1
|
Wang T, Tang S, Dong X, Zhao Y, Sun Q, Kong S, Zhao Y, Wang X. Rational Design of Crystalline and Enantiomerically Pure Helicenes with Open-Shell Singlet Ground States. Angew Chem Int Ed Engl 2024:e202415331. [PMID: 39301773 DOI: 10.1002/anie.202415331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Helicene diradical derivatives have attracted widespread attentions because of their unique magnetic and chiroptoelectronic properties, however, crystalline and enantiomerically pure forms of helicene diradicals are extremely rare. Herein, we describe the rational design and synthesis of o-quinone functionalized helicene diradicals with crystalline enantiomerical purity. Diradical dianion salt Rac-3K and its enantiomers P/M-3K were obtained by reduction of corresponding precursors Rac-3 and P/M-3 with two equivalent potassium graphite in THF in the presence of (di)benzo-18-crown-6. Neutral dioxoborocyclic helicene diradicals (Rac-3B and P/M-3B) were produced by reactions of Rac-3 or P/M-3 with chlorobis(perfluorophenyl)borane (B(C6F5)2Cl. Crystal structures of compounds Rac-3K, Rac-3B and P/M-3K were obtained by single crystal X-ray diffraction. Their open-shell singlet state ground states were confirmed by electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) measurements and theoretical calculations. Their chiroptical properties were investigated by the electronic circular dichroism (ECD) spectroscopy. This work provides the first examples of enantiopure helicene diradical dianions and boron-containing helicene diradicals.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuxuan Tang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xue Dong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shanshan Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Arsenyeva KV, Klimashevskaya AV, Maleeva AV, Arsenyev MV, Chegerev MG, Starikova AA, Yakushev IA, Cherkasov AV, Piskunov AV. Bridge-Dependent Donor-Metal-Acceptor-Metal-Donor (D-M-A-M-D) Systems: From Charge Transfer to Electron Transfer in Dioxolene-Ge-Diimine Complexes. Chempluschem 2024:e202400504. [PMID: 39269199 DOI: 10.1002/cplu.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Synthesis and structural characterization of a family of germanium-dioxolene complexes with ditopic N-donor ligands (L1-L5) (L1=1,2-bis(pyridin-2-ylmethylene)hydrazine L2=1,6-bis-(pyridin-2-yl)-2,5-diaza-1,5-hexadiene, L3=N,N-bis(pyridin-2-ylmethylene)-1,4-benzenediamine, L4=N,N-bis(pyridin-2-ylmethylene)-(biphenyl)-4,4-diamine, L5=2,2'-azopyridine) is reported. The reaction of germanium bis-catecholate with bridging ligands L1 - L4, differing by the nature of the linker between pyridine sites gives rise to dinuclear digermanium complexes (36Cat2Ge)2L1-4 (36Cat=dianion of 3,6-di-tert-butylcatechol) 1-4 of DMAMD type (donor-metal-acceptor-metal-donor) with a charge transfer in the UV-Vis region. In opposite, the interaction of the 36Cat2Ge with 2,2'-azopyridine (L5) results in the two-electron transfer from the donor 36Cat2- ligands to the azopyridine bridge forming stable open-shell complex 5 [(36SQ)(36CatGe)]2(L5)2- (36SQ=radical-anionic semiquinonate ligand). Molecular structures of compounds 3 and 5 were determined by single crystal X-ray diffraction analysis. Electronic structures of complexes 1-5 were studied by means of DFT calculations.
Collapse
Affiliation(s)
- Kseniya V Arsenyeva
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Anastasiya V Klimashevskaya
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Arina V Maleeva
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Maxim V Arsenyev
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Maxim G Chegerev
- Institute of Physical and Organic Chemistry at, Southern Federal University, Stachka Avenue 194/2, 344090, Rostov-on-Don, Russian Federation
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry at, Southern Federal University, Stachka Avenue 194/2, 344090, Rostov-on-Don, Russian Federation
| | - Ilya A Yakushev
- Institute of General and Inorganic Chemistry of Russian Academy of Sciences Institution, Leninsky pr., 31, 119991, Moscow, Russian Federation
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Alexandr V Piskunov
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| |
Collapse
|
3
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler HG, de Bruin B, Ghadwal RS. N-Heterocyclic Carbene Analogues of Wittig Hydrocarbon. Chemistry 2024; 30:e202400879. [PMID: 38437163 DOI: 10.1002/chem.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
N-Heterocyclic carbene (NHC) analogues of Wittig hydrocarbon, [(NHC)(Stil)(NHC)] (3a-c) (NHC = SIPr (1a) = C[N(Dipp)CH2]2, Dipp = 2,6-iPr2C6H3; IPr (1b) = C[N(Dipp)CH]2; Me-IPr (1c) = C[N(Dipp)CMe]2 and Stil = C6H4CHCHC6H4) have been reported as crystalline solids. 3a-c are prepared by two-electron reductions of the corresponding bis-1,3-imidazoli(ni)um bromides [(NHC)(Stil)NHC)](Br)2 (2a-c) with KC8 in >94 % yields. 2a-c are accessible by the nickel catalyzed direct C-C coupling of NHCs (1a-c) with (E)-4,4'-dibromostilbene. One-electron oxidation of 3a,b yields the corresponding radical cations [(NHC)(Stil)NHC)]B(C6F5)4 4a,b. All compounds have been characterized by UV-Vis/NMR/EPR spectroscopy as well as 2a, 3a, and 3b by single crystal X-ray diffraction. The electronic structures of representative systems have been analyzed by quantum chemical calculations.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Bas de Bruin
- University of Amsterdam (UvA), Faculty of Science, Van 't Hoff Institute for Molecular Sciences (HIMS), Homogeneous and Supramolecular Catalysis Group, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
4
|
Latrache M, Lefebvre C, Abe M, Hoffmann N. Photochemically Induced Hydrogen Atom Transfer and Intramolecular Radical Cyclization Reactions with Oxazolones. J Org Chem 2023; 88:16435-16455. [PMID: 37983612 DOI: 10.1021/acs.joc.3c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photochemically induced intramolecular hydrogen atom transfer in oxazolones is reported. An acetal or thioacetal function at the side chain acts as a hydrogen donor while the photochemical exited oxazolone is the acceptor. A one-step process─the electron and the proton are simultaneously transferred─is productive, while electron transfer followed by proton transfer is inefficient. Radical combination then takes place, leading to the formation of a C-C or C-N bond. The regioselectivity of the reaction is explained by the diradical/zwitterion dichotomy of radical intermediates at the singlet state. In the present case, the zwitterion structure plays a central role, and intramolecular electron transfer favors spin-orbit coupling and thus the intersystem crossing to the singlet state. The reaction of corresponding thioacetal derivatives is less efficient. In this case, photochemical electron transfer is competitive. The photoproducts resulting from C-C bond formation easily undergo stepwise thermal decarboxylation in which zwitterionic and polar transition states are involved. A computational study of this step has also been performed.
Collapse
Affiliation(s)
- Mohammed Latrache
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Corentin Lefebvre
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Hiroshima Research Center for Photo-Drug-Delivery Systems (Hi-P-DDS), 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Norbert Hoffmann
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| |
Collapse
|
5
|
Hou P, Peschtrich S, Feuerstein W, Schoch R, Hohloch S, Breher F, Paradies J. Imidazolyl-Substituted Benzo- and Naphthodithiophenes as Precursors for the Synthesis of Transient Open-Shell Quinoids. ChemistryOpen 2023; 12:e202300003. [PMID: 36703547 PMCID: PMC10661821 DOI: 10.1002/open.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
The synthesis of three novel imidazolyl-substituted sulfur-containing heteroacenes is reported. These heteroacenes consisting of annelated benzo- and naphthothiophenes serve as precursors for the generation of open-shell quinoid heteroacenes by oxidation with alkaline ferric cyanide. Spectroscopic and computational experiments support the formation of reactive open-shell quinoids, which, however, quickly produce paramagnetic polymeric material.
Collapse
Affiliation(s)
- Peng Hou
- Chemistry DepartmentPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Sebastian Peschtrich
- Chemistry DepartmentPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Wolfram Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Roland Schoch
- Chemistry DepartmentPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Stephan Hohloch
- Department of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Jan Paradies
- Chemistry DepartmentPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| |
Collapse
|
6
|
Park W, Komarov K, Lee S, Choi CH. Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory: Multireference Advantages with the Practicality of Linear Response Theory. J Phys Chem Lett 2023; 14:8896-8908. [PMID: 37767969 PMCID: PMC10561896 DOI: 10.1021/acs.jpclett.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
The density functional theory (DFT) and linear response (LR) time-dependent (TD)-DFT are of the utmost importance for routine computations. However, the single reference formulation of DFT suffers in the description of open-shell singlet systems such as diradicals and bond-breaking. LR-TDDFT, on the other hand, finds difficulties in the modeling of conical intersections, doubly excited states, and core-level excitations. In this Perspective, we demonstrate that many of these limitations can be overcome by recently developed mixed-reference (MR) spin-flip (SF)-TDDFT, providing an alternative yet accurate route for such challenging situations. Empowered by the practicality of the LR formalism, it is anticipated that MRSF-TDDFT can become one of the major workhorses for general routine tasks.
Collapse
Affiliation(s)
- Woojin Park
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Konstantin Komarov
- Center
for Quantum Dynamics, Pohang University
of Science and Technology, Pohang 37673, South Korea
| | - Seunghoon Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Cheol Ho Choi
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
7
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
8
|
Recent Advances of Stable Phenoxyl Diradicals. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-3012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Steffenfauseweh H, Rottschäfer D, Vishnevskiy YV, Neumann B, Stammler HG, Szczepanik DW, Ghadwal RS. Isolation of an Annulated 1,4-Distibabenzene Diradicaloid. Angew Chem Int Ed Engl 2023; 62:e202216003. [PMID: 36598396 DOI: 10.1002/anie.202216003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The first 1,4-distibabenzene-1,4-diide compound [(ADC)Sb]2 (5) based on an anionic dicarbene (ADC) (ADC=PhC{N(Dipp)C}2 , Dipp=2,6-iPr2 C6 H3 ) is reported as a bordeaux-red solid. Compound 5, featuring a central six-membered C4 Sb2 ring with formally SbI atoms may be regarded as a base-stabilized cyclic bis-stibinidene in which each of the Sb atoms bears two lone-pairs of electrons. 5 undergoes 2 e-oxidation with Ph3 C[B(C6 F5 )4 ] to afford [(ADC)Sb]2 [B(C6 F5 )4 ]2 (6) as a brick-red solid. Each of the Sb atoms of 6 has an unpaired electron and a lone-pair. The broken-symmetry open-shell singlet diradical solution for (6)2+ is calculated to be 2.13 kcal mol-1 more stable than the closed-shell singlet. The diradical character of (6)2+ according to SS-CASSCF (state-specific complete active space self-consistent field) and UHF (unrestricted Hartree-Fock) methods amounts to 36 % and 39 %, respectively. Treatments of 6 with (PhE)2 yield [(ADC)Sb(EPh)]2 [B(C6 F5 )4 ]2 (7-E) (E=S or Se). Reaction of 5 with (cod)Mo(CO)4 affords [(ADC)Sb]2 Mo(CO)4 (8).
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Current address: Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, Marburg, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dariusz W Szczepanik
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
10
|
Dai Y, Xie Z, Bao M, Liu C, Su Y. Multiple stable redox states and tunable ground states via the marriage of viologens and Chichibabin's hydrocarbon †. Chem Sci 2023; 14:3548-3553. [PMID: 37006684 PMCID: PMC10056129 DOI: 10.1039/d3sc00102d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Chichibabin's hydrocarbon and viologens are among the most famous diradicaloids and organic redox systems, respectively. However, each has its own disadvantages: the instability of the former and its charged species, and the closed-shell nature of the neutral species derived from the latter, respectively. Herein, we report that terminal borylation and central distortion of 4,4′-bipyridine allow us to readily isolate the first bis-BN-based analogues (1 and 2) of Chichibabin's hydrocarbon with three stable redox states and tunable ground states. Electrochemically, both compounds exhibit two reversible oxidation processes with wide redox ranges. One- and two-electron chemical oxidations of 1 afford the crystalline radical cation 1˙+ and dication 12+, respectively. Moreover, the ground states of 1 and 2 are tunable with 1 as a closed-shell singlet and the tetramethyl-substituted 2 as an open-shell singlet, the latter of which could be thermally excited to its triplet state because of the small singlet-triplet gap. Herein, we report the isolation of bis-BN-based species 1 and 2 with multiple stable redox states. Their ground states are tunable with 1 as a closed-shell singlet and 2 as an open-shell singlet with a small singlet-triplet gap.![]()
Collapse
Affiliation(s)
- Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Zhuofeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
- State Key Laboratory of Coordination Chemistry, Nanjing UniversityNanjing 210023China
| |
Collapse
|
11
|
Gerlach M, Karaev E, Schaffner D, Hemberger P, Fischer I. Threshold Photoelectron Spectrum of m-Benzyne. J Phys Chem Lett 2022; 13:11295-11299. [PMID: 36449562 DOI: 10.1021/acs.jpclett.2c03216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to their unusual electronic structure, the biradical m-benzyne, C6H4, and its cation are of considerable interest in chemistry. Here, the photoion mass-selected threshold photoelectron spectrum of the m-benzyne biradical is presented. An adiabatic ionization energy of 8.65 ± 0.015 eV is derived, while a vibrational progression of 0.10 eV is assigned to the ν9+ ring breathing mode, in excellent agreement with computations. The experimental spectrum was reproduced well by Franck-Condon spectral modeling of the 2A1 ← X 1A1 transition, in which the cation retains a monocyclic C6 framework. The energetically close-lying bicyclic 2A2 cation state exhibits low Franck-Condon factors, due to the large change in geometry, and thus cannot be observed.
Collapse
Affiliation(s)
- M Gerlach
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - E Karaev
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - D Schaffner
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - P Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232 Villigen-PSI, Switzerland
| | - I Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
12
|
Dobre AF, Madalan AM, Ionescu S, Hanganu A, Lete C, Popescu CC, Paun A, Matache M, Ionita P. Zwitterion or diradicaloid? The case of diazenium betaines derived from DPPH. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Sabuj MA, Muoh O, Huda MM, Rai N. Non-Aufbau orbital ordering and spin density modulation in high-spin donor-acceptor conjugated polymers. Phys Chem Chem Phys 2022; 24:23699-23711. [PMID: 36148814 DOI: 10.1039/d2cp02355e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-spin ground-state organic materials with unique spin topology can significantly impact molecular magnetism, spintronics, and quantum computing devices. However, strategies to control the spin topology and alignment of the unpaired spins in different molecular orbitals are not well understood. Here, we report modulating spin distribution along the molecular backbone in high-spin ground-state donor-acceptor (D-A) conjugated polymers. Density functional theory calculations indicate that substitution of different heteroatoms (such as C, Si, N, and Se) alters the aromatic character in the thiadiazole unit of the benzobisthiadiazole (BBT) acceptor and modulates the oligomer length to result in high-spin triplet ground-state, orbital and spin topology. The C, Si, and Se atom substituted polymers show a localized spin density at the two opposite ends of the polymers. However, a delocalized spin distribution is observed in the N substituted polymer. We find that the hybridization (sp3vs. sp2) of the substituent atom plays an important role in controlling the electronic structure of these materials. This study shows that atomistic engineering is an efficient technique to tune the spin topologies and electronic configurations in the high-spin ground-state donor-acceptor conjugated polymers, compelling synthetic targets for room-temperature magnetic materials.
Collapse
Affiliation(s)
- Md Abdus Sabuj
- Dave C Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Obinna Muoh
- Dave C Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Md Masrul Huda
- Dave C Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Neeraj Rai
- Dave C Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| |
Collapse
|
14
|
Rosenboom J, Villinger A, Schulz A, Bresien J. Concerted addition of aldehydes to the singlet biradical [P(μ-NTer)] 2. Dalton Trans 2022; 51:13479-13487. [PMID: 35997123 DOI: 10.1039/d2dt02229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the singlet biradical [P(μ-NTer)]2 with various aldehydes selectively yielded the corresponding [2.1.1]-bicyclic addition products in a very fast reaction. All products were fully characterized, including by NMR and vibrational spectroscopy as well as single-crystal X-ray diffraction. The mechanism of the addition was investigated theoretically using high-level ab initio methods (CCSD(T) with triple- and quadruple-zeta basis sets) and corresponds to a concerted cycloaddition reaction with a very low activation barrier. For comparison, the mechanisms of the literature-known cycloadditions of H2, alkenes, and alkynes were also studied, indicating a similar reaction profile for all unsaturated reactants.
Collapse
Affiliation(s)
- Jan Rosenboom
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany. .,Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jonas Bresien
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| |
Collapse
|
15
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler H, Andrada DM, Ghadwal RS. Isolation of an Arsenic Diradicaloid with a Cyclic C 2 As 2 -Core. Angew Chem Int Ed Engl 2022; 61:e202207415. [PMID: 35652361 PMCID: PMC9545666 DOI: 10.1002/anie.202207415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Herein, we report on the synthesis, characterization, and reactivity studies of the first cyclic C2 As2 -diradicaloid {(IPr)CAs}2 (6) (IPr = C{N(Dipp)CH}2 ; Dipp = 2,6-iPr2 C6 H3 ). Treatment of (IPr)CH2 (1) with AsCl3 affords the Lewis adduct {(IPr)CH2 }AsCl3 (2). Compound 2 undergoes stepwise dehydrochlorination to yield {(IPr)CH}AsCl2 (3) and {(IPr)CAsCl}2 (5 a) or [{(IPr)CAs}2 Cl]OTf (5 b). Reduction of 5 a (or 5 b) with magnesium turnings gives 6 as a red crystalline solid in 90% yield. Compound 6 featuring a planar C2 As2 ring is diamagnetic and exhibits well resolved NMR signals. DFT calculations reveal a singlet ground state for 6 with a small singlet-triplet energy gap of 8.7 kcal mol-1 . The diradical character of 6 amounts to 20% (CASSCF, complete active space self consistent field) and 28% (DFT). Treatments of 6 with (PhSe)2 and Fe2 (CO)9 give rise to {(IPr)CAs(SePh)}2 (7) and {(IPr)CAs}2 Fe(CO)4 (8), respectively.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Yury V. Vishnevskiy
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Diego M. Andrada
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| |
Collapse
|
16
|
Rosenboom J, Chojetzki L, Suhrbier T, Rabeah J, Villinger A, Wustrack R, Bresien J, Schulz A. Radical Reactivity of the Biradical [⋅P(μ-NTer) 2 P⋅] and Isolation of a Persistent Phosphorus-Cantered Monoradical [⋅P(μ-NTer) 2 P-Et]. Chemistry 2022; 28:e202200624. [PMID: 35445770 PMCID: PMC9322606 DOI: 10.1002/chem.202200624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/06/2022]
Abstract
The activation of C-Br bonds in various bromoalkanes by the biradical [⋅P(μ-NTer)2 P⋅] (1) (Ter=2,6-bis-(2,4,6-trimethylphenyl)-phenyl) is reported, yielding trans-addition products of the type [Br-P(μ-NTer)2 P-R] (2), so-called 1,3-substituted cyclo-1,3-diphospha-2,4-diazanes. This addition reaction, which represents a new easy approach to asymmetrically substituted cyclo-1,3-diphospha-2,4-diazanes, was investigated mechanistically by different spectroscopic methods (NMR, EPR, IR, Raman); the results suggested a stepwise radical reaction mechanism, as evidenced by the in-situ detection of the phosphorus-centered monoradical [⋅P(μ-NTer)2 P-R].< To provide further evidence for the radical mechanism, [⋅P(μ-NTer)2 P-Et] (3Et⋅) was synthesized directly by reduction of the bromoethane addition product [Br-P(μ-NTer)2 P-Et] (2 a) with magnesium, resulting in the formation of the persistent phosphorus-centered monoradical [⋅P(μ-NTer)2 P-Et], which could be isolated and fully characterized, including single-crystal X-ray diffraction. Comparison of the EPR spectrum of the radical intermediate in the addition reaction with that of the synthesized new [⋅P(μ-NTer)2 P-Et] radical clearly proves the existence of radicals over the course of the reaction of biradical [⋅P(μ-NTer)2 P⋅] (1) with bromoethane. Extensive DFT and coupled cluster calculations corroborate the experimental data for a radical mechanism in the reaction of biradical [⋅P(μ-NTer)2 P⋅] with EtBr. In the field of hetero-cyclobutane-1,3-diyls, the demonstration of a stepwise radical reaction represents a new aspect and closes the gap between P-centered biradicals and P-centered monoradicals in terms of radical reactivity.
Collapse
Affiliation(s)
- Jan Rosenboom
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Lukas Chojetzki
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Tim Suhrbier
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Alexander Villinger
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Ronald Wustrack
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Jonas Bresien
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Axel Schulz
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
17
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler HG, Andrada DM, Ghadwal R. Isolation of an Arsenic Diradicaloid with a Cyclic C2As2‐Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Beate Neumann
- Bielefeld University: Universitat Bielefeld Chemistry GERMANY
| | | | - Diego M. Andrada
- Saarland University: Universitat des Saarlandes Chemistry GERMANY
| | - Rajendra Ghadwal
- Universitat Bielefeld Institut für Anorganische Chemie Universitätstrasse 25 33615 Bielefeld GERMANY
| |
Collapse
|
18
|
Wang J, Cui H, Ruan H, Zhao Y, Zhao Y, Zhang L, Wang X. The Lewis Acid Induced Formation of a Stable Diradical with an Intramolecular Ion Pairing State. J Am Chem Soc 2022; 144:7978-7982. [PMID: 35485969 DOI: 10.1021/jacs.2c02902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stable cross-conjugated diradical was prepared by the reaction of a donor-acceptor-donor (D-A-D) molecule with B(C6F5)3. Its geometry and electronic structure were characterized by single crystal X-ray diffraction, EPR spectroscopy, SQUID measurement, UV/vis spectroscopy, and DFT calculation. It has an open-shell singlet ground state with a thermally excited triplet state. It can be viewed as an intramolecular radical ion pair, and the formation mechanism is proposed as an intramolecular single electron transfer that occurs from the bis(triarylamine) donor fragment to the central dioxophenyl acceptor moiety, induced by the acidic boron atom. This work provides a Lewis acid induced approach to the formation of neutral and cross-conjugated diradicals.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Haiyan Cui
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Li Zhang
- School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Zhou Y, Pan S, Dong X, Wang L, Zhou M, Frenking G. Generation and Characterization of the Charge-Transferred Diradical Complex CaCO 2 with an Open-Shell Singlet Ground State. J Am Chem Soc 2022; 144:8355-8361. [PMID: 35482295 DOI: 10.1021/jacs.2c02768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The CaCO2 complex is generated via the reaction of excited-state calcium atom with carbon dioxide in a solid neon matrix. Infrared absorption spectroscopy and quantum chemical calculations reveal that the complex has a planar four-membered ring structure with a strongly bent CO2 ligand side-on coordinated to the calcium center in an η2-O, O manner. The complex has an open-shell singlet ground state, which can be described as the bonding interactions between a Ca+ (4s1) cation in the doublet ground state and a doublet ground state CO2- anion. The analysis of the bonding situation suggests that the Ca-O2C bonds have a large (75%) electrostatic character. The covalent (orbital) interactions come from the coupling of the unpaired electrons of Ca+ and CO2- giving rise to electron-sharing bonding and a stronger contribution from dative bonding (Ca+)←(CO2-). The atomic orbitals (AOs) of Ca+ that are engaged in the covalent bonds are the 4s AO for the electron-sharing bonds and the 3d AOs for the dative bonds. This is further evidence for the assignment of the heavier alkaline-earth atoms as transition metals rather than main-group elements.
Collapse
Affiliation(s)
- Yangyu Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany
| | - Xuelin Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.,Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain
| |
Collapse
|
20
|
Hou P, Peschtrich S, Huber N, Feuerstein W, Bihlmeier A, Krummenacher I, Schoch R, Klopper W, Breher F, Paradies J. Impact of Heterocycle Annulation on NIR Absorbance in Quinoid Thioacene Derivatives. Chemistry 2022; 28:e202200478. [PMID: 35254693 PMCID: PMC9314731 DOI: 10.1002/chem.202200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The synthesis and characterisation of a homologous series of quinoid sulfur-containing imidazolyl-substituted heteroacenes is described. The optoelectronic and magnetic properties were investigated by UV/vis, fluorescence and EPR spectroscopy as well as quantum-chemical calculations, and were compared to those of the corresponding benzo congener. The room-temperature and atmospherically stable quinoids display strong absorption in the NIR region between 678 and 819 nm. The dithieno[3,2-b:2',3'-d]thiophene and the thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene derivatives were EPR active at room temperature. For the latter, variable-temperature EPR spectroscopy revealed the presence of a thermally accessible triplet state, with a singlet-triplet separation of 14.1 kJ mol-1 .
Collapse
Affiliation(s)
- Peng Hou
- Chemistry DepartmentPaderborn UniversityWarburger Straße 10033098PaderbornGermany
| | - Sebastian Peschtrich
- Chemistry DepartmentPaderborn UniversityWarburger Straße 10033098PaderbornGermany
| | - Nils Huber
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
| | - Wolfram Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Angela Bihlmeier
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
| | - Ivo Krummenacher
- Institute of Inorganic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Roland Schoch
- Chemistry DepartmentPaderborn UniversityWarburger Straße 10033098PaderbornGermany
| | - Wim Klopper
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Jan Paradies
- Chemistry DepartmentPaderborn UniversityWarburger Straße 10033098PaderbornGermany
| |
Collapse
|
21
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
22
|
Liu Q, Wang Z, Abe M. Impacts of Solvent and Alkyl Chain Length on the Lifetime of Singlet Cyclopentane-1,3-diyl Diradicaloids with π-Single Bonding. J Org Chem 2022; 87:1858-1866. [PMID: 35001629 DOI: 10.1021/acs.joc.1c02895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The singlet 2,2-dialkoxycyclopentane-1,3-diyl diradicaloids are not only the important key intermediates in the process of bond homolysis but are also attracting attention as π-single bonding compounds. In the present study, the effects of solvent viscosity η (0.24-125.4 mPa s) and polarity π* (-0.11 to 1.00 kcal mol-1) on the reactivity of localized singlet diradicaloids were thoroughly investigated using 18 different solvents including binary mixed solvent systems containing ionic liquids. In low-η solvents (η < 1 mPa s), the lifetimes of singlet diradicaloids, which are determined by the rate constant for the isomerization of π-single-bonded singlet diradicaloids to the σ-bonded isomer, were substantially dependent on π*. Slower isomerization was observed in more polar solvents. In high-η solvents (η > 2 mPa s), the rate of isomerization was largely influenced by η in addition to π*. Slower isomerization was observed in more viscous solvents. Experimental results demonstrated the crucial roles of both solvent polarity and viscosity in the reactivity of singlet diradicaloids and thus clarified the characters of singlet diradicaloids and molecular motions during the chemical transformation. The dynamic solvent effect was further proved by a long alkyl chain introduced at a remote position of the reaction site.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Zhe Wang
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
23
|
Sun Q, Liu M, Ruan H, Chen C, Zhao Y, Tan G, Wang X. The cis/ trans conformation approach for tuning the magnetic coupling in a diradical: isolation of pure pyridine-based diradical dianions. Chem Commun (Camb) 2022; 58:1708-1711. [PMID: 35023510 DOI: 10.1039/d1cc05661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-electron reductions of 3,3'-bis(2,6-dimesitylpyridin-4-yl)-1,1'-biphenyl 1 with elemental potassium in the absence and presence of 18-c-6 afforded the diradical dianion salts [K+]2˙[trans-1]˙˙2- and [K(18-c-6)]+2˙[cis-1]˙˙2-, which exhibit trans and cis configurations, respectively. The transoid conformer could be converted to the cisoid one through reacting with 18-c-6.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
24
|
Khurana R, Bajaj A, Ali ME. Tuning the magnetic properties of a diamagnetic di-Blatter's zwitterion to antiferro- and ferromagnetically coupled diradicals. Phys Chem Chem Phys 2022; 24:2543-2553. [PMID: 35024707 DOI: 10.1039/d1cp04807d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest of obtaining organic molecular magnets based on stable diradicals, we have tuned the inherent zwitterionic ground state of tetraphenylhexaazaanthracene (TPHA), a molecule containing two Blatter's moieties, by adopting two different strategies. In the first strategy, we have increased the length of the coupler between the two radical moieties and observed a transition from the zwitterionic ground state to the diradicalized state. With a larger coupler, ferromagnetic interactions are realized based on density functional theory (DFT) and wave-function theory (WFT) based complete active space self-consistent field (CASSCF)-N-electron valence state perturbation theory (NEVPT2) methods. An analysis based on the extent of spin contamination, diradical character, CASSCF orbital occupation number, Head-Gordon's index, HOMO-LUMO and SOMOs energy gaps is demonstrated that marks the transition of the ground state in these systems. In another approach, we systematically explore the effect of push-pull substitution on the way to obtain molecules based on a TPHA skeleton with diradicaloid state and, in some cases, even a triplet ground state.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| | - Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
25
|
Li K, Feng Z, Ruan H, Sun Q, Zhao Y, Wang X. The catenation of a singlet diradical dication and modulation of diradical character by metal coordination. Chem Commun (Camb) 2022; 58:6457-6460. [DOI: 10.1039/d2cc01539k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A singlet bis(triarylamine) diradical dication and its zigzag 1D magnetic chain catenated by silver cations were isolated and characterized by single-crystal X-ray crystallography, EPR spectroscopy, SQUID measurements, cyclic voltammetry and...
Collapse
|
26
|
Feng Z, Chong Y, Tang S, Fang Y, Zhao Y, Jiang J, Wang X. A stable triplet diradical emitter. Chem Sci 2021; 12:15151-15156. [PMID: 34909157 PMCID: PMC8612405 DOI: 10.1039/d1sc04486a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
Molecules with luminescence have been extensively investigated, but the luminescence of a stable molecule with a triplet ground state has not been observed. Synthesis of boron-containing radicals has attracted lots of interest because of their unique electronic structures and potential applications in organic semiconductors. Though some boron-based diradicals have been reported, neutral boron-containing diradicals with triplet ground states are rare. Herein two borocyclic diradicals with different substituents (3 and 4) have been isolated. Their electronic structures were investigated by EPR and UV spectroscopy, and SQUID magnetometry, in conjunction with DFT calculations. Both experiment and calculation suggest that 3 is an open shell singlet diradical while 4 is a triplet ground state diradical with a large singlet–triplet gap (0.25 kcal mol−1). Both diradicals show multi fluorescence peaks (3: 414, 431, and 470 nm; 4: 420, 433, and 495 nm). 3 displays multiple redox steps and is a potential material towards the design of high-density memory devices. 4 represents the first example of a neutral triplet boron-containing diradical with a strong ferromagnetic interaction, and also is the first stable triplet diradical emitter. Stable borocyclic diradical emitters with a tunable ground state.![]()
Collapse
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yuanyuan Chong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
27
|
Lee S, Park W, Nakata H, Filatov M, Choi CH. Recent advances in ensemble density functional theory and linear response theory for strong correlation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seunghoon Lee
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California USA
| | - Woojin Park
- Department of Chemistry Kyungpook National University Daegu South Korea
| | - Hiroya Nakata
- Department of Chemistry Kyungpook National University Daegu South Korea
| | - Michael Filatov
- Department of Chemistry Kyungpook National University Daegu South Korea
| | - Cheol Ho Choi
- Department of Chemistry Kyungpook National University Daegu South Korea
| |
Collapse
|
28
|
Normal & reversed spin mobility in a diradical by electron-vibration coupling. Nat Commun 2021; 12:6262. [PMID: 34716307 PMCID: PMC8556253 DOI: 10.1038/s41467-021-26368-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/29/2021] [Indexed: 11/26/2022] Open
Abstract
π−conjugated radicals have great promise for use in organic spintronics, however, the mechanisms of spin relaxation and mobility related to radical structural flexibility remain unexplored. Here, we describe a dumbbell shape azobenzene diradical and correlate its solid-state flexibility with spin relaxation and mobility. We employ a combination of X-ray diffraction and Raman spectroscopy to determine the molecular changes with temperature. Heating leads to: i) a modulation of the spin distribution; and ii) a “normal” quinoidal → aromatic transformation at low temperatures driven by the intramolecular rotational vibrations of the azobenzene core and a “reversed” aromatic → quinoidal change at high temperatures activated by an azobenzene bicycle pedal motion amplified by anisotropic intermolecular interactions. Thermal excitation of these vibrational states modulates the diradical electronic and spin structures featuring vibronic coupling mechanisms that might be relevant for future design of high spin organic molecules with tunable magnetic properties for solid state spintronics. In this manuscript, Negri, Zheng, Casado et al develop a stable and flexible diradical. Using a combination of experimental and theoretical techniques, they show how heating leads to change in the electronic and spin delocalizations ocurring between quinoidal and aromatic forms, and elucidate a unique spin-vibrational coupling.
Collapse
|
29
|
Wang Z, Yadav P, Abe M. Long-lived localised singlet diradicaloids with carbon-carbon π-single bonding (C-π-C). Chem Commun (Camb) 2021; 57:11301-11309. [PMID: 34633003 DOI: 10.1039/d1cc04581d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Localised singlet cyclopentane-1,3-diyl diradicaloids have been considered promising candidates for constructing carbon-carbon π-single bonds (C-π-C). However, the high reactivity during formation of the σ-bond has limited a deeper investigation of its unique chemical properties. In this feature article, recent progress in kinetic stabilisation based on the "stretch effect" and the "solvent dynamic effect" induced by the macrocyclic system is summarised. Singlet diradicaloids S-DR4a/b and S-DR4d containing macrocyclic rings showed much longer lifetimes at 293 K (14 μs for S-DR4a and 156 μs for S-DR4b in benzene) compared to the parent singlet diradicaloid S-DR2 having no macrocyclic ring (209 ns in benzene). Furthermore, the dynamic solvent effect in viscous solvents was observed for the first time in intramolecular σ-bond formation, the lifetime of S-DR4d increased to 400 μs in the viscous solvent glycerin triacetin at 293 K. The experimental results proved the validity of the "stretch effect" and the "solvent dynamic effect" on the kinetic stabilisation of singlet cyclopentane-1,3-diyl diradicaloids, and provided a strategy for isolating the carbon-carbon π-single bonded species (C-π-C), and towards a deeper understanding of the nature of chemical bonding.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Pinky Yadav
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
30
|
Tantillo DJ, Laconsay CJ. Melding of Experiment and Theory Illuminates Mechanisms of Metal-Catalyzed Rearrangements: Computational Approaches and Caveats. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1720451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThis review summarizes approaches and caveats in computational modeling of transition-metal-catalyzed sigmatropic rearrangements involving carbene transfer. We highlight contemporary examples of combined synthetic and theoretical investigations that showcase the synergy achievable by integrating experiment and theory.1 Introduction2 Mechanistic Models3 Theoretical Approaches and Caveats3.1 Recommended Computational Tools3.2 Choice of Functional and Basis Set3.3 Conformations and Ligand-Binding Modes3.4 Solvation4 Synergy of Experiment and Theory – Case Studies4.1 Metal-Bound or Free Ylides?4.2 Conformations and Ligand-Binding Modes of Paddlewheel Complexes4.3 No Metal, Just Light4.4 How To ‘Cope’ with Nonstatistical Dynamic Effects5 Outlook
Collapse
|
31
|
Sarkar SK, Abe M. Direct Detection of Singlet Cyclopentane-1,3-diyl Diradicals By Infrared and Ultraviolet-Visible Spectroscopy at Cryogenic Temperature and Their Photoreactivity. J Org Chem 2021; 86:12046-12053. [PMID: 34380315 DOI: 10.1021/acs.joc.1c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photolysis of a 7,7-difluoro-1,4-diphenyl-2,3-diazabicyclo[2.2.1]hept-2-ene derivative (AZ1) using a 365 nm light-emitting diode in an Ar matrix at 4 K resulted in the formation of a planar singlet 2,2-difluoro-1,3-diphenylcyclopentane-1,3-diyl diradical derivative, S-DR1-pl (λmax = 520 nm). A singlet cyclopentane-1,3-diyl diradical system (S-DR1-pl) was directly detected by steady-state infrared (IR) spectroscopy. Due to the photolability of S-DR1-pl, initial photolysis of AZ1 also yielded the ring-closed product ret-CP1 and migration products trans-MG1 and/or cis-MG1, which were observed using IR spectra. Monitoring of prolonged photolysis using IR and ultraviolet-visible (UV-vis) spectra demonstrated the formation of the allylic cation CT1 (λmax = 470 nm). On the other hand, photolysis of a 7,7-dimethoxy-1,4-diphenyl-2,3-diazabicyclo[2.2.1]hept-2-ene derivative (AZ2) yielded a puckered conformer (instead of planar) of the corresponding diradical S-DR2-puc, which was detected by IR and UV-vis spectroscopy in an Ar matrix at 4 K. This spectroscopic characterization opens a new strategy to obtain more detailed information about the structure and reactivity of singlet cyclopentane-1,3-diyl diradicals.
Collapse
Affiliation(s)
- Sujan K Sarkar
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
32
|
Miyazawa Y, Wang Z, Matsumoto M, Hatano S, Antol I, Kayahara E, Yamago S, Abe M. 1,3-Diradicals Embedded in Curved Paraphenylene Units: Singlet versus Triplet State and In-Plane Aromaticity. J Am Chem Soc 2021; 143:7426-7439. [PMID: 33900091 DOI: 10.1021/jacs.1c01329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Curved π-conjugated molecules and open-shell structures have attracted much attention from the perspective of fundamental chemistry, as well as materials science. In this study, the chemistry of 1,3-diradicals (DRs) embedded in curved cycloparaphenylene (CPPs) structures, DR-(n+3)CPPs (n = 0-5), was investigated to understand the effects of the curvature and system size on the spin-spin interactions and singlet versus triplet state, as well as their unique characteristics such as in-plane aromaticity. A triplet ground state was predicted for the larger 1,3-diradicals, such as the seven- and eight-paraphenylene-unit-containing diradicals DR-7CPP (n = 4) and DR-8CPP (n = 5), by quantum chemical calculations. The smaller-sized diradicals DR-(n+3)CPPs (n = 0-3) were found to possess singlet ground states. Thus, the ground-state spin multiplicity is controlled by the size of the paraphenylene cycle. The size effect on the ground-state spin multiplicity was confirmed by the experimental generation of DR-6CPP in the photochemical denitrogenation of its azo-containing precursor (AZ-6CPP). Intriguingly, a unique type of in-plane aromaticity emerged in the smaller-sized singlet states such as S-DR-4CPP (n = 1), as proven by nucleus-independent chemical shift calculations (NICS) and an analysis of the anisotropy of the induced current density (ACID), which demonstrate that homoconjugation between the 1,3-diradical moiety arises because of the curved and distorted bonding system.
Collapse
Affiliation(s)
- Yuki Miyazawa
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Zhe Wang
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misaki Matsumoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Sayaka Hatano
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ivana Antol
- Laboratory for Physical Organic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
33
|
Völzer T, Beer H, Schulz A, Lochbrunner S, Bresien J. Photoisomerization of a phosphorus-based biradicaloid: ultrafast dynamics through a conical intersection. Phys Chem Chem Phys 2021; 23:7434-7441. [PMID: 33876103 DOI: 10.1039/d1cp00428j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As previously reported, photoisomerization of the open-shell singlet biradicaloid [TerNP]2CNDmp (2) yields its closed-shell housane-type isomer (3). In the present study, pump-probe spectroscopy was applied to investigate the excited-state dynamics of the photoisomerization, indicating ultrafast de-excitation of the S1 state through a conical intersection, in agreement with computational predictions. The structural and electronic changes during the isomerization process are discussed to gain an understanding of the reaction pathway and the transformation of the biradicaloid to a closed-shell species.
Collapse
Affiliation(s)
- Tim Völzer
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | | | | | | | | |
Collapse
|
34
|
Sharma MK, Rottschäfer D, Glodde T, Neumann B, Stammler H, Ghadwal RS. Ein offenschaliges Singulett‐Sn
I
‐Diradikal und H
2
‐Spaltung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahendra K. Sharma
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Timo Glodde
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| |
Collapse
|
35
|
Sharma MK, Rottschäfer D, Glodde T, Neumann B, Stammler H, Ghadwal RS. An Open-Shell Singlet Sn I Diradical and H 2 Splitting. Angew Chem Int Ed Engl 2021; 60:6414-6418. [PMID: 33460280 PMCID: PMC7986611 DOI: 10.1002/anie.202017078] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/17/2022]
Abstract
The first SnI diradical [(ADCPh )Sn]2 (4) based on an anionic dicarbene (ADCPh ={CN(Dipp)}2 CPh; Dipp=2,6-iPr2 C6 H3 ) scaffold has been isolated as a green crystalline solid by KC8 reduction of the corresponding bis-chlorostannylene [(ADCPh )SnCl]2 (3). The six-membered C4 Sn2 -ring of 4 containing six π-electrons shows a diatropic ring current, thus 4 may also be regarded as the first 1,4-distannabenzene derivative. DFT calculations suggest an open-shell singlet (OS) ground state of 4 with a remarkably small singlet-triplet energy gap (ΔEOS-T =4.4 kcal mol-1 ), which is consistent with CASSCF (ΔES-T =6.6 kcal mol-1 and diradical character y=37 %) calculations. The diradical 4 splits H2 at room temperature to yield the bis-hydridostannylene [(ADCPh )SnH]2 (5). Further reactivity of 4 has been studied with PhSeSePh and MeOTf.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Timo Glodde
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
36
|
Horbatenko Y, Sadiq S, Lee S, Filatov M, Choi CH. Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory (MRSF-TDDFT) as a Simple yet Accurate Method for Diradicals and Diradicaloids. J Chem Theory Comput 2021; 17:848-859. [PMID: 33401894 DOI: 10.1021/acs.jctc.0c01074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Due to their multiconfigurational nature featuring strong electron correlation, accurate description of diradicals and diradicaloids is a challenge for quantum chemical methods. The recently developed mixed-reference spin-flip (MRSF)-TDDFT method is capable of describing the multiconfigurational electronic states of these systems while avoiding the spin-contamination pitfalls of SF-TDDFT. Here, we apply MRSF-TDDFT to study the adiabatic singlet-triplet (ST) gaps in a series of well-known diradicals and diradicaloids. On average, MRSF displays a very high prediction accuracy of the adiabatic ST gaps with the mean absolute error (MAE) amounting to 0.14 eV. In addition, MRSF is capable of accurately describing the effect of the Jahn-Teller distortion occurring in the trimethylenemethane diradical, the violation of the Hund rule in a series of the didehydrotoluene diradicals, and the potential energy surfaces of the didehydrobenzene (benzyne) diradicals. A convenient criterion for distinguishing diradicals and diradicaloids is suggested on the basis of the easily obtainable quantities. In all of these cases, which are difficult for the conventional methods of density functional theory (DFT), MRSF shows results consistent with the experiment and the high-level ab initio computations. Hence, the present study documents the reliability and accuracy of MRSF and lays out the guidelines for its application to strongly correlated molecular systems.
Collapse
Affiliation(s)
- Yevhen Horbatenko
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Saima Sadiq
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
37
|
Abstract
In a specifically designed molecular structure, two sp2-hybridized carbon atoms align their unhybridized 2pz orbitals in the same orientation to form an extremely long C2pz-C2pz σ-single bond that goes beyond 3 Å in length. This new type of C-C σ-bond (coined as a fringe bond) can be made more than 1 Å longer than the current experimental world record (∼1.8 Å) and 300 kJ/mol weaker than the ordinary C-C σ-bond (∼330 kJ/mol). If such molecular monomers are polymerized into infinite chains, the extended long C-C saturated σ-bonding framework manifests band gaps similar to those of some conventional iconic organic-conducting polymers based on conjugated networks of unsaturated bonds.
Collapse
Affiliation(s)
- Jian-Xiong Yang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yan Alexander Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
38
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
39
|
Bresien J, Michalik D, Schulz A, Villinger A, Zander E. Azadiphosphaindane-1,3-diyls: A Class of Resonance-Stabilized Biradicals. Angew Chem Int Ed Engl 2021; 60:1507-1512. [PMID: 33038288 PMCID: PMC7839750 DOI: 10.1002/anie.202011886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Indexed: 01/12/2023]
Abstract
Conversion of 1,2-bis(dichlorophosphino)benzene with sterically demanding primary amines led to the formation of 1,3-dichloro-2-aza-1,3-diphosphaindanes of the type C6 H4 (μ-PCl)2 N-R. Reduction yielded the corresponding 2-aza-1,3-diphosphaindane-1,3-diyls (1), which can be described as phosphorus-centered singlet biradical(oid)s. Their stability depends on the size of the substituent R: While derivatives with R=Dmp (2,6-dimethylphenyl) or Ter (2,6-dimesitylphenyl) underwent oligomerization, the derivative with very bulky R=tBu Bhp (2,6-bis(benzhydryl)-4-tert-butylphenyl) was stable with respect to oligomerization in its monomeric form. Oligomerization involved activation of the fused benzene ring by a second equivalent of the monomeric biradical and can be regarded as formal [2+2] (poly)addition reaction. Calculations indicate that the biradical character in 1 is comparable with literature-known P-centered biradicals. Ring-current calculations show aromaticity within the entire ring system of 1.
Collapse
Affiliation(s)
- Jonas Bresien
- Institut für ChemieUniversität RostockAlbert-Einstein-Straße 3a18059RostockGermany
| | - Dirk Michalik
- Institut für ChemieUniversität RostockAlbert-Einstein-Straße 3a18059RostockGermany
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Axel Schulz
- Institut für ChemieUniversität RostockAlbert-Einstein-Straße 3a18059RostockGermany
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Alexander Villinger
- Institut für ChemieUniversität RostockAlbert-Einstein-Straße 3a18059RostockGermany
| | - Edgar Zander
- Institut für ChemieUniversität RostockAlbert-Einstein-Straße 3a18059RostockGermany
| |
Collapse
|
40
|
Bresien J, Michalik D, Schulz A, Villinger A, Zander E. Azadiphosphaindan‐1,3‐diyle: Eine Gruppe von resonanzstabilisierten Biradikalen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jonas Bresien
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Dirk Michalik
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| | - Axel Schulz
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| | - Alexander Villinger
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Edgar Zander
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| |
Collapse
|
41
|
Fang Y, Sun Q, Chen X, Qiu Y, Chen C, Wang L, Zhao Y, Su Y, Li T, Zhang L, Wang X. Rational design and syntheses of aniline-based diradical dications: isolable congeners of quinodimethane diradicals. Org Chem Front 2021. [DOI: 10.1039/d0qo01265c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-electron oxidation of five aniline-based compounds 4,4′′-p/m-terphenyldiamines afforded the first isolable aniline-based diradical dications 12+–52+.
Collapse
|
42
|
Murata R, Wang Z, Abe M. Singly Occupied Molecular Orbital−Highest Occupied Molecular Orbital (SOMO−HOMO) Conversion. Aust J Chem 2021. [DOI: 10.1071/ch21186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Singly occupied molecular orbital−highest occupied molecular orbital (SOMO−HOMO) conversion (inversion), SHC, is a phenomenon in which the SOMO is lower in energy than the doubly occupied molecular orbitals (DOMO, HOMO). A non-Aufbau electronic structure leads to unique properties such as a switch in bond dissociation energy and the generation of high-spin species on one-electron oxidation. In addition, the pronounced photostability of these species has been reported recently for application in organic light-emitting devices. In this review article, we summarise the chemistry of SOMO−HOMO converted (inverted) species reported to date.
Collapse
|
43
|
Sharma MK, Ebeler F, Glodde T, Neumann B, Stammler HG, Ghadwal RS. Isolation of a Ge(I) Diradicaloid and Dihydrogen Splitting. J Am Chem Soc 2020; 143:121-125. [DOI: 10.1021/jacs.0c11828] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mahendra K. Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
44
|
Heterocyclopentanediyls vs Heterocyclopentadienes: A Question of Silyl Group Migration. J Org Chem 2020; 85:14435-14445. [PMID: 32393023 DOI: 10.1021/acs.joc.0c00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of the singlet biradical [P(μ-NHyp)]2 (Hyp = hypersilyl, (Me3Si)3Si) with different isonitriles afforded a series of five-membered N2P2C heterocycles. Depending on the steric bulk of the substituent at the isonitrile, migration of a Hyp group was observed, resulting in two structurally similar but electronically very different isomers. As evidenced by comprehensive spectroscopic and theoretical studies, the heterocyclopentadiene isomer may be regarded as a rather unreactive closed-shell singlet species with one localized N═P and one C═P double bond, whereas the heterocyclopentanediyl isomer represents an open-shell singlet biradical with interesting photochemical properties, such as photoisomerization under irradiation with red light to a [2.1.0]-housane-type species.
Collapse
|
45
|
Wang Z, Akisaka R, Yabumoto S, Nakagawa T, Hatano S, Abe M. Impact of the macrocyclic structure and dynamic solvent effect on the reactivity of a localised singlet diradicaloid with π-single bonding character. Chem Sci 2020; 12:613-625. [PMID: 34163792 PMCID: PMC8179019 DOI: 10.1039/d0sc05311b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Localised singlet diradicals are key intermediates in bond homolysis processes. Generally, these highly reactive species undergo radical–radical coupling reaction immediately after their generation. Therefore, their short-lived character hampers experimental investigations of their nature. In this study, we implemented the new concept of “stretch effect” to access a kinetically stabilised singlet diradicaloid. To this end, a macrocyclic structure was computationally designed to enable the experimental examination of a singlet diradicaloid with π-single bonding character. The kinetically stabilised diradicaloid exhibited a low carbon–carbon coupling reaction rate of 6.4 × 103 s−1 (155.9 μs), approximately 11 and 1000 times slower than those of the first generation of macrocyclic system (7.0 × 104 s−1, 14.2 μs) and the parent system lacking the macrocycle (5 × 106 s−1, 200 ns) at 293 K in benzene, respectively. In addition, a significant dynamic solvent effect was observed for the first time in intramolecular radical–radical coupling reactions in viscous solvents such as glycerin triacetate. This theoretical and experimental study demonstrates that the stretch effect and solvent viscosity play important roles in retarding the σ-bond formation process, thus enabling a thorough examination of the nature of the singlet diradicaloid and paving the way toward a deeper understanding of reactive intermediates. An extremely long-lived localised singlet diradical with π-single bonding character is found in a macrocyclic structure that retards the radical–radical coupling reaction by the “stretch and solvent-dynamic effects”.![]()
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Rikuo Akisaka
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Sohshi Yabumoto
- Unisoku Co., Ltd. 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Tatsuo Nakagawa
- Unisoku Co., Ltd. 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Sayaka Hatano
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan .,Hiroshima University Research Centre for Photo-Drug-Delivery-Systems (HiU-P-DDS), Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
46
|
Ershova IV, Piskunov AV, Cherkasov VK. Complexes of diamagnetic cations with radical anion ligands. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4957] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Beer H, Bresien J, Michalik D, Schulz A, Villinger A. Reversible switching between housane and cyclopentanediyl isomers: an isonitrile-catalysed thermal reverse reaction. Dalton Trans 2020; 49:13986-13992. [PMID: 32869789 DOI: 10.1039/d0dt02688c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The photo-isomerization of an isolable five-membered singlet biradical based on C, N, and P ([TerNP]2CNDmp, 2a) selectively afforded a closed-shell housane-type isomer (3a) by forming a transannular P-P bond. In the dark, the housane-type species re-isomerized to the biradical, resulting in a fully reversible overall process. In the present study, the influence of tBuNC on the thermal reverse reaction was investigated: the isonitrile acted as a catalyst, thus allowing control over the thermal reaction rate. Moreover, tBuNC also reacted with the biradical to form an adduct species ([TerNP]2CNDmp·CNtBu, 4a), which can be regarded as the resting state of the system. The reactive species 2a and 3a could be re-generated in situ by irradiation with red light. The results of this study extend our understanding of this new class of molecular switches.
Collapse
Affiliation(s)
- Henrik Beer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Jonas Bresien
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Dirk Michalik
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. and Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. and Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany and Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| | - Alexander Villinger
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| |
Collapse
|
48
|
Yildiz CB, Leszczyńska KI, González‐Gallardo S, Zimmer M, Azizoglu A, Biskup T, Kay CWM, Huch V, Rzepa HS, Scheschkewitz D. Equilibrium Formation of Stable All-Silicon Versions of 1,3-Cyclobutanediyl. Angew Chem Int Ed Engl 2020; 59:15087-15092. [PMID: 32407571 PMCID: PMC7496386 DOI: 10.1002/anie.202006283] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/12/2022]
Abstract
Main group analogues of cyclobutane-1,3-diyls are fascinating due to their unique reactivity and electronic properties. So far only heteronuclear examples have been isolated. Here we report the isolation and characterization of all-silicon 1,3-cyclobutanediyls as stable closed-shell singlet species from the reversible reactions of cyclotrisilene c-Si3 Tip4 (Tip=2,4,6-triisopropylphenyl) with the N-heterocyclic silylenes c-[(CR2 CH2 )(NtBu)2 ]Si: (R=H or methyl) with saturated backbones. At elevated temperatures, tetrasilacyclobutenes are obtained from these equilibrium mixtures. The corresponding reaction with the unsaturated N-heterocyclic silylene c-(CH)2 (NtBu)2 Si: proceeds directly to the corresponding tetrasilacyclobutene without detection of the assumed 1,3-cyclobutanediyl intermediate.
Collapse
Affiliation(s)
- Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray University68100AksarayTurkey
| | - Kinga I. Leszczyńska
- Krupp-Chair of Inorganic and General ChemistrySaarland University66123SaarbrückenGermany
| | | | - Michael Zimmer
- Krupp-Chair of Inorganic and General ChemistrySaarland University66123SaarbrückenGermany
| | - Akin Azizoglu
- Department of ChemistryFaculty of Science and LettersUniversity of Balıkesir10145BalıkesirTurkey
| | - Till Biskup
- Chair of Physical Chemistry and Chemical EducationSaarland University66123SaarbrückenGermany
| | - Christopher W. M. Kay
- Chair of Physical Chemistry and Chemical EducationSaarland University66123SaarbrückenGermany
- London Centre for NanotechnologyUniversity College London17–19 Gordon StreetLondonWC1H 0AHUK
| | - Volker Huch
- Krupp-Chair of Inorganic and General ChemistrySaarland University66123SaarbrückenGermany
| | - Henry S. Rzepa
- Department of ChemistryImperial College LondonMSRH, White City Campus, 80 Wood LaneLondonW12 0BZUK
| | - David Scheschkewitz
- Krupp-Chair of Inorganic and General ChemistrySaarland University66123SaarbrückenGermany
| |
Collapse
|
49
|
Helling C, Schulz S. Long‐Lived Radicals of the Heavier Group 15 Elements Arsenic, Antimony, and Bismuth. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000571] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christoph Helling
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| |
Collapse
|
50
|
Chen C, Ruan H, Feng Z, Fang Y, Tang S, Zhao Y, Tan G, Su Y, Wang X. Crystalline Diradical Dianions of Pyrene-Fused Azaacenes. Angew Chem Int Ed Engl 2020; 59:11794-11799. [PMID: 32304152 DOI: 10.1002/anie.202001842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 01/09/2023]
Abstract
Although diradicals and azaacenes have been greatly attractive in fundamental chemistry and functional materials, the isolable diradical dianions of azaacenes are still unknown. Herein, we describe the first isolation of pyrene-fused azaacene diradical dianion salts [(18-c-6)K(THF)2 ]+ [(18-c-6)K]+ ⋅12-.. and [(18-c-6)K(THF)]2+ ⋅22-.. by reduction of the neutral pyrene-fused azaacene derivatives 1 and 2 with excess potassium graphite in THF in the presence of 18-crown-6. Their electronic structures were investigated by various experiments, in conjunction with theoretical calculations. It was found that both dianions are open-shell singlets in the ground state and their triplet states are thermally readily accessible owing to the small singlet-triplet energy gap. This work provides the first examples of crystalline diradical dianions of azaacenes with considerable diradical character.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|