1
|
Cao D, Mu Y, Liu L, Mou Z, Chen S, Yan W, Zhou H, Chan TS, Chang LY, Song L, Zhai HJ, Fan X. Axially Modified Square-Pyramidal CoN 4-F 1 Sites Enabling High-Performance Zn-Air Batteries. ACS NANO 2024; 18:11474-11486. [PMID: 38632861 DOI: 10.1021/acsnano.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cobalt-nitrogen-carbon (Co-N-C) catalysts with a CoN4 structure exhibit great potential for oxygen reduction reaction (ORR), but the imperfect adsorption energy toward oxygen species greatly limits their reduction efficiency and practical application potential. Here, F-coordinated Co-N-C catalysts with square-pyramidal CoN4-F1 configuration are successfully synthesized using F atoms to regulate the axial coordination of Co centers via hydrothermal and chemical vapor deposition methods. During the synthesis process, the geometry structure of the Co atom converts from six-coordinated Co-F6 to square-pyramidal CoN4-F1 in the coordinatively unsaturated state, which provides an open binding site for the O2. The introduction of axial F atoms into the CoN4 plane alters the local atomic environment around Co, significantly improving the ORR activity and Zn-air batteries performance. In situ spectroscopy proves that CoN4-F1 sites strongly combine with the OOH* intermediate and facilitate the splitting of O-O bond, making OOH* readily decompose into O* and OH* via a dissociative pathway. Theoretical calculations confirm that the axial F atom effectively reduces the electronic density of the Co centers and facilitates the desorption of the OH* intermediate, efficiently accelerating the overall ORR kinetics. This work advances a feasible synthesis mechanism of axial ligands and provides a route to construct efficient high-coordination catalysts.
Collapse
Affiliation(s)
- Daili Cao
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yuewen Mu
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lijia Liu
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhixing Mou
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Wenjun Yan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Lo-Yueh Chang
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua-Jin Zhai
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiujun Fan
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Brito J, Shah PP, Aliakseyeu A, Sukhishvili SA. Effect of polyacid architecture and polycation molecular weight on lateral diffusion within multilayer films. J Chem Phys 2024; 160:121101. [PMID: 38530006 DOI: 10.1063/5.0190377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Despite the potential use of polyelectrolyte multilayers for biomedical, separation, and energy applications, their dynamic properties are not sufficiently understood. In this work, center-of-mass diffusion of a weak polyacid-poly(methacrylic acid) (PMAA) of linear and 8-arm architecture (L-PMAA and 8-PMAA, respectively) and matched molecular weight-was studied in layer-by-layer (LbL) assemblies with poly(diallyldimethylammonium) chloride (PDADMAC) of varied molecular weight. The film deposition at low-salt, acidic conditions when PMAA was only partially ionized yielded thicker, more diffused layers with shorter PDADMAC chains, and bilayer thickness decreased for multilayers constructed with longer PDADMAC. The molecular architecture of PMAA had a weak effect on film growth, with bilayer thickness being ∼20% larger for L-PMAA for the films constructed with the shortest PDADMAC (35 kDa) and identical film growth for L-PMAA and 8-PMAA with the longest PDADMAC (300 kDa). The exposure of the multilayer films to 0.2M NaCl triggered a reduction in PMAA ionization and significant lateral diffusivity of fluorescently labeled PMAA molecules (PMAA*), with diffusion coefficients D ranging from 10-13 to 10-12 cm2/s, as determined by the fluorescence recovery after photobleaching technique. For all the films, polymer mobility was higher for star polyacids as compared to their linear counterparts, and the dependence of PMAA diffusion coefficient D on PDADMAC molecular weight (D ∼ M-n) was relatively weak (n < 0.6). However, 8-PMAA demonstrated an approximately doubled power exponent compared to the L-PMAA chains, suggesting a stronger effect of the molecular connectivity of the partner polycation molecules on the diffusion of star polyelectrolytes.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Parin Purvin Shah
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Aliaksei Aliakseyeu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
3
|
Bao Y, Chen Z, Wang Y, Liu L, Wang H, Li Z, Feng F. Co-assembly of graphene/polyoxometalate films for highly electrocatalytic and sensing hydroperoxide. Front Chem 2023; 11:1199135. [PMID: 37273509 PMCID: PMC10233151 DOI: 10.3389/fchem.2023.1199135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Graphene oxide (GO) films mixed with polyethylenimine (PEI) were prepared by a layer-by-layer assembly (LBL) method, in which the GO component is then converted to reduced GO (rGO) in situ through an electron transfer interaction with a polyoxometalate (POM) that is assembled on the outer surface. With this, devices were manufactured by spreading composite films of (PEI/rGO)n-POM with different numbers of PEI/rGO layers on ITO substrates. Cyclic voltammetry (CV) reveals that the catalytic activity for H2O2 of (PEI/rGO)n-POM films was significantly higher than that of similar films of (PEI/GO)n/PEI/POM manufactured LBL with the same number of layers, although the catalyst POM content of (PEI/rGO)n-POM was only half that of (PEI/GO)n/PEI/POM. The catalytic activity of (PEI/rGO)n-POM films first increases and then decreases as the number of PEI/rGO layers increases. The result shows that (PEI/rGO)3-POM films with three PEI/rGO layers exhibit the highest efficiency. Amperometric measurements of the (PEI/rGO)3-POM films showed improved current response, high sensitivity, wide linear range, low detection limit, and fast response for H2O2 detection. The enhanced catalytic property of (PEI/rGO)n-POM films is attributed to the electron transfer interaction and electrostatic interaction between POM and rGO.
Collapse
Affiliation(s)
- Yayan Bao
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, China
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Zezhong Chen
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Yuzhen Wang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Lizhen Liu
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Haiyan Wang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Zuopeng Li
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Feng Feng
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, China
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| |
Collapse
|
4
|
Ibukun OJ, Gumtya M, Singh S, Shit A, Haldar D. Effect of the spacer on the structure and self-assembly of FF peptide mimetics. SOFT MATTER 2023; 19:3215-3221. [PMID: 37074778 DOI: 10.1039/d3sm00339f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have designed and synthesized a series of FF peptide mimetics with conformationally rigid and flexible spacers to study the effect of spacers on their structure and self-assembly. The results help in understanding biomolecular aggregation and provide a strategy to obtain fractal pattern materials. From X-ray single crystal analysis, the m-diaminobenzene appended FF peptide mimetic adopts a duplex structure stabilized by multiple intermolecular hydrogen bonds. There is also a water molecule bridging between two strands of the duplex. Moreover, the duplex is stabilized by three face-to-face, face-to-edge and edge-to-edge π-π interactions. The duplex formation is also supported by mass spectrometry. In higher order packing, the dimeric subunits further self-assembled to form a complex sheet-like structure stabilized by multiple intermolecular hydrogen bonding and π-π stacking interactions. Moreover, the 1,4-butadiene and m-xylylenediamine appended FF peptide mimetics form stimuli-responsive organogels in a wide range of solvents including methanol. The rheology data of FF peptide mimetic gels as a function of angular frequency and oscillatory strain also supported the formation of strong physically crosslinked gels. The FE-SEM images of the xerogels obtained from different organic solvents show that the network morphology of FF peptide mimetics varies depending on the nature of the solvents.
Collapse
Affiliation(s)
- Olamilekan Joseph Ibukun
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Milan Gumtya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Surajit Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Ananda Shit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| |
Collapse
|
5
|
Kim S, Byun YY, Lee I, Cho W, Kim G, Culebras M, Jang J, Cho C. Organic Thermoelectric Nanocomposites Assembled via Spraying Layer-by-Layer Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050866. [PMID: 36903743 PMCID: PMC10005322 DOI: 10.3390/nano13050866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 05/31/2023]
Abstract
Thermoelectric (TE) materials have been considered as a promising energy harvesting technology for sustainably providing power to electronic devices. In particular, organic-based TE materials that consist of conducting polymers and carbon nanofillers make a large variety of applications. In this work, we develop organic TE nanocomposites via successive spraying of intrinsically conductive polymers such as polyaniline (PANi) and poly(3,4-ethylenedioxy- thiophene):poly(styrenesulfonate) (PEDOT:PSS) and carbon nanofillers, and single-walled carbon nanotubes (SWNT). It is found that the growth rate of the layer-by-layer (LbL) thin films, which comprise a PANi/SWNT-PEDOT:PSS repeating sequence, made by the spraying method is greater than that of the same ones assembled by traditional dip coating. The surface structure of multilayer thin films constructed by the spraying approach show excellent coverage of highly networked individual and bundled SWNT, which is similarly to what is observed when carbon nanotubes-based LbL assemblies are formed by classic dipping. The multilayer thin films via the spray-assisted LbL process exhibit significantly improved TE performances. A 20-bilayer PANi/SWNT-PEDOT:PSS thin film (~90 nm thick) yields an electrical conductivity of 14.3 S/cm and Seebeck coefficient of 76 μV/K. These two values translate to a power factor of 8.2 μW/m·K2, which is 9 times as large as the same films fabricated by a classic immersion process. We believe that this LbL spraying method will open up many opportunities in developing multifunctional thin films for large-scaled industrial use due to rapid processing and the ease with which it is applied.
Collapse
Affiliation(s)
- Seojin Kim
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - You Young Byun
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - InYoung Lee
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Woohyeon Cho
- Core Facility for Supporting Analysis & Imaging of Biomedical Materials, Wonkwang University, Iksan 54538, Republic of Korea
| | - Gyungho Kim
- DMT Company, 60, Wanggungnonggong Danji-Gil, Wanggung-Myeon, Iksan 54576, Republic of Korea
| | - Mario Culebras
- Institute of Materials Science (ICMUV), University of Valencia, 46980 Paterna, Spain
| | - Junho Jang
- Wearable Platform Materials Technology Center (WMC), Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chungyeon Cho
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
6
|
|
7
|
Layer-by-Layer Materials for the Fabrication of Devices with Electrochemical Applications. ENERGIES 2022. [DOI: 10.3390/en15093399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The construction of nanostructured materials for their application in electrochemical processes, e.g., energy storage and conversion, or sensing, has undergone a spectacular development over the last decades as a consequence of their unique properties in comparison to those of their bulk counterparts, e.g., large surface area and facilitated charge/mass transport pathways. This has driven strong research on the optimization of nanostructured materials for the fabrication of electrochemical devices, which demands techniques allowing the assembly of hybrid materials with well-controlled structures and properties. The Layer-by-Layer (LbL) method is well suited for fulfilling the requirements associated with the fabrication of devices for electrochemical applications, enabling the fabrication of nanomaterials with tunable properties that can be exploited as candidates for their application in fuel cells, batteries, electrochromic devices, solar cells, and sensors. This review provides an updated discussion of some of the most recent advances on the application of the LbL method for the fabrication of nanomaterials that can be exploited in the design of novel electrochemical devices.
Collapse
|
8
|
Gnanasampanthan T, Karthäuser JF, Spöllmann S, Wanka R, Becker HW, Rosenhahn A. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16062-16073. [PMID: 35377590 DOI: 10.1021/acsami.2c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic coatings are promising materials for fouling-release applications, especially when their building blocks are inexpensive, biodegradable, and readily accessible polysaccharides. Here, amphiphilic polysaccharides were fabricated by coupling hydrophobic pentafluoropropylamine (PFPA) to carboxylate groups of hydrophilic alginic acid, a natural biopolymer with high water-binding capacity. Layer-by-layer (LbL) coatings comprising unmodified or amphiphilic alginic acid (AA*) and polyethylenimine (PEI) were assembled to explore how different PFPA contents affect their physicochemical properties, resistance against nonspecific adsorption (NSA) of proteins, and antifouling activity against marine bacteria (Cobetia marina) and diatoms (Navicula perminuta). The amphiphilic multilayers, characterized through spectroscopic ellipsometry, water contact angle goniometry, elemental analysis, AFM, XPS, and SPR spectroscopy, showed similar or even higher swelling in water and exhibited higher resistance toward NSA of proteins and microfouling marine organisms than multilayers without fluoroalkyl groups.
Collapse
Affiliation(s)
| | - Jana F Karthäuser
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Stephan Spöllmann
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Robin Wanka
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Hans-Werner Becker
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Axel Rosenhahn
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
9
|
Ding D, Yaroshchuk A, Bruening ML. Electrodialysis through nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Alimohammadi F, Yasini P, Marshall T, Attanayake NH, Borguet E, Strongin DR. Layer by Layer Deposition of 1T′‐MoS
2
for the Hydrogen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Farbod Alimohammadi
- Department of Chemistry Temple University Philadelphia Pennsylvania 19122 USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania 19122 USA
| | - Parisa Yasini
- Department of Chemistry Temple University Philadelphia Pennsylvania 19122 USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania 19122 USA
| | - Tim Marshall
- Department of Chemistry Temple University Philadelphia Pennsylvania 19122 USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania 19122 USA
| | - Nuwan H. Attanayake
- Department of Chemistry Temple University Philadelphia Pennsylvania 19122 USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania 19122 USA
| | - Eric Borguet
- Department of Chemistry Temple University Philadelphia Pennsylvania 19122 USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania 19122 USA
| | - Daniel R. Strongin
- Department of Chemistry Temple University Philadelphia Pennsylvania 19122 USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania 19122 USA
| |
Collapse
|
11
|
Self-Assembled Nanocomposites and Nanostructures for Environmental and Energy Applications. CRYSTALS 2022. [DOI: 10.3390/cryst12020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Self-assembled nanocomposites are attracting considerable attention owing to their controllable architectures and self-assembly processes, as well as the increase in worldwide environmental effects and energy needs. Further understanding of the self-assembly procedure for improving environmental and energy applications would advance the design and manufacture of nanomaterials for various applications. These materials can be grouped into major categories for various application fields, including powder photocatalysts, membrane photocatalysts, and thin-film thermoelectric nanomaterials. These self-assembled nanomaterials can be used for environmental and energy applications, such as wastewater purification, hydrogen production by water splitting, energy storage, and energy harvesting. In this review, a brief introduction to the definitions and classifications of self-assembled nanocomposites is provided. We aim to provide a summary of the recent research related to self-assembled nanocomposites and nanostructures used for environmental and energy applications. Moreover, typical examples and discussions are aimed at demonstrating the advantages of self-assembled nanostructures. At the end of each section, the structural properties and the application of the nanocomposite or nanostructure are summarized. Finally, we provide perspectives for future research on the design and fabrication of self-assembled nanocomposites and nanostructures.
Collapse
|
12
|
Mateos-Maroto A, Fernández-Peña L, Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers (Basel) 2022; 14:polym14030479. [PMID: 35160468 PMCID: PMC8838751 DOI: 10.3390/polym14030479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022] Open
Abstract
Polyelectrolyte multilayered capsules (PEMUCs) obtained using the Layer-by-Layer (LbL) method have become powerful tools for different biomedical applications, which include drug delivery, theranosis or biosensing. However, the exploitation of PEMUCs in the biomedical field requires a deep understanding of the most fundamental bases underlying their assembly processes, and the control of their properties to fabricate novel materials with optimized ability for specific targeting and therapeutic capacity. This review presents an updated perspective on the multiple avenues opened for the application of PEMUCs to the biomedical field, aiming to highlight some of the most important advantages offered by the LbL method for the fabrication of platforms for their use in the detection and treatment of different diseases.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
13
|
Mayilswamy N, Boney N, Kandasubramanian B. Fabrication and molecular dynamics studies of layer-by-layer polyelectrolytic films. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
16
|
Zeng M, Guo H, Wang G, Shang L, Zhao C, Li H. Nanostructured high-performance electrolyte membranes based on polymer network post-assembly for high-temperature supercapacitors. J Colloid Interface Sci 2021; 603:408-417. [PMID: 34197989 DOI: 10.1016/j.jcis.2021.06.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.
Collapse
Affiliation(s)
- Minghao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Haikun Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Lichao Shang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chengji Zhao
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
17
|
|
18
|
Chen L, Lin R, Yu X, Zheng T, Dong M, Lou M, Ma Y, Hao Z. Microporous Layer Containing CeO 2-Doped 3D Graphene Foam for Proton Exchange Membrane Fuel Cells at Varying Operating Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20201-20212. [PMID: 33896170 DOI: 10.1021/acsami.1c03699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To improve the interfacial mass-transfer efficiency, microporous layers (MPLs) containing CeO2 nanorods and the CeO2 nano-network were prepared for proton exchange membrane fuel cells (PEMFCs). In order to minimize the contact resistance, the three-dimensional (3D) graphene foam (3D-GF) was used as the carrier for the deposition of CeO2 nanorods and the nano-network. The CeO2-doped 3D-GF anchored at the interface between the catalyst layer and microporous layer manufactured several novel functional protrusions. To evaluate the electrochemical property, the normal MPL, the MPL containing raw 3D-GF, and MPLs containing different kinds of CeO2-doped 3D-GF were used to assemble the membrane electrode assemblies (MEAs). Measurements show that the CeO2-doped 3D-GF improved the reaction kinetics of the cathode effectively. In addition, the hydrophilic CeO2-doped 3D-GF worked as the water receiver to prevent the dehydration of MEAs at dry operating condition. Besides, at a high current density or humid operating condition, the CeO2-doped 3D-GF provided the pathway for water removal. Compared with the CeO2 nanorods, the CeO2 nano-network on 3D-GF revealed a higher adaptability at varying operating conditions. Hence, such composition and structure design of MPL is a promising strategy for the optimization of high-performance PEMFCs.
Collapse
Affiliation(s)
- Liang Chen
- School of Automotive Studies, Tongji University, Shanghai 201804, China
| | - Rui Lin
- School of Automotive Studies, Tongji University, Shanghai 201804, China
| | - Xiaoting Yu
- School of Automotive Studies, Tongji University, Shanghai 201804, China
| | - Tong Zheng
- School of Automotive Studies, Tongji University, Shanghai 201804, China
| | - Mengcheng Dong
- School of Automotive Studies, Tongji University, Shanghai 201804, China
| | - Mingyu Lou
- School of Automotive Studies, Tongji University, Shanghai 201804, China
| | - Yunyang Ma
- School of Automotive Studies, Tongji University, Shanghai 201804, China
| | - Zhixian Hao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers (Basel) 2021; 13:polym13081221. [PMID: 33918844 PMCID: PMC8069484 DOI: 10.3390/polym13081221] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The Layer-by-Layer (LbL) method is a well-established method for the assembly of nanomaterials with controlled structure and functionality through the alternate deposition onto a template of two mutual interacting molecules, e.g., polyelectrolytes bearing opposite charge. The current development of this methodology has allowed the fabrication of a broad range of systems by assembling different types of molecules onto substrates with different chemical nature, size, or shape, resulting in numerous applications for LbL systems. In particular, the use of soft colloidal nanosurfaces, including nanogels, vesicles, liposomes, micelles, and emulsion droplets as a template for the assembly of LbL materials has undergone a significant growth in recent years due to their potential impact on the design of platforms for the encapsulation and controlled release of active molecules. This review proposes an analysis of some of the current trends on the fabrication of LbL materials using soft colloidal nanosurfaces, including liposomes, emulsion droplets, or even cells, as templates. Furthermore, some fundamental aspects related to deposition methodologies commonly used for fabricating LbL materials on colloidal templates together with the most fundamental physicochemical aspects involved in the assembly of LbL materials will also be discussed.
Collapse
|
20
|
Tsakonas C, Dimitropoulos M, Manikas AC, Galiotis C. Growth and in situ characterization of 2D materials by chemical vapour deposition on liquid metal catalysts: a review. NANOSCALE 2021; 13:3346-3373. [PMID: 33555274 DOI: 10.1039/d0nr07330j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2D materials (2DMs) have now been established as unique and attractive alternatives to replace current technological materials in a number of applications. Chemical vapour deposition (CVD), is undoubtedly the most renowned technique for thin film synthesis and meets all requirements for automated large-scale production of 2DMs. Currently most CVD methods employ solid metal catalysts (SMCat) for the growth of 2DMs however their use has been found to induce structural defects such as wrinkles, fissures, and grain boundaries among others. On the other hand, liquid metal catalysts (LMCat), constitute a possible alternative for the production of defect-free 2DMs albeit with a small temperature penalty. This review is a comprehensive report of past attempts to employ LMCat for the production of 2DMs with emphasis on graphene growth. Special attention is paid to the underlying mechanisms that govern crystal growth and/or grain consolidation and film coverage. Finally, the advent of online metrology which is particularly effective for monitoring the chemical processes under LMCat conditions is also reviewed and certain directions for future development are drawn.
Collapse
Affiliation(s)
- Christos Tsakonas
- University of Patras, Chemical Engineering Department, 26504 Patras, Greece.
| | | | | | - Costas Galiotis
- University of Patras, Chemical Engineering Department, 26504 Patras, Greece. and Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| |
Collapse
|
21
|
Xu L, Zhang Y, Feng L, Li X, Cui Y, An Q. Active Basal Plane Catalytic Activity via Interfacial Engineering for a Finely Tunable Conducting Polymer/MoS 2 Hydrogen Evolution Reaction Multilayer Structure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:734-744. [PMID: 33390014 DOI: 10.1021/acsami.0c20176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fixation of the catalyst interface is an important consideration for the design of practical applications. However, the electronic structure of MoS2 is sensitive to its embedding environment, and the catalytic performance of MoS2 catalysts may be altered significantly by the type of binding agents and interfacial structure. Interfacial engineering is an effective method for designing efficient catalysts, arising from the close contact between different components, which facilitates charge transfer and strong electronic interactions. Here, we have developed a layer-by-layer (LbL) strategy for the preparation of interfacial MoS2-based catalyst structures with two types of conducting polymers on various substrates. We demonstrate how the assembled partners in the LbL structure can significantly impact the electronic structures in MoS2. As the number of bilayers grows, using polypyrrole as a binder remarkably increases the catalytic efficacy as compared to using polyaniline. On the one hand, the ratio of S22- (or S2-), which is related to the remaining active hydrogen evolution reaction (HER) species, is further increased. On the other hand, density functional theory calculations indicate that the interfacial charge transport from the conducting polymers to MoS2 may boost the HER activity of the interfacial structure of the conducting polymer/MoS2 by decreasing the adsorption free energy of the intermediate H* at the S sites in the basal plane of MoS2. The optimized catalytic efficacy of the (conducting polymer/MoS2)n assembly peaks is obtained with 16 assembly cycles. In preparing interfacial catalytic structures, the LbL-based strategy exhibits several key advantages, including the flexibility of choosing assembly partners, the ability to fine-tune the structures with precision at the nanometer scale, and planar homogeneity at the centimeter scale. We expect that this LbL-based catalyst immobilization strategy will contribute to the fundamental understanding of the scalability and control of highly efficient electrocatalysts at the interface for practical applications.
Collapse
Affiliation(s)
- Linan Xu
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
- Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Yihe Zhang
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Lili Feng
- Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Xin Li
- Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Yanying Cui
- Laboratory of Composite Materials & Polymer Materials, College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Qi An
- State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
22
|
Guzmán E, Rubio RG, Ortega F. A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci 2020; 282:102197. [PMID: 32579951 DOI: 10.1016/j.cis.2020.102197] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The fabrication of polyelectrolyte multilayer films (PEMs) using the Layer-by-Layer (LbL) method is one of the most versatile approaches for manufacturing functional surfaces. This is the result of the possibility to control the assembly process of the LbL films almost at will, by changing the nature of the assembled materials (building blocks), the assembly conditions (pH, ionic strength, temperature, etc.) or even by changing some other operational parameters which may impact in the structure and physico-chemical properties of the obtained multi-layered films. Therefore, the understanding of the impact of the above mentioned parameters on the assembly process of LbL materials plays a critical role in the potential use of the LbL method for the fabrication of new functional materials with technological interest. This review tries to provide a broad physico-chemical perspective to the study of the fabrication process of PEMs by the LbL method, which allows one to take advantage of the many possibilities offered for this approach on the fabrication of new functional nanomaterials.
Collapse
|
23
|
Yuan W, Weng GM, Lipton J, Li CM, Van Tassel PR, Taylor AD. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv Colloid Interface Sci 2020; 282:102200. [PMID: 32585489 DOI: 10.1016/j.cis.2020.102200] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Layer-by-layer (LbL) assembly is a nanoscale technique with great versatility, simplicity and molecular-level processing of various nanoscopic materials. Weak polyelectrolytes have been used as major building blocks for LbL assembly providing a fundamental and versatile tool to study the underlying mechanisms and practical applications of LbL assembly due to its pH-responsive charge density and molecular conformation. Because of high-density uncompensated charges and high-chain mobility, weak polyelectrolyte exponential multilayer growth is considered one of the fastest developing areas for organized molecular films. In this article, we systematically review the current status and developments of weak polyelectrolyte-based multilayers including all-weak-polyelectrolyte multilayers, weak polyelectrolytes/other components (e.g. strong polyelectrolytes, neutral polymers, and nanoparticles) multilayers, and exponentially grown weak polyelectrolyte multilayers. Several key aspects of weak polyelectrolytes are highlighted including the pH-controllable properties, the responsiveness to environmental pH, and synergetic functions obtained from weak polyelectrolyte/other component multilayers. Throughout this review, useful applications of weak polyelectrolyte-based multilayers in drug delivery, tunable biointerfaces, nanoreactors for synthesis of nanostructures, solid state electrolytes, membrane separation, and sensors are highlighted, and promising future directions in the area of weak polyelectrolyte-based multilayer assembly such as fabrication of multi-responsive materials, adoption of unique building blocks, investigation of internal molecular-level structure and mechanism of exponentially grown multilayers, and exploration of novel biomedical and energy applications are proposed.
Collapse
|
24
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
25
|
Liu Y, Deng W, Meng Z, Wong WY. A Tetrakis(terpyridine) Ligand-Based Cobalt(II) Complex Nanosheet as a Stable Dual-Ion Battery Cathode Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905204. [PMID: 32162776 DOI: 10.1002/smll.201905204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Inspired by the flexibility of the bottom-up approach in terms of selecting molecular components and thus tailoring functionalities, a terpyridine derivative (1,2,4,5-tetrakis(4-(2,2':6',2″-terpyridyl)phenyl)benzene) (Tetra-tpy) is synthesized and coordinated with Co(II) ion to self-assemble into a nanosheet Co-sheet by a facile interface-assisted synthesis. The bis(terpyridine)-Co(II) complex nanosheet formed not only shows good stability, but also features the layered structure and rich electrochemical activity inherited from the embedded Co(terpyridine)2 motif. Thus, Co-sheet can serve as a cathode material for a dual-ion battery prototype, which exhibits a high utilization of redox-active sites, good cycling stability, and rate capability, thus expanding the potential application of this kind of easily prepared metal-complex nanosheets in the field of energy storage.
Collapse
Affiliation(s)
- Yurong Liu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
| | - Wenwen Deng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P. R. China
| | - Zhengong Meng
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, P. R. China
| |
Collapse
|
26
|
Sarode A, Annapragada A, Guo J, Mitragotri S. Layered self-assemblies for controlled drug delivery: A translational overview. Biomaterials 2020; 242:119929. [PMID: 32163750 DOI: 10.1016/j.biomaterials.2020.119929] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Self-assembly is a prominent phenomenon observed in nature. Inspired by this thermodynamically favorable approach, several natural and synthetic materials have been investigated to develop functional systems for various biomedical applications, including drug delivery. Furthermore, layered self-assembled systems provide added advantages of tunability and multifunctionality which are crucial for controlled and targeted drug release. Layer-by-layer (LbL) deposition has emerged as one of the most popular, well-established techniques for tailoring such layered self-assemblies. This review aims to provide a brief overview of drug delivery applications using LbL deposition, along with a discussion of associated scalability challenges, technological innovations to overcome them, and prospects for commercial translation of this versatile technique. Additionally, alternative self-assembly techniques such as metal-phenolic networks (MPNs) and Liesegang rings are also reviewed in the context of their recent utilization for controlled drug delivery. Blending the sophistication of these self-assembly phenomena with material science and technological advances can provide a powerful tool to develop smart drug carriers in a scalable manner.
Collapse
Affiliation(s)
- Apoorva Sarode
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Akshaya Annapragada
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Zhai L, Li H. Polyoxometalate-Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules 2019; 24:E3425. [PMID: 31547150 PMCID: PMC6803900 DOI: 10.3390/molecules24193425] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
As one of the most efficient pathways to provide clean energy, fuel cells have attracted great attention in both academic and industrial communities. Proton exchange membranes (PEMs) or proton-conducting electrolytes are the key components in fuel cell devices, which require the characteristics of high proton conductivity as well as high mechanical, chemical and thermal stabilities. Organic-inorganic hybrid PEMs can provide a fantastic platform to combine both advantages of two components to meet these demands. Due to their extremely high proton conductivity, good thermal stability and chemical adjustability, polyoxometalates (POMs) are regarded as promising building blocks for hybrid PEMs. In this review, we summarize a number of research works on the progress of POM-polymer hybrid materials and related applications in PEMs. Firstly, a brief background of POMs and their proton-conducting properties are introduced; then, the hybridization strategies of POMs with polymer moieties are discussed from the aspects of both noncovalent and covalent concepts; and finally, we focus on the performance of these hybrid materials in PEMs, especially the advances in the last five years. This review will provide a better understanding of the challenges and perspectives of POM-polymer hybrid PEMs for future fuel cell applications.
Collapse
Affiliation(s)
- Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
28
|
Daemi S, Moalem-Banhangi M, Ghasemi S, Ashkarran AA. An efficient platform for the electrooxidation of formaldehyde based on amorphous NiWO4 nanoparticles modified electrode for fuel cells. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
A Preyssler-type polyoxometalate-based coordination supramolecule with proton conducting property. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Konavarapu SK, Ghosh D, Dey A, Pradhan D, Biradha K. Isostructural Ni
II
Metal–Organic Frameworks (MOFs) for Efficient Electrocatalysis of Oxygen Evolution Reaction and for Gas Sorption Properties. Chemistry 2019; 25:11141-11146. [DOI: 10.1002/chem.201902274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Debanjali Ghosh
- Materials Science CentreIndian Institute of Technology Kharagpur 721302 India
| | - Avishek Dey
- Department of ChemistryIndian Institute of Technology Kharagpur 721302 India
| | - Debabrata Pradhan
- Materials Science CentreIndian Institute of Technology Kharagpur 721302 India
| | - Kumar Biradha
- Department of ChemistryIndian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
31
|
Recent Advances in Layer-by-Layer Assembled Conducting Polymer Based Composites for Supercapacitors. ENERGIES 2019. [DOI: 10.3390/en12112107] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Development of well-designed electrodes is the key to achieve high performance supercapacitors. Therefore, as one of the effective methods, a layer-by-layer (LBL) approach is often fruitfully employed for the fabrication of electrode material. Benefiting from a tunable parameter of the LBL approach, this approach has paved a way to design a highly ordered nanostructured electrode material with excellent performance. Conducting polymers (CPs) are the frontrunners in supercapacitors and notably, the LBL assembly of CPs is attracting extensive attention. Therefore, this critical review covers a comprehensive discussion on the research progress of CP-based composites with special importance on the LBL approach predominately for supercapacitors. Following a brief discussion on supercapacitors and CPs, the most up-to-date techniques used in LBL are highlighted.
Collapse
|
32
|
Liu J, Fu L. Controllable Growth of Graphene on Liquid Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800690. [PMID: 30536644 DOI: 10.1002/adma.201800690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/29/2018] [Indexed: 06/09/2023]
Abstract
Controllable fabrication of graphene is necessary for its practical application. Chemical vapor deposition (CVD) approaches based on solid metal substrates with morphology-rich surfaces, such as copper (Cu) and nickel (Ni), suffer from the drawbacks of inhomogeneous nucleation and uncontrollable carbon precipitation. Liquid substrates offer a quasiatomically smooth surface, which enables the growth of uniform graphene layers. The fast surface diffusion rates also lead to unique growth and etching kinetics for achieving graphene grains with novel morphologies. The rheological surface endows the graphene grains with self-adjusted rotation, alignment, and movement that are driven by specific interactions. The intermediary-free transfer or the direct growth of graphene on insulated substrates is demonstrated using liquid metals. Here, the controllable growth process of graphene on a liquid surface to promote the development of attractive liquid CVD strategies is in focus. The exciting progress in controlled growth, etching, self-assembly, and delivery of graphene on a liquid surface is presented and discussed in depth. In addition, prospects and further developments in these exciting fields of graphene growth on a liquid surface are discussed.
Collapse
Affiliation(s)
- Jinxin Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
33
|
Liu WJ, Dong LZ, Li RH, Chen YJ, Sun SN, Li SL, Lan YQ. Different Protonic Species Affecting Proton Conductivity in Hollow Spherelike Polyoxometalates. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7030-7036. [PMID: 30672275 DOI: 10.1021/acsami.8b20509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyoxometalates (POMs), which possess strong acidity and chemical stability, are promising solid proton conductors and potential candidates for proton exchange membrane fuel cell applications. To investigate how factors such as proton concentration and carrier affect the overall proton conduction, we have synthesized new compounds HImMo132 (Im, imidazole), HMeImMo132, ILMo132, and TBAMo132 with hollow structures and HImPMo12 with a solid spherelike structure. These crystal models were prepared by encapsulating POM with organic molecules with different proton contents. Among them, the single-crystal sample of the hollow structure HImMo132 containing more proton sources shows a high proton conductivity of 4.98 × 10-2 S cm-1, which was approximately 1 order of magnitude greater than that of the solid cluster HImPMo12 with the same proton sources and 3 orders of magnitude greater than that of the proton-free organic cation-encapsulated giant ball TBAMo132. This study provides a theoretical guidance toward designing and developing new-generation proton conductors and studying their performances at the molecular level.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Long-Zhang Dong
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Run-Han Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Yong-Jun Chen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Sheng-Nan Sun
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Shun-Li Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Ya-Qian Lan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , P. R. China
| |
Collapse
|
34
|
Zhao Y, Gao C, Van der Bruggen B. Technology-driven layer-by-layer assembly of a membrane for selective separation of monovalent anions and antifouling. NANOSCALE 2019; 11:2264-2274. [PMID: 30657514 DOI: 10.1039/c8nr09086f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Selective separation of monovalent anions with reduced fouling is one of the major challenges for anion exchange membranes (AEM) in electrodialysis (ED). In this research, an alternating current layer-by-layer (AC∼LbL) assembly technology was first proposed and then applied to the construction of a durable multilayer with the selective separation of monovalent anions with reduced fouling. Under an alternating current (AC) electric field, the hydrophilic poly(4-styrenesulfonic acid-co-maleic acid) sodium salt and 2-hydroxypropyltrimethyl ammonium chloride chitosan were homogenized and rapidly assembled on a commercial original AEM and then crosslinked using 1,4-bis(2',3'-epoxypropyl) perfluoro-1-butane. In ED, the permselectivity and the selective separation efficiency [separation parameter between sulfate (SO42-) and chloride (Cl-) ions] of the resulting membrane (AC∼LbL#7.5 AEM) were 4.87 and 62%, respectively, whereas the original AEM had corresponding parameters of 0.81 and -8%, respectively. Furthermore, the AC∼LbL#7.5 AEM still retained a permselectivity of 4.52 and a selective separation efficiency for Cl- of 57% after 96 h of ED operation. In addition, the AC∼LbL#7.5 AEM showed an excellent antifouling property when three types of organic fouling materials: sodium dodecylbenzenesulfonate, bovine serum albumin and humic acid were used as model foulants.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | |
Collapse
|
35
|
Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019; 48:5717-5751. [DOI: 10.1039/c9cs00174c] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesis, bio-functionalization, and multifunctional activities of superparamagnetic-nanostructures have been extensively reviewed with a particular emphasis on their uses in a range of disease-specific biomarker detection and associated challenges.
Collapse
Affiliation(s)
- Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Department of Biochemistry & Molecular Biology
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| | - Muhammad Younus
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science & Technology
- Sylhet 3114
- Bangladesh
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- School of Mechanical and Mining Engineering
| | - Yoshio Bando
- International Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
- Institute of Molecular Plus
| | - Muhammad J. A. Shiddiky
- School of Environment and Sciences and Queensland Micro- and Nanotechnology Centre (QMMC)
- Griffith University
- QLD 4111
- Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| |
Collapse
|
36
|
Pang Y, Zhang S, Chen S, Liang J, Li M, Ding D, Ding S. Transition-Metal Oxides Anchored on Nitrogen-Enriched Carbon Ribbons for High-Performance Pseudocapacitors. Chemistry 2018; 24:16104-16112. [DOI: 10.1002/chem.201802951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yuanchao Pang
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Shuyang Zhang
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Sheng Chen
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Jin Liang
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Mingyan Li
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Dawei Ding
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Shujiang Ding
- Department Department of Applied Chemistry, School of Science, Xi'an Key Labotorary of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of electrical insulation and power equipment; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| |
Collapse
|
37
|
Keum K, Lee G, Lee H, Yun J, Park H, Hong SY, Song C, Kim JW, Ha JS. Wire-Shaped Supercapacitors with Organic Electrolytes Fabricated via Layer-by-Layer Assembly. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26248-26257. [PMID: 30004211 DOI: 10.1021/acsami.8b07113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A wire-shaped supercapacitor (WSS) has structural advantages of high flexibility and ease of incorporation into conventional textile substrates. In this work, we report a thin reproducible WSS fabricated via layer-by-layer (LbL) assembly of multiwalled carbon nanotubes (MWCNTs), combined with an organic electrolyte of propylene carbonate (PC)-acetonitrile (ACN)-lithium perchlorate (LiClO4)-poly(methyl methacrylate) (PMMA) that extends the voltage window to 1.6 V. The MWCNTs were uniformly deposited on a curved surface of a thin Au wire using an LbL assembly technique, resulting in linearly increased areal capacitance of the fabricated WSS. Vanadium oxide was coated on the LbL-assembled MWCNT electrode to induce pseudocapacitance, hence enhancing the overall capacitance of the fabricated WSS. Both the cyclic stability of the WSS and the viscosity of the electrolyte could be optimized by controlling the mixing ratio of PC to ACN. As a result, the fabricated WSS exhibits an areal capacitance of 5.23 mF cm-2 at 0.2 mA cm-2, an energy density of 1.86 μ W h cm-2, and a power density of 8.5 mW cm-2, in addition to a high cyclic stability with a 94% capacitance retention after 10 000 galvanostatic charge-discharge cycles. This work demonstrates a great potential of the fabricated scalable WSS in the application to high-performance textile electronics as an integrated energy storage device.
Collapse
Affiliation(s)
- Kayeon Keum
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro, Seoul 02841 , Republic of Korea
| | - Geumbee Lee
- KU-KIST Graduate School of Converging Science and Technology , 145 Anam-ro, Seoul 02841 , Republic of Korea
| | - Hanchan Lee
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro, Seoul 02841 , Republic of Korea
| | - Junyeong Yun
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro, Seoul 02841 , Republic of Korea
| | - Heun Park
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro, Seoul 02841 , Republic of Korea
| | - Soo Yeong Hong
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro, Seoul 02841 , Republic of Korea
| | - Changhoon Song
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro, Seoul 02841 , Republic of Korea
| | - Jung Wook Kim
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro, Seoul 02841 , Republic of Korea
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering , Korea University , 145 Anam-ro, Seoul 02841 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , 145 Anam-ro, Seoul 02841 , Republic of Korea
| |
Collapse
|
38
|
An Q, Huang T, Shi F. Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications. Chem Soc Rev 2018; 47:5061-5098. [PMID: 29767189 DOI: 10.1039/c7cs00406k] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners. In this review, we document the chemical methods used to build covalent LbL films as well as the film properties and applications achievable using various film design strategies. We expect to translate the achievement in the discipline of chemistry (film-building methods) into readily available techniques for materials engineers and thus provide diverse functional material design protocols to address the energy, biomedical, and environmental challenges faced by the entire scientific community.
Collapse
Affiliation(s)
- Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | | | | |
Collapse
|
39
|
Zissimou GA, Kourtellaris A, Manoli M, Koutentis PA. Redox Active Quinoidal 1,2,4-Benzotriazines. J Org Chem 2018; 83:9391-9402. [DOI: 10.1021/acs.joc.8b01311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Georgia A. Zissimou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Andreas Kourtellaris
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Maria Manoli
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | |
Collapse
|
40
|
Partanen L, Murdachaew G, Laasonen K. Oxygen Evolution Reaction Kinetic Barriers on Nitrogen-Doped Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:12892-12899. [PMID: 30405870 PMCID: PMC6203181 DOI: 10.1021/acs.jpcc.8b03269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Indexed: 05/17/2023]
Abstract
We investigate kinetic barriers for the oxygen evolution reaction (OER) on singly and doubly nitrogen-doped single-walled carbon nanotubes (NCNTs) using the climbing image nudged elastic band method with solvent effects represented by a 45-water-molecule droplet. The studied sites were chosen based on a previous study of the same systems utilizing a thermodynamic model which ignored both solvent effects and kinetic barriers. According to that model, the two studied sites, one on a singly nitrogen-doped CNT and the other on a doubly doped CNT, were approximately equally suitable for OER. For the four-step OER process, however, our reaction barrier calculations showed a clear difference in the rate-determining *OOH formation step between the two systems, with barrier heights differing by more than 0.4 eV. Thus, the simple thermodynamic model may alone be insufficient for identifying optimal OER sites. Of the remaining three reaction steps, the two H2O forming ones were found to be barrierless in all cases. We also performed solvent-free barrier calculations on NCNTs and undoped CNTs. Substantial differences were observed in the energies of the intermediates when the solvent was present. In general, the observed low activation energy barriers for these reactions corroborate both experimental and theoretical findings of the utility of NCNTs for OER catalysis.
Collapse
|
41
|
Gunjakar JL, Inamdar AI, Hou B, Cha S, Pawar SM, Abu Talha AA, Chavan HS, Kim J, Cho S, Lee S, Jo Y, Kim H, Im H. Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. NANOSCALE 2018; 10:8953-8961. [PMID: 29634061 DOI: 10.1039/c7nr09626g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A mesoporous nanoplate network of two-dimensional (2D) layered nickel hydroxide Ni(OH)2 intercalated with polyoxovanadate anions (Ni(OH)2-POV) was built using a chemical solution deposition method. This approach will provide high flexibility for controlling the chemical composition and the pore structure of the resulting Ni(OH)2-POV nanohybrids. The layer-by-layer ordered growth of the Ni(OH)2-POV is demonstrated by powder X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The random growth of the intercalated Ni(OH)2-POV nanohybrids leads to the formation of an interconnected network morphology with a highly porous stacking structure whose porosity is controlled by changing the ratio of Ni(OH)2 and POV. The lateral size and thickness of the Ni(OH)2-POV nanoplates are ∼400 nm and from ∼5 nm to 7 nm, respectively. The obtained thin films are highly active electrochemical capacitor electrodes with a maximum specific capacity of 1440 F g-1 at a current density of 1 A g-1, and they withstand up to 2000 cycles with a capacity retention of 85%. The superior electrochemical performance of the Ni(OH)2-POV nanohybrids is attributed to the expanded mesoporous surface area and the intercalation of the POV anions. The experimental findings highlight the outstanding electrochemical functionality of the 2D Ni(OH)2-POV nanoplate network that will provide a facile route for the synthesis of low-dimensional hybrid nanomaterials for a highly active supercapacitor electrode.
Collapse
Affiliation(s)
- Jayavant L Gunjakar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Diabetes is a complex immune disorder that requires extensive medical care beyond glycemic control. Recently, the prevalence of diabetes, particularly type 1 diabetes (T1D), has significantly increased from 5% to 10%, and this has affected the health-associated complication incidences in children and adults. The 2012 statistics by the American Diabetes Association reported that 29.1 million Americans (9.3% of the population) had diabetes, and 86 million Americans (age ≥20 years, an increase from 79 million in 2010) had prediabetes. Personalized glucometers allow diabetes management by easy monitoring of the high millimolar blood glucose levels. In contrast, non-glucose diabetes biomarkers, which have gained considerable attention for early prediction and provide insights about diabetes metabolic pathways, are difficult to measure because of their ultra-low levels in blood. Similarly, insulin pumps, sensors, and insulin monitoring systems are of considerable biomedical significance due to their ever-increasing need for managing diabetic, prediabetic, and pancreatic disorders. Our laboratory focuses on developing electrochemical immunosensors and surface plasmon microarrays for minimally invasive insulin measurements in clinical sample matrices. By utilizing antibodies or aptamers as the insulin-selective biorecognition elements in combination with nanomaterials, we demonstrated a series of selective and clinically sensitive electrochemical and surface plasmon immunoassays. This review provides an overview of different electrochemical and surface plasmon immunoassays for insulin. Considering the paramount importance of diabetes diagnosis, treatment, and management and insulin pumps and monitoring devices with focus on both T1D (insulin-deficient condition) and type 2 diabetes (insulin-resistant condition), this review on insulin bioassays is timely and significant.
Collapse
Affiliation(s)
- Vini Singh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
43
|
Freire C, Fernandes DM, Nunes M, Abdelkader VK. POM & MOF-based Electrocatalysts for Energy-related Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201701926] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cristina Freire
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre, s/n, 4169-007 Porto Portugal
| | - Diana M. Fernandes
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre, s/n, 4169-007 Porto Portugal
| | - Marta Nunes
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre, s/n, 4169-007 Porto Portugal
| | - Victor K. Abdelkader
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre, s/n, 4169-007 Porto Portugal
| |
Collapse
|
44
|
Liu Y, Zhang J, Cheng Y, Jiang SP. Effect of Carbon Nanotubes on Direct Electron Transfer and Electrocatalytic Activity of Immobilized Glucose Oxidase. ACS OMEGA 2018; 3:667-676. [PMID: 30023785 PMCID: PMC6044782 DOI: 10.1021/acsomega.7b01633] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/05/2018] [Indexed: 05/29/2023]
Abstract
Carbon nanotubes (CNTs) are excellent supports for electrocatalysts because of their large surface area, excellent electronic conductivity, and high chemical and structural stability. In the present study, the activity of CNTs on direct electron transfer (DET) and on immobilized glucose oxidase (GOX) is studied as a function of number of walls of CNTs. The results indicate that the GOX immobilized by the CNTs maintains its electrocatalytic activity toward glucose; however, the DET and electrocatalytic activity of GOX depend strongly on the number of inner tubes of CNTs. The GOX immobilized on triple-walled CNTs (TWNTs) has the highest electron-transfer rate constant, 1.22 s-1, for DET, the highest sensitivity toward glucose detection, 66.11 ± 5.06 μA mM-1 cm-2, and the lowest apparent Michaelis-Menten constant, 6.53 ± 0.58 mM, as compared to GOX immobilized on single-walled and multiwalled CNTs. The promotion effect of CNTs on the GOX electrocatalytic activity and DET is most likely due to the electron-tunneling effect between the outer wall and inner tubes of TWNTs. The results of this study have general implications for the fundamental understanding of the role of CNT supports in DET processes and can be used for the better design of more effective electrocatalysts for biological processes including biofuel cells and biosensors.
Collapse
Affiliation(s)
- Yuxiang Liu
- College
of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Fuels
and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - Jin Zhang
- Fuels
and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - Yi Cheng
- Fuels
and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - San Ping Jiang
- Fuels
and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| |
Collapse
|
45
|
Guzmán E, Mateos-Maroto A, Ruano M, Ortega F, Rubio RG. Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Adv Colloid Interface Sci 2017; 249:290-307. [PMID: 28455094 DOI: 10.1016/j.cis.2017.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Soft assemblies obtained following the Layer-by-Layer (LbL) approach are accounted among the most interesting systems for designing biomaterials and drug delivery platforms. This is due to the extraordinary versatility and flexibility offered by the LbL method, allowing for the fabrication of supramolecular multifunctional materials using a wide range of building blocks through different types of interactions (electrostatic, hydrogen bonds, acid-base or coordination interactions, or even covalent bonds). This provides the bases for the building of materials with different sizes, shapes, compositions and morphologies, gathering important possibilities for tuning and controlling the physico-chemical properties of the assembled materials with precision in the nanometer scale, and consequently creating important perspective for the application of these multifunctional materials as cargo systems in many areas of technological interest. This review studies different physico - chemical aspects associated with the assembly of supramolecular materials by the LbL method, paying special attention to the description of these aspects playing a central role in the application of these materials as cargo platforms for encapsulation and release of active compounds.
Collapse
|
46
|
Yuan Y, Shi X, Gan Z, Wang F. Modification of porous PLGA microspheres by poly-l-lysine for use as tissue engineering scaffolds. Colloids Surf B Biointerfaces 2017; 161:162-168. [PMID: 29078165 DOI: 10.1016/j.colsurfb.2017.10.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/29/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022]
Abstract
Due to their good biocompatibility, biodegradability and special shapes, porous poly(lactic-co-glycolic acid) (PLGA) microspheres show a wide application in the field of tissue engineering. Herein we demonstrate a simple and low-cost method for modifying porous PLGA microspheres with poly-l-lysine (PLL) to promote cell growth on the microspheres. Porous PLGA microspheres were first treated by sodium hydroxide (NaOH) solution to introduce carboxyl groups on their surface. Then, the hydrolyzed microspheres (PLGA-H) were immerged in PLL solution to yield PLL-impregnated microspheres (PLGA-PLL). Cell experiments showed that although the cytotoxicity of microspheres was slightly increased after PLL modification, their cell viability was still higher than 85%. Compared with PLGA and PLGA-H microspheres, PLGA-PLL microspheres were more favorable for MG63 cell to attach and proliferate due to their increased initial cell attachment numbers and enhanced cell-matrix interactions. This new modification method of porous PLGA microspheres proposes a route toward efficient repair of tissue defects at reduced risk and cost level.
Collapse
Affiliation(s)
- Yin Yuan
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xudong Shi
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhihua Gan
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fosong Wang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
47
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
48
|
Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
In Situ Synthesis of Silver Nanoparticles on the Polyelectrolyte-Coated Sericin/PVA Film for Enhanced Antibacterial Application. MATERIALS 2017; 10:ma10080967. [PMID: 28820482 PMCID: PMC5578333 DOI: 10.3390/ma10080967] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 12/03/2022]
Abstract
To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application.
Collapse
|
50
|
Shi Q, Qian Z, Liu D, Liu H. Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly. Front Physiol 2017; 8:574. [PMID: 28824462 PMCID: PMC5545601 DOI: 10.3389/fphys.2017.00574] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022] Open
Abstract
In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized.
Collapse
Affiliation(s)
- Quan Shi
- Department of Stomatology, Chinese PLA General HospitalBeijing, China
| | - Zhiyong Qian
- School of Biological Science and Medical Engineering, Beihang UniversityBeijing, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences (AMMS)Beijing, China
| | - Hongchen Liu
- Department of Stomatology, Chinese PLA General HospitalBeijing, China
| |
Collapse
|