1
|
Centeno SP, Nothdurft K, Klymchenko AS, Pich A, Richtering W, Wöll D. FLIM nanoscopy resolves the structure and preferential adsorption in the co-nonsolvency of PNIPAM microgels in methanol-water. J Colloid Interface Sci 2025; 678:210-220. [PMID: 39243721 DOI: 10.1016/j.jcis.2024.08.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Polymer microgels are swollen macromolecular networks with a typical size of hundred of nanometers to several microns that show an extraordinary open and responsive architecture to different external stimuli, being therefore important candidates for nanobiotechnology and nanomedical applications such as biocatalysis, sensing and drug delivery. It is therefore crucial to understand the delicate balance of physical-chemical interactions between the polymer backbone and solvent molecules that to a high extent determine their responsivity. In particular, the co-nonsolvency effect of poly(N-isopropylacrylamide) in aqueous alcohols is highly discussed, and there is a disagreement between molecular dynamics (MD) simulations (from literature) of the preferential adsorption of alcohol on the polymer chains and the values obtained by several empirical methods that mostly probe the bulk solvent properties. It is our contention that the most efficacious method for addressing this problem requires a nanoscopic method that can be combined with spectroscopy and record fluorescence spectra and super-resolved fluorescence lifetime images of microgels labeled covalently with the solvatochromic dye Nile Red. By employing this approach, we could simultaneously resolve the structure of sub-micron size objects in the swollen and in the collapsed state and estimate the solvent composition inside of them in - mixtures for two very different polymer architectures. We found an outstanding agreement between the MD simulations and our results that estimate a co-solvent molar fraction excess of approximately 3 with a very flat profile in the lateral direction of the microgel.
Collapse
Affiliation(s)
- S P Centeno
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen, 52074, Germany.
| | - K Nothdurft
- Institute of Physical Chemistry, RWTH-Aachen University, Landoltweg 2, Aachen, 52074, Germany
| | - A S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CRS, Université de Strasbourg, 74 Route du Rhin, Illkirch, 67401, France
| | - A Pich
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen, 52074, Germany; Functional and Interactive Polymers Institute of Technical and Macromolecular Chemistry, Worringerweg 2, Aachen, 52074, Germany; Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen, 6167, the Netherlands
| | - W Richtering
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen, 52074, Germany; Institute of Physical Chemistry, RWTH-Aachen University, Landoltweg 2, Aachen, 52074, Germany
| | - D Wöll
- Institute of Physical Chemistry, RWTH-Aachen University, Landoltweg 2, Aachen, 52074, Germany.
| |
Collapse
|
2
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
3
|
Simeth NA, de Mendoza P, Dubach VRA, Stuart MCA, Smith JW, Kudernac T, Browne WR, Feringa BL. Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chem Sci 2022; 13:3263-3272. [PMID: 35414864 PMCID: PMC8926171 DOI: 10.1039/d1sc06490h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Molecular recognition-driven self-assembly employing single-stranded DNA (ssDNA) as a template is a promising approach to access complex architectures from simple building blocks. Oligonucleotide-based nanotechnology and soft-materials benefit from the high information storage density, self-correction, and memory function of DNA. Here we control these beneficial properties with light in a photoresponsive biohybrid hydrogel, adding an extra level of function to the system. An ssDNA template was combined with a complementary photo-responsive unit to reversibly switch between various functional states of the supramolecular assembly using a combination of light and heat. We studied the structural response of the hydrogel at both the microscopic and macroscopic scale using a combination of UV-vis absorption and CD spectroscopy, as well as fluorescence, transmission electron, and atomic force microscopy. The hydrogels grown from these supramolecular self-assembly systems show remarkable shape-memory properties and imprinting shape-behavior while the macroscopic shape of the materials obtained can be further manipulated by irradiation.
Collapse
Affiliation(s)
- Nadja A Simeth
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Paula de Mendoza
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Victor R A Dubach
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Julien W Smith
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Tibor Kudernac
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
4
|
Kashida H, Asanuma H. Pseudo Base Pairs that Exhibit High Duplex Stability and Orthogonality through Covalent and Non-covalent Interactions. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | | |
Collapse
|
5
|
Madhu M, Ramakrishnan R, Vijay V, Hariharan M. Free Charge Carriers in Homo-Sorted π-Stacks of Donor-Acceptor Conjugates. Chem Rev 2021; 121:8234-8284. [PMID: 34133137 DOI: 10.1021/acs.chemrev.1c00078] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the high photoconversion efficiency observed in natural light-harvesting systems, the hierarchical organization of molecular building blocks has gained impetus in the past few decades. Particularly, the molecular arrangement and packing in the active layer of organic solar cells (OSCs) have garnered significant attention due to the decisive role of the nature of donor/acceptor (D/A) heterojunctions in charge carrier generation and ultimately the power conversion efficiency. This review focuses on the recent developments in emergent optoelectronic properties exhibited by self-sorted donor-on-donor/acceptor-on-acceptor arrangement of covalently linked D-A systems, highlighting the ultrafast excited state dynamics of charge transfer and transport. Segregated organization of donors and acceptors promotes the delocalization of photoinduced charges among the stacks, engendering an enhanced charge separation lifetime and percolation pathways with ambipolar conductivity and charge carrier yield. Covalently linking donors and acceptors ensure a sufficient D-A interface and interchromophoric electronic coupling as required for faster charge separation while providing better control over their supramolecular assemblies. The design strategies to attain D-A conjugate assemblies with optimal charge carrier generation efficiency, the scope of their application compared to state-of-the-art OSCs, current challenges, and future opportunities are discussed in the review. An integrated overview of rational design approaches derived from the comprehension of underlying photoinduced processes can pave the way toward superior optoelectronic devices and bring in new possibilities to the avenue of functional supramolecular architectures.
Collapse
Affiliation(s)
- Meera Madhu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Vishnu Vijay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
6
|
Hanser F, Marsol C, Valencia C, Villa P, Klymchenko AS, Bonnet D, Karpenko J. Nile Red-Based GPCR Ligands as Ultrasensitive Probes of the Local Lipid Microenvironment of the Receptor. ACS Chem Biol 2021; 16:651-660. [PMID: 33733725 DOI: 10.1021/acschembio.0c00897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The local lipid microenvironment of transmembrane receptors is an essential factor in G protein coupled receptor (GPCR) signaling. However, tools are currently missing for studying endogenously expressed GPCRs in primary cells and tissues. Here, we introduce fluorescent environment-sensitive GPCR ligands for probing the microenvironment of the receptor in living cells using fluorescence microscopy under no-wash conditions. We designed and synthesized antagonist ligands of the oxytocin receptor (OTR) by conjugating a high-affinity nonpeptidic OTR ligand PF-3274167 to the environment-sensitive fluorescent dye Nile Red. The length of the polar PEG spacer between the pharmacophore and the fluorophore was adjusted to lower the nonspecific interactions of the probe while preserving a strong fluorogenic response. We demonstrated that the new probes embed into the lipid bilayer in the vicinity of the receptor and convey information about the local polarity and the lipid order via the wavelength-shifting emission of the Nile Red fluorophore.
Collapse
Affiliation(s)
- Fabien Hanser
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Claire Marsol
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
- Plate-forme de chimie biologique intégrative de Strasbourg (PCBiS), UMS 3286 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch-Graffenstaden, France
| | - Christel Valencia
- Plate-forme de chimie biologique intégrative de Strasbourg (PCBiS), UMS 3286 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch-Graffenstaden, France
| | - Pascal Villa
- Plate-forme de chimie biologique intégrative de Strasbourg (PCBiS), UMS 3286 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch-Graffenstaden, France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Dominique Bonnet
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Julie Karpenko
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
7
|
Mass OA, Wilson CK, Roy SK, Barclay MS, Patten LK, Terpetschnig EA, Lee J, Pensack RD, Yurke B, Knowlton WB. Exciton Delocalization in Indolenine Squaraine Aggregates Templated by DNA Holliday Junction Scaffolds. J Phys Chem B 2020; 124:9636-9647. [PMID: 33052691 DOI: 10.1021/acs.jpcb.0c06480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. Deoxyribonucleic acid (DNA) is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important. Motivated by their excellent photostability and spectral properties, here, we examine the ability of squaraine dyes to undergo exciton delocalization when aggregated via a DNA Holliday junction (HJ) template. A commercially available indolenine squaraine dye was chosen for the study given its strong structural resemblance to Cy5, a commercially available cyanine dye previously shown to undergo exciton delocalization in DNA HJs. Three types of DNA-dye aggregate configurations-transverse dimer, adjacent dimer, and tetramer-were investigated. Signatures of exciton delocalization were observed in all squaraine-DNA aggregates. Specifically, strong blue shift and Davydov splitting were observed in steady-state absorption spectroscopy and exciton-induced features were evident in circular dichroism (CD) spectroscopy. Strongly suppressed fluorescence emission provided additional, indirect evidence for exciton delocalization in the DNA-templated squaraine dye aggregates. To quantitatively evaluate and directly compare the excitonic Coulombic coupling responsible for exciton delocalization, the strength of excitonic hopping interactions between the dyes was obtained by simultaneously fitting the experimental steady-state absorption and CD spectra via a Holstein-like Hamiltonian, in which, following the theoretical approach of Kühn, Renger, and May, the dominant vibrational mode is explicitly considered. The excitonic hopping strength within indolenine squaraines was found to be comparable to that of the analogous Cy5 DNA-templated aggregate. The squaraine aggregates adopted primarily an H-type (dyes oriented parallel to each other) spatial arrangement. Extracted geometric details of the dye mutual orientation in the aggregates enabled a close comparison of aggregate configurations and the elucidation of the influence of dye angular relationship on excitonic hopping interactions in squaraine aggregates. These results encourage the application of squaraine-based aggregates in next-generation systems driven by molecular excitons.
Collapse
Affiliation(s)
| | | | | | | | | | - Ewald A Terpetschnig
- SETA BioMedicals, LLC, 2014 Silver Court East, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
8
|
Kashida H, Azuma H, Maruyama R, Araki Y, Wada T, Asanuma H. Efficient Light‐Harvesting Antennae Resulting from the Dense Organization of Dyes into DNA Junctions through
d
‐Threoninol. Angew Chem Int Ed Engl 2020; 59:11360-11363. [DOI: 10.1002/anie.202004221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Ryoko Maruyama
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
9
|
Kashida H, Azuma H, Maruyama R, Araki Y, Wada T, Asanuma H. Efficient Light‐Harvesting Antennae Resulting from the Dense Organization of Dyes into DNA Junctions through
d
‐Threoninol. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Ryoko Maruyama
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
10
|
Karmakar S, Horrocks T, Gibbons BC, Guenther DC, Emehiser R, Hrdlicka PJ. Synthesis and biophysical characterization of oligonucleotides modified with O2'-alkylated RNA monomers featuring substituted pyrene moieties. Org Biomol Chem 2019; 17:609-621. [PMID: 30575837 DOI: 10.1039/c8ob02764a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past three decades, a wide range of pyrene-functionalized oligonucleotides have been developed and explored for potential applications in material science and nucleic acid diagnostics. Our efforts have focused on their possible use as components of Invader probes, i.e., DNA duplexes with +1 interstrand zipper arrangements of intercalator-functionalized nucleotides. We have previously demonstrated that Invader probes based on 2'-O-(pyren-1-yl)methyl-RNA monomers are energetically activated for sequence-unrestricted recognition of chromosomal DNA targets under non-denaturing conditions. As part of ongoing efforts towards delineating structure-property relationships and optimizing Invader probes, we report the synthesis and biophysical characterization of oligodeoxyribonucleotides (ONs) modified with 2'-O-(7-neo-pentylpyren-1-yl)methyl-uridine monomer V and 2'-O-(7-tert-butyl-1-methoxypyren-5-yl)methyl-uridine monomer Y. ONs modified with monomer V display increased DNA affinity (ΔTm up to +10.5 °C), while Y-modified ONs display lower DNA affinity and up to 22-fold increases in fluorescence emission upon RNA binding. Although these monomers display limited potential as building blocks for Invader probes, their photophysical properties render them of interest for diagnostic RNA-targeting applications.
Collapse
Affiliation(s)
- Saswata Karmakar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Kashida H, Kawai H, Maruyama R, Kokubo Y, Araki Y, Wada T, Asanuma H. Quantitative evaluation of energy migration between identical chromophores enabled by breaking symmetry. Commun Chem 2018. [DOI: 10.1038/s42004-018-0093-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Cannon BL, Patten LK, Kellis DL, Davis PH, Lee J, Graugnard E, Yurke B, Knowlton WB. Large Davydov Splitting and Strong Fluorescence Suppression: An Investigation of Exciton Delocalization in DNA-Templated Holliday Junction Dye Aggregates. J Phys Chem A 2018; 122:2086-2095. [PMID: 29420037 DOI: 10.1021/acs.jpca.7b12668] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exciton delocalization in dye aggregate systems is a phenomenon that is revealed by spectral features, such as Davydov splitting, J- and H-aggregate behavior, and fluorescence suppression. Using DNA as an architectural template to assemble dye aggregates enables specific control of the aggregate size and dye type, proximal and precise positioning of the dyes within the aggregates, and a method for constructing large, modular two- and three-dimensional arrays. Here, we report on dye aggregates, organized via an immobile Holliday junction DNA template, that exhibit large Davydov splitting of the absorbance spectrum (125 nm, 397.5 meV), J- and H-aggregate behavior, and near-complete suppression of the fluorescence emission (∼97.6% suppression). Because of the unique optical properties of the aggregates, we have demonstrated that our dye aggregate system is a viable candidate as a sensitive absorbance and fluorescence optical reporter. DNA-templated aggregates exhibiting exciton delocalization may find application in optical detection and imaging, light-harvesting, photovoltaics, optical information processing, and quantum computing.
Collapse
Affiliation(s)
- Brittany L Cannon
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Donald L Kellis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| |
Collapse
|
13
|
Hrdlicka PJ, Karmakar S. 25 years and still going strong: 2'-O-(pyren-1-yl)methylribonucleotides - versatile building blocks for applications in molecular biology, diagnostics and materials science. Org Biomol Chem 2017; 15:9760-9774. [PMID: 29135014 PMCID: PMC5711458 DOI: 10.1039/c7ob02152f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oligonucleotides (ONs) modified with 2'-O-(pyren-1-yl)methylribonucleotides have been explored for a range of applications in molecular biology, nucleic acid diagnostics, and materials science for more than 25 years. The first part of this review provides an overview of synthetic strategies toward 2'-O-(pyren-1-yl)methylribonucleotides and is followed by a summary of biophysical properties of nucleic acid duplexes modified with these building blocks. Insights from structural studies are then presented to rationalize the reported properties. In the second part, applications of ONs modified with 2'-O-(pyren-1-yl)methyl-RNA monomers are reviewed, which include detection of RNA targets, discrimination of single nucleotide polymorphisms, formation of self-assembled pyrene arrays on nucleic acid scaffolds, the study of charge transfer phenomena in nucleic acid duplexes, and sequence-unrestricted recognition of double-stranded DNA. The predictable binding mode of the pyrene moiety, coupled with the microenvironment-dependent properties and synthetic feasibility, render 2'-O-(pyren-1-yl)methyl-RNA monomers as a promising class of pyrene-functionalized nucleotide building blocks for new applications in molecular biology, nucleic acid diagnostics, and materials science.
Collapse
|
14
|
Karmakar S, Guenther DC, Gibbons BC, Hrdlicka PJ. Recognition of mixed-sequence DNA using double-stranded probes with interstrand zipper arrangements of O2'-triphenylene- and coronene-functionalized RNA monomers. Org Biomol Chem 2017; 15:9362-9371. [PMID: 29090304 PMCID: PMC5700769 DOI: 10.1039/c7ob01920c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Development of hybridization-based probes that enable recognition of specific mixed-sequence double-stranded DNA (dsDNA) regions is of considerable interest due to their potential applications in molecular biology, biotechnology, and medicine. We have recently demonstrated that nucleic acid duplexes with +1 interstrand zipper arrangements of intercalator-functionalized nucleotides such as 2'-O-(pyren-1-yl)methyl RNA monomers are inherently activated for recognition of mixed-sequence dsDNA targets, including chromosomal DNA. In the present work, we follow up on our previous structure-activity relationship studies and explore if the dsDNA-recognition efficiency of these so-called Invader probes can be improved by using larger intercalators than pyrene. Oligodeoxyribonucleotides modified with 2'-O-(triphenylen-2-yl)methyl-uridine monomer X and 2'-O-(coronen-1-yl)methyl-uridine monomer Z form extraordinarily stabilized duplexes with complementary DNA (ΔTm's per modification of up to 13 °C and 20 °C, respectively). Invader probes based on X- and Z-monomers are shown to recognize model dsDNA targets with exceptional binding specificity, but are less efficient than reference probes modified with 2'-O-(pyren-1-yl)methyl-uridine monomer Y. The insight from this study will inform further optimization of Invader probes.
Collapse
Affiliation(s)
- Saswata Karmakar
- Department of Chemistry, University of Idaho, Moscow, ID-83844, USA.
| | | | | | | |
Collapse
|
15
|
Cannon BL, Kellis DL, Patten LK, Davis PH, Lee J, Graugnard E, Yurke B, Knowlton WB. Coherent Exciton Delocalization in a Two-State DNA-Templated Dye Aggregate System. J Phys Chem A 2017; 121:6905-6916. [PMID: 28813152 DOI: 10.1021/acs.jpca.7b04344] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coherent exciton delocalization in dye aggregate systems gives rise to a variety of intriguing optical phenomena, including J- and H-aggregate behavior and Davydov splitting. Systems that exhibit coherent exciton delocalization at room temperature are of interest for the development of artificial light-harvesting devices, colorimetric detection schemes, and quantum computers. Here, we report on a simple dye system templated by DNA that exhibits tunable optical properties. At low salt and DNA concentrations, a DNA duplex with two internally functionalized Cy5 dyes (i.e., dimer) persists and displays predominantly J-aggregate behavior. Increasing the salt and/or DNA concentrations was found to promote coupling between two of the DNA duplexes via branch migration, thus forming a four-armed junction (i.e., tetramer) with H-aggregate behavior. This H-tetramer aggregate exhibits a surprisingly large Davydov splitting in its absorbance spectrum that produces a visible color change of the solution from cyan to violet and gives clear evidence of coherent exciton delocalization.
Collapse
Affiliation(s)
- Brittany L Cannon
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Donald L Kellis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| |
Collapse
|
16
|
Mishra AK, Weissman H, Krieg E, Votaw KA, McCullagh M, Rybtchinski B, Lewis FD. Self‐Assembly of Perylenediimide–Single‐Strand‐DNA Conjugates: Employing Hydrophobic Interactions and DNA Base‐Pairing To Create a Diverse Structural Space. Chemistry 2017; 23:10328-10337. [DOI: 10.1002/chem.201700752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 01/05/2023]
Affiliation(s)
| | - Haim Weissman
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Elisha Krieg
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Kevin A. Votaw
- Department of ChemistryColorado State University Fort Collins Colorado 80523 USA
| | - Martin McCullagh
- Department of ChemistryColorado State University Fort Collins Colorado 80523 USA
| | - Boris Rybtchinski
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Frederick D. Lewis
- Department of ChemistryNorthwestern University Evanston Illinois 60208-3113 USA
| |
Collapse
|
17
|
Astakhova K, Golovin AV, Prokhorenko IA, Ustinov AV, Stepanova IA, Zatsepin TS, Korshun VA. Design of 2′-phenylethynylpyrene excimer forming DNA/RNA probes for homogeneous SNP detection: The attachment manner matters. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Kashida H, Asanuma H. Development of Pseudo Base-Pairs on d-Threoninol which Exhibit Various Functions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Hiroyuki Asanuma
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| |
Collapse
|
19
|
KASHIDA H, ASANUMA H. Development of Pseudo Base Pairs Which Show High DNA Duplex Stabilities and Orthogonality. KOBUNSHI RONBUNSHU 2017. [DOI: 10.1295/koron.2017-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiromu KASHIDA
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University
- PRESTO, Japan Science and Technology Agency
| | - Hiroyuki ASANUMA
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University
| |
Collapse
|
20
|
Crnolatac I, Rogan I, Majić B, Tomić S, Deligeorgiev T, Horvat G, Makuc D, Plavec J, Pescitelli G, Piantanida I. Small molecule probes finely differentiate between various ds- and ss-DNA and RNA by fluorescence, CD and NMR response. Anal Chim Acta 2016; 940:128-35. [PMID: 27662767 DOI: 10.1016/j.aca.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 01/24/2023]
Abstract
Two small molecules showed intriguing properties of analytical multipurpose probes, whereby one chromophore gives different signal for many different DNA/RNA by application of several highly sensitive spectroscopic methods. Dyes revealed pronounced fluorescence ratiomeric differentiation between ds-AU-RNA, AT-DNA and GC-DNA in approximate order 10:8:1. Particularly interesting, dyes showed specific fluorimetric response for poly rA even at 10-fold excess of any other ss-RNA, and moreover such emission selectivity is preserved in multicomponent ss-RNA mixtures. The dyes also showed specific chiral recognition of poly rU in respect to the other ss-RNA by induced CD (ICD) pattern in visible range (400-500 nm), which was attributed to the dye-side-chain contribution to binding (confirmed by absence of any ICD band for reference compound lacking side-chain). Most intriguingly, minor difference in the side-chain attached to dye chromophore resulted in opposite sign of dye-ICD pattern, whereby differences in NMR NOESY contacts and proton chemical shifts between two dye/oligo rU complexes combined with MD simulations and CD calculations attributed observed bisignate ICD to the dimeric dye aggregate within oligo rU.
Collapse
Affiliation(s)
- Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Iva Rogan
- Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Boris Majić
- Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | - Sanja Tomić
- Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia
| | | | - Gordan Horvat
- Department of Physical Chemistry, Faculty of Science/Chemistry, Horvatovac 102A, HR-10000 Zagreb, Croatia
| | - Damjan Makuc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, Ljubljana, Slovenia
| | - Gennaro Pescitelli
- Department of Chemistry, University of Pisa, Via Moruzzi 13, Pisa, Italy
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia.
| |
Collapse
|
21
|
Kim KT, Choi TS, Kim KY, Kim HI, Kim BH. Disassembly of Chromophore-Guided DNA Duplexes through Site-Selective Binding of Coralyne to Pyrene-Modified Adenine Bases. Chempluschem 2016; 81:590-593. [DOI: 10.1002/cplu.201600230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ki Tae Kim
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
| | - Tae Su Choi
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
- Department of Chemistry; Korea University; Seoul 02841 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
| | - Hugh I. Kim
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
- Department of Chemistry; Korea University; Seoul 02841 Republic of Korea
| | - Byeang Hyean Kim
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
| |
Collapse
|
22
|
Kundu R. G-Tetraplex-Induced FRET within Telomeric Repeat Sequences Using (Py) A-(Per) A as Energy Donor-Acceptor Pair. Chem Asian J 2015; 11:198-201. [PMID: 26490798 DOI: 10.1002/asia.201500996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/08/2023]
Abstract
G-tetraplex induced fluorescence resonance energy transfer (FRET) within telomeric repeat sequences has been studied using a nucleoside-tethered FRET pair embedded in the human telomeric G-quadruplex forming sequence (5'-A GGG TT(Py) A GGG TT(Per) A GGG TTA GGG-3', Py=pyrene, Per=perylene). Conformational change from a single strand to an anti-parallel G-quadruplex leads to FRET from energy donor ((Py) A) to acceptor ((Per) A). The distance between the FRET donor/acceptor partners was controlled by changing the number of G-quartet spacer units. The FRET efficiency decreases with increase in G-quartet units. Overall findings indicate that this could be further used for the development of FRET-based sensing and measurement techniques.
Collapse
Affiliation(s)
- Rajen Kundu
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790784, South Korea. .,Department of Chemistry and Biochemistry, University of Colorado, Boulder, 80303, USA.
| |
Collapse
|
23
|
Giri L, Pedireddi V. Exploration of supramolecular assemblies of rac-1,3-cyclohexanedicarboxylic acid. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem Rev 2015; 116:962-1052. [PMID: 26270260 DOI: 10.1021/acs.chemrev.5b00188] [Citation(s) in RCA: 994] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Chantu R Saha-Möller
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Benjamin Fimmel
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Soichiro Ogi
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Pawaret Leowanawat
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - David Schmidt
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Sanju KS, Thurakkal S, Neelakandan PP, Joseph J, Ramaiah D. Simultaneous binding of a cyclophane and classical intercalators to DNA: observation of FRET-mediated white light emission. Phys Chem Chem Phys 2015; 17:13495-500. [DOI: 10.1039/c5cp00208g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FRET tuning in ternary systems consisting of DNA, an anthracene based cyclophane and a DNA mono-/bis-intercalator is reported.
Collapse
Affiliation(s)
- Krishnankutty S. Sanju
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram 695019
- India
| | - Shameel Thurakkal
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram 695019
- India
| | - Prakash P. Neelakandan
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram 695019
- India
| | - Joshy Joseph
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram 695019
- India
| | - Danaboyina Ramaiah
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram 695019
- India
| |
Collapse
|
26
|
Xu Z, Guo K, Yu J, Sun H, Tang J, Shen J, Müllen K, Yang W, Yin M. A unique perylene-based DNA intercalator: localization in cell nuclei and inhibition of cancer cells and tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4087-4092. [PMID: 24976526 DOI: 10.1002/smll.201401262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/22/2014] [Indexed: 06/03/2023]
Abstract
To date, perylene derivatives have not been explored as DNA intercalator to inhibit cancer cells by intercalating into the base pairs of DNA. Herein, a water-soluble perylene bisimide (PBDI) that efficiently intercalates into the base pairs of DNA is synthesized. Excitingly, PBDI is superior to the commercial DNA intercalator, amonafide, for specific nuclear accumulation and effective suppression of cancer cells and tumors.
Collapse
Affiliation(s)
- Zejun Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing, University of Chemical Technology, 100029, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Probst M, Langenegger SM, Häner R. A modular LHC built on the DNA three-way junction. Chem Commun (Camb) 2014; 50:159-61. [PMID: 24177922 DOI: 10.1039/c3cc47490a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A light-harvesting complex composed of a π-stacked multichromophoric array in a DNA three-way junction is described. The modular design allows for a ready exchange of non-covalently attached energy acceptors.
Collapse
Affiliation(s)
- Markus Probst
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
28
|
Manicardi A, Guidi L, Ghidini A, Corradini R. Pyrene-modified PNAs: Stacking interactions and selective excimer emission in PNA2DNA triplexes. Beilstein J Org Chem 2014; 10:1495-503. [PMID: 25161706 PMCID: PMC4142857 DOI: 10.3762/bjoc.10.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/03/2014] [Indexed: 12/17/2022] Open
Abstract
Pyrene derivatives can be incorporated into nucleic acid analogs in order to obtain switchable probes or supramolecular architectures. In this paper, peptide nucleic acids (PNAs) containing 1 to 3 1-pyreneacetic acid units (PNA1–6) with a sequence with prevalence of pyrimidine bases, complementary to cystic fibrosis W1282X point mutation were synthesized. These compounds showed sequence-selective switch-on of pyrene excimer emission in the presence of target DNA, due to PNA2DNA triplex formation, with stability depending on the number and positioning of the pyrene units along the chain. An increase in triplex stability and a very high mismatch-selectivity, derived from combined stacking and base-pairing interactions, were found for PNA2, bearing two distant pyrene units.
Collapse
Affiliation(s)
- Alex Manicardi
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| | - Lucia Guidi
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| | - Alice Ghidini
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410 ; Present Address: Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Hälsovägen 7, 14183, Huddinge, Sweden
| | - Roberto Corradini
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| |
Collapse
|
29
|
Markova LI, Malinovskii VL, Patsenker LD, Häner R. J- vs. H-type assembly: pentamethine cyanine (Cy5) as a near-IR chiroptical reporter. Chem Commun (Camb) 2013; 49:5298-300. [PMID: 23636273 DOI: 10.1039/c3cc42103a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DNA-enabled dimerization of pentamethine cyanine (Cy5) dyes was studied by optical methods. The value of cyanine as a chiroptical reporter using a monomer-to-dimer switch is demonstrated. The specific shape of the CD signal and its high intensity are a result of J-type assembly.
Collapse
Affiliation(s)
- Larysa I Markova
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
30
|
Evaluation of intrinsic spectroscopic properties of chromophore assemblies by shielding with cyclohexyl base pairs within a DNA duplex. Bioorg Med Chem 2013; 21:6191-7. [DOI: 10.1016/j.bmc.2013.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/28/2013] [Accepted: 04/05/2013] [Indexed: 11/21/2022]
|
31
|
Kaura M, Kumar P, Hrdlicka PJ. Synthesis and hybridization properties of oligonucleotides modified with 5-(1-aryl-1,2,3-triazol-4-yl)-2'-deoxyuridines. Org Biomol Chem 2013; 10:8575-8. [PMID: 23042241 DOI: 10.1039/c2ob26717a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oligonucleotides modified with consecutive incorporations of 5-(1-aryl-1,2,3-triazol-4-yl)-2'-deoxyuridine monomers display strong thermal affinity and binding specificity toward RNA targets, due to formation of chromophore arrays in the major groove.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho, PO Box 442343, Moscow, ID 83844-2343, USA
| | | | | |
Collapse
|
32
|
Niko Y, Kawauchi S, Otsu S, Tokumaru K, Konishi GI. Fluorescence enhancement of pyrene chromophores induced by alkyl groups through σ-π conjugation: systematic synthesis of primary, secondary, and tertiary alkylated pyrenes at the 1, 3, 6, and 8 positions and their photophysical properties. J Org Chem 2013; 78:3196-207. [PMID: 23425392 DOI: 10.1021/jo400128c] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have systematically synthesized 1-, 3-, 6-, and 8-alkyl-substituted pyrene derivatives using the latest synthesis methods and investigated the effects of alkyl substitution on the photophysical properties of the pyrene chromophore. Like the trimethylsilyl group, which is known to enhance the fluorescence properties of some chromophores through σ*-π* conjugation, alkyl groups (primary, secondary, and tertiary) enhanced the fluorescence quantum yield of the pyrene chromophore through σ-π conjugation in most cases. While these enhancements in the fluorescence quantum yield were beyond expectations, the results were supported by absolute measurements. These results also indicate that ubiquitous alkyl groups can be used to tune the photophysical properties of the pyrene chromophore, as well as to improve the solubility or prevent aggregation. In other words, they can be used to develop new photofunctional materials.
Collapse
Affiliation(s)
- Yosuke Niko
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Tokyo 152-8552, Japan
| | | | | | | | | |
Collapse
|
33
|
Kato T, Kashida H, Kishida H, Yada H, Okamoto H, Asanuma H. Development of a Robust Model System of FRET using Base Surrogates Tethering Fluorophores for Strict Control of Their Position and Orientation within DNA Duplex. J Am Chem Soc 2013; 135:741-50. [DOI: 10.1021/ja309279w] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tomohiro Kato
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603,
Japan
| | - Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603,
Japan
| | - Hideo Kishida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603,
Japan
| | - Hiroyuki Yada
- Department of Advanced
Materials
Science, The University of Tokyo, 5-1-5
Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Hiroshi Okamoto
- Department of Advanced
Materials
Science, The University of Tokyo, 5-1-5
Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603,
Japan
| |
Collapse
|
34
|
Biner SM, Häner R. DNA Triplex-Mediated Assembly of Polyaromatic Chromophores. Chem Biodivers 2012; 9:2485-93. [DOI: 10.1002/cbdv.201200276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Indexed: 12/22/2022]
|
35
|
Dohno C, Shibata T, Okazaki M, Makishi S, Nakatani K. Amphiphilic DNA Duplex Stabilized by a Hydrophobic Zipper. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|