy-based assays that allow researchers to obtain highly quantitative data about the fusion process by observing individual fusion events in real time have been developed. These assays depend upon changes in the acquired fluorescence signal to provide a direct readout for transitions between the various fusion intermediates. The resulting data yield meaningful and detailed kinetic information about the transitory states en route to productive membrane fusion. In this review, we highlight recent in vitro and in vivo studies of membrane fusion at the single-particle level in the contexts of viral membrane fusion and SNARE-mediated synaptic vesicle fusion. These studies afford insight into mechanisms of coordination between fusion-mediating proteins as well as coordination of the overall fusion process with other cellular processes. The development of single-particle approaches to investigate membrane fusion and their successful application to a number of model systems have resulted in a new experimental paradigm and open up considerable opportunities to extend these methods to other biological processes that involve membrane fusion.
Collapse
Affiliation(s)
- Jason Otterstrom
- Harvard Biophysics Program, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
29
|
Neto BAD, Corrêa JR, Silva RG. Selective mitochondrial staining with small fluorescent probes: importance, design, synthesis, challenges and trends for new markers. RSC Adv 2013. [DOI: 10.1039/c2ra21995f] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|