1
|
Gupta K, Tian Y, Eudes A, Scheller HV, Singh AK, Adams PD, Andeer PF, Northen TR. EcoFAB 3.0: a sterile system for studying sorghum that replicates previous field and greenhouse observations. FRONTIERS IN PLANT SCIENCE 2024; 15:1440728. [PMID: 39435021 PMCID: PMC11491363 DOI: 10.3389/fpls.2024.1440728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Introduction Studying plant-microbe interactions is one of the key elements in understanding the path to sustainable agricultural practices. These interactions play a crucial role in ensuring survival of healthy plants, soil and microbial communities. Many platforms have been developed over the years to isolate these highly complex interactions however, these are designed for small model plants. This creates a need for complementary devices for larger plants, such as sorghum. Methods This work introduces a novel platform, EcoFAB 3.0, which is designed to enable studying bioenergy plants such as sorghum for up to 4 weeks in a controlled sterile environment. Several other advantages of this platform such as dark root chambers and user-friendly assembly are also discussed in this work. Results and discussion EcoFAB 3.0 was found to replicate previous greenhouse and field observations when comparing an engineered sorghum line overproducing 4-hydroxybenzoic acid (4-HBA) and wildtype (variety BTx430). Consistent with greenhouse and field observations, it was found that the engineered line of sorghum grown in EcoFAB 3.0 had a higher 4-HBA content and a lower dry biomass.
Collapse
Affiliation(s)
- Kshitiz Gupta
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Yang Tian
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aymerick Eudes
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Henrik V. Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anup K. Singh
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul D. Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter F. Andeer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Trent R. Northen
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
2
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
3
|
Tang X, Huang Q, Arai T, Liu X. Cell pairing for biological analysis in microfluidic devices. BIOMICROFLUIDICS 2022; 16:061501. [PMID: 36389274 PMCID: PMC9646252 DOI: 10.1063/5.0095828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cell pairing at the single-cell level usually allows a few cells to contact or seal in a single chamber and provides high-resolution imaging. It is pivotal for biological research, including understanding basic cell functions, creating cancer treatment technologies, developing drugs, and more. Laboratory chips based on microfluidics have been widely used to trap, immobilize, and analyze cells due to their high efficiency, high throughput, and good biocompatibility properties. Cell pairing technology in microfluidic devices provides spatiotemporal research on cellular interactions and a highly controlled approach for cell heterogeneity studies. In the last few decades, many researchers have emphasized cell pairing research based on microfluidics. They designed various microfluidic device structures for different biological applications. Herein, we describe the current physical methods of microfluidic devices to trap cell pairs. We emphatically summarize the practical applications of cell pairing in microfluidic devices, including cell fusion, cell immunity, gap junction intercellular communication, cell co-culture, and other applications. Finally, we review the advances and existing challenges of the presented devices and then discuss the possible development directions to promote medical and biological research.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Chen H, Meng H, Chen Z, Wang T, Chen C, Zhu Y, Jin J. Size-Based Sorting and In Situ Clonal Expansion of Single Cells Using Microfluidics. BIOSENSORS 2022; 12:1100. [PMID: 36551067 PMCID: PMC9775143 DOI: 10.3390/bios12121100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Separation and clonal culture and growth kinetics analysis of target cells in a mixed population is critical for pathological research, disease diagnosis, and cell therapy. However, long-term culture with time-lapse imaging of the isolated cells for clonal analysis is still challenging. This paper reports a microfluidic device with four-level filtration channels and a pneumatic microvalve for size sorting and in situ clonal culture of single cells. The valve was on top of the filtration channels and used to direct fluid flow by membrane deformation during separation and long-term culture to avoid shear-induced cell deformation. Numerical simulations were performed to evaluate the influence of device parameters affecting the pressure drop across the filtration channels. Then, a droplet model was employed to evaluate the impact of cell viscosity, cell size, and channel width on the pressure drop inducing cell deformation. Experiments showed that filtration channels with a width of 7, 10, 13, or 17 μm successfully sorted K562 cells into four different size ranges at low driving pressure. The maximum efficiency of separating K562 cells from media and whole blood was 98.6% and 89.7%, respectively. Finally, the trapped single cells were cultured in situ for 4-7 days with time-lapse imaging to obtain the lineage trees and growth curves. Then, the time to the first division, variation of cell size before and after division, and cell fusion were investigated. This proved that cells at the G1 and G2 phases were of significantly distinct sizes. The microfluidic device for size sorting and clonal expansion will be of tremendous application potential in single-cell studies.
Collapse
Affiliation(s)
- Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, Kowloon, City University of Hong Kong, Hong Kong, China
| | - Tong Wang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| |
Collapse
|
5
|
Yang H, Sinha N, Rand U, Hauser H, Köster M, de Greef TFA, Tel J. A universal microfluidic approach for integrated analysis of temporal homocellular and heterocellular signaling and migration dynamics. Biosens Bioelectron 2022; 211:114353. [PMID: 35594624 DOI: 10.1016/j.bios.2022.114353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Microfluidics offers precise and dynamic control of microenvironments for the study of temporal cellular responses. However, recent research focusing solely on either homocellular (single-cell, population) or heterocellular response may yield insufficient output, which possibly leads to partial comprehension about the underlying mechanisms of signaling events and corresponding cellular behaviors. Here, a universal microfluidic approach is developed for integrated analysis of temporal signaling and cell migration dynamics in multiple cellular contexts (single-cell, population and coculture). This approach allows to confine the desired number or mixture of specific cell sample types in a single device. Precise single cell seeding was achieved manually with bidirectional controllability. Coupled with time-lapse imaging, temporal cellular responses can be observed with single-cell resolution. Using NIH3T3 cells stably expressing signal transducer and activator of transcription 1/2 (STAT1/2) activity biosensors, temporal STAT1/2 activation and cell migration dynamics were explored in isolated single cells, populations and cocultures stimulated with temporal inputs, such as single-pulse and continuous signals of interferon γ (IFNγ) or lipopolysaccharide (LPS). We demonstrate distinct dynamic responses of fibroblasts in different cellular contexts. Our presented approach facilitates a multi-dimensional understanding of STAT signaling and corresponding migration behaviors.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tom F A de Greef
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, the Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands.
| |
Collapse
|
6
|
Anggraini D, Ota N, Shen Y, Tang T, Tanaka Y, Hosokawa Y, Li M, Yalikun Y. Recent advances in microfluidic devices for single-cell cultivation: methods and applications. LAB ON A CHIP 2022; 22:1438-1468. [PMID: 35274649 DOI: 10.1039/d1lc01030a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-cell analysis is essential to improve our understanding of cell functionality from cellular and subcellular aspects for diagnosis and therapy. Single-cell cultivation is one of the most important processes in single-cell analysis, which allows the monitoring of actual information of individual cells and provides sufficient single-cell clones and cell-derived products for further analysis. The microfluidic device is a fast-rising system that offers efficient, effective, and sensitive single-cell cultivation and real-time single-cell analysis conducted either on-chip or off-chip. Here, we introduce the importance of single-cell cultivation from the aspects of cellular and subcellular studies. We highlight the materials and structures utilized in microfluidic devices for single-cell cultivation. We further discuss biological applications utilizing single-cell cultivation-based microfluidics, such as cellular phenotyping, cell-cell interactions, and omics profiling. Finally, present limitations and future prospects of microfluidics for single-cell cultivation are also discussed.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Nobutoshi Ota
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Zhang W, Song B, Bai X, Jia L, Song L, Guo J, Feng L. Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution. LAB ON A CHIP 2021; 21:4760-4771. [PMID: 34632476 DOI: 10.1039/d1lc00628b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controllable on-chip multimodal manipulation of micro-objects in microfluidic devices is urgently required for enhancing the efficiency of potential biomedical applications. However, fixed design and driving models make it difficult to achieve switchable multifunction efficiently in a single device. In this study, a versatile bubble-based acoustofluidic device is proposed for multimodal manipulation of micro-objects in a biocompatible manner. Identical bubbles trapped over the bottom microcavities are made to flexibly switch between four different oscillatory motions by varying the applied frequency to generate corresponding modes of streaming patterns in the microchannel. Such regular modes enable stable transportation, trapping, 3D rotation, and circular revolution of the micro-objects, which were experimentally and numerically verified. The mode-switchable manipulations can be noninvasively applied to particles, cells, and organisms with different sizes, shapes, and quantities and can be controlled by key driving parameters. Moreover, 3D cell reconstruction is developed by applying the out-of-plane rotational mode and analyzed for illustration of cell surface morphology while quantifying reliably basic cell properties. Finally, a simple platform is established to integrate user-friendly function control and reconstruction analysis. The mode-switchable acoustofluidic device features a versatile, controllable, and contactless micro-object manipulation method, which provides an efficient solution for biomedical applications.
Collapse
Affiliation(s)
- Wei Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Bin Song
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Xue Bai
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Lina Jia
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Li Song
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Jingli Guo
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
8
|
He CK, Hsu CH. Microfluidic technology for multiple single-cell capture. BIOMICROFLUIDICS 2021; 15:061501. [PMID: 34777676 PMCID: PMC8577867 DOI: 10.1063/5.0057685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
Microfluidic devices are widely used in single-cell capture and for pairing single cells or groups of cells for cell-cell interaction analysis; these advances have improved drug screening and cell signal transduction analysis. The complex in vivo environment involves interactions between two cells and among multiple cells of the same or different phenotypes. This study reviewed the core principles and performance of several microfluidic multiple- and single-cell capture methods, namely, the microwell, valve, trap, and droplet methods. The advantages and disadvantages of the methods were compared, and suggestions regarding their application to multiple-cell capture were provided. The results may serve as a reference for research on microfluidic multiple single-cell coculture technology.
Collapse
|
9
|
Kim AG, Kim TW, Kwon WK, Lee KH, Jeong S, Hwang MH, Choi H. Microfluidic Chip with Low Constant-Current Stimulation (LCCS) Platform: Human Nucleus Pulposus Degeneration In Vitro Model for Symptomatic Intervertebral Disc. MICROMACHINES 2021; 12:1291. [PMID: 34832700 PMCID: PMC8621874 DOI: 10.3390/mi12111291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP) in the lumbar spine. This phenomenon is caused by several processes, including matrix degradation in IVD tissues, which is mediated by matrix metalloproteinases (MMPs) and inflammatory responses, which can be mediated by interactions among immune cells, such as macrophages and IVD cells. In particular, interleukin (IL)-1 beta (β), which is a master regulator secreted by macrophages, mediates the inflammatory response in nucleus pulposus cells (NP) and plays a significant role in the development or progression of diseases. In this study, we developed a custom electrical stimulation (ES) platform that can apply low-constant-current stimulation (LCCS) signals to microfluidic chips. Using this platform, we examined the effects of LCCS on IL-1β-mediated inflammatory NP cells, administered at various currents (5, 10, 20, 50, and 100 μA at 200 Hz). Our results showed that the inflammatory response, induced by IL-1β in human NP cells, was successfully established. Furthermore, 5, 10, 20, and 100 μA LCCS positively modulated inflamed human NP cells' morphological phenotype and kinetic properties. LCCS could affect the treatment of degenerative diseases, revealing the applicability of the LCCS platform for basic research of electroceuticals.
Collapse
Affiliation(s)
- An-Gi Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Tae-Won Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Woo-Keun Kwon
- Department of Neurosurgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Kwang-Ho Lee
- Division of Mechanical and Biomedical, Mechatronics, and Materials Science and Engineering, College of Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae 50834, Korea;
| | - Min-Ho Hwang
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| |
Collapse
|
10
|
Fan L, Guan Z, Luo T, Ren J, Lam RHW, Sun D. High-throughput deterministic pairing and coculturing of single cells in a microwell array using combined hydrodynamic and recirculation flow captures. BIOMICROFLUIDICS 2021; 15:054103. [PMID: 34737839 PMCID: PMC8550803 DOI: 10.1063/5.0066668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/06/2021] [Indexed: 05/16/2023]
Abstract
Single-cell level coculture facilitates the study of cellular interactions for uncovering unknown physiological mechanisms, which are crucial for the development of new therapies for diseases. However, efficient approaches for high-throughput deterministic pairing of single cells and traceable coculture remain lacking. In this study, we report a new microfluidic device, which combines hydrodynamic and recirculation flow captures, to achieve high-throughput and deterministic pairing of single cells in a microwell array for traceable coculture. Compared with the existing techniques, the developed device exhibits advantages with regard to pairing efficiency, throughput, determinacy, and traceability. Through repeating a two-step method, which sequentially captures single cells in a meandering channel and a microwell array, cell number and type can be easily controlled. Double and triple single-cell pairings have been demonstrated with an efficiency of 72.2% and 38.0%, respectively. Cellular engulfment using two breast cell lines is investigated on a developed microfluidic chip as a biological case study, in which the morphological characteristics and the incidence rate are analyzed. This research provides an efficient and reliable alternative for the coculture of single cells on the microfluidic platform for various biomedical applications, such as studying cellular engulfment and tumor sphere formation under single-cell pairing condition.
Collapse
Affiliation(s)
- Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhangyan Guan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Tao Luo
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, China
| | - Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
11
|
Pang L, Ding J, Liu XX, Kou Z, Guo L, Xu X, Fan SK. Microfluidics-Based Single-Cell Research for Intercellular Interaction. Front Cell Dev Biol 2021; 9:680307. [PMID: 34458252 PMCID: PMC8397490 DOI: 10.3389/fcell.2021.680307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular interaction between cell-cell and cell-ECM is critical to numerous biology and medical studies, such as stem cell differentiation, immunotherapy and tissue engineering. Traditional methods employed for delving into intercellular interaction are limited by expensive equipment and sophisticated procedures. Microfluidics technique is considered as one of the powerful measures capable of precisely capturing and manipulating cells and achieving low reagent consumption and high throughput with decidedly integrated functional components. Over the past few years, microfluidics-based systems for intercellular interaction study at a single-cell level have become frequently adopted. This review focuses on microfluidic single-cell studies for intercellular interaction in a 2D or 3D environment with a variety of cell manipulating techniques and applications. The challenges to be overcome are highlighted.
Collapse
Affiliation(s)
- Long Pang
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Xi-Xian Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Kou
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Lulu Guo
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Xi Xu
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
12
|
Li Y, Liu X, Huang Q, Ohta AT, Arai T. Bubbles in microfluidics: an all-purpose tool for micromanipulation. LAB ON A CHIP 2021; 21:1016-1035. [PMID: 33538756 DOI: 10.1039/d0lc01173h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent decades, the integration of microfluidic devices and multiple actuation technologies at the microscale has greatly contributed to the progress of related fields. In particular, microbubbles are playing an increasingly important role in microfluidics because of their unique characteristics that lead to specific responses to different energy sources and gas-liquid interactions. Many effective and functional bubble-based micromanipulation strategies have been developed and improved, enabling various non-invasive, selective, and precise operations at the microscale. This review begins with a brief introduction of the morphological characteristics and formation of microbubbles. The theoretical foundations and working mechanisms of typical micromanipulations based on acoustic, thermodynamic, and chemical microbubbles in fluids are described. We critically review the extensive applications and the frontline advances of bubbles in microfluidics, including microflow patterns, position and orientation control, biomedical applications, and development of bubble-based microrobots. We lastly present an outlook to provide directions for the design and application of microbubble-based micromanipulation tools and attract the attention of relevant researchers to the enormous potential of microbubbles in microfluidics.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
13
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
14
|
Chen Y, Ouyang X, Wu Y, Guo S, Xie Y, Wang G. Co-culture and Mechanical Stimulation on Mesenchymal Stem Cells and Chondrocytes for Cartilage Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:54-60. [PMID: 31660820 DOI: 10.2174/1574888x14666191029104249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023]
Abstract
Defects in articular cartilage injury and chronic osteoarthritis are very widespread and common, and the ability of injured cartilage to repair itself is limited. Stem cell-based cartilage tissue engineering provides a promising therapeutic option for articular cartilage damage. However, the application of the technique is limited by the number, source, proliferation, and differentiation of stem cells. The co-culture of mesenchymal stem cells and chondrocytes is available for cartilage tissue engineering, and mechanical stimulation is an important factor that should not be ignored. A combination of these two approaches, i.e., co-culture of mesenchymal stem cells and chondrocytes under mechanical stimulation, can provide sufficient quantity and quality of cells for cartilage tissue engineering, and when combined with scaffold materials and cytokines, this approach ultimately achieves the purpose of cartilage repair and reconstruction. In this review, we focus on the effects of co-culture and mechanical stimulation on mesenchymal stem cells and chondrocytes for articular cartilage tissue engineering. An in-depth understanding of the impact of co-culture and mechanical stimulation of mesenchymal stem cells and chondrocytes can facilitate the development of additional strategies for articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Yawen Chen
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Xinli Ouyang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Yide Wu
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Shaojia Guo
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Yongfang Xie
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Guohui Wang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| |
Collapse
|
15
|
Manzoor AA, Romita L, Hwang DK. A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmad Ali Manzoor
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Lauren Romita
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
16
|
Cai X, Briggs RG, Homburg HB, Young IM, Davis EJ, Lin YH, Battiste JD, Sughrue ME. Application of microfluidic devices for glioblastoma study: current status and future directions. Biomed Microdevices 2020; 22:60. [PMID: 32870410 DOI: 10.1007/s10544-020-00516-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is one of the most malignant primary brain tumors. This neoplasm is the hardest to treat and has a bad prognosis. Because of the characteristics of genetic heterogeneity and frequent recurrence, a successful cure for the disease is unlikely. Increasing evidence has revealed that the GBM stem cell-like cells (GSCs) and microenvironment are key elements in GBM recurrence and treatment failure. To better understand the mechanisms underlying this disease and to develop more effective therapeutic strategies for treatment, suitable approaches, techniques, and model systems closely mimicking real GBM conditions are required. Microfluidic devices, a model system mimicking the in vivo brain microenvironment, provide a very useful tool to analyze GBM cell behavior, their correlation with tumor malignancy, and the efficacy of multiple drug treatment. This paper reviews the applications of microfluidic devices in GBM research and summarizes progress and perspectives in this field.
Collapse
Affiliation(s)
- Xue Cai
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hannah B Homburg
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | | | | | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Michael E Sughrue
- Cingulum Health, Sydney, Australia.
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7, Barker Street, Randwick, New South Wales, 2031, Australia.
| |
Collapse
|
17
|
|
18
|
Kumar S, Gunaseelan M, Vaippully R, Kumar A, Ajith M, Vaidya G, Dutta S, Roy B. Pitch-rotational manipulation of single cells and particles using single-beam thermo-optical tweezers. BIOMEDICAL OPTICS EXPRESS 2020; 11:3555-3566. [PMID: 33014551 PMCID: PMC7510922 DOI: 10.1364/boe.392901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 05/28/2023]
Abstract
3D pitch rotation of microparticles and cells assumes importance in a wide variety of applications in biology, physics, chemistry and medicine. Applications such as cell imaging and injection benefit from pitch-rotational manipulation. Generation of such motion in single beam optical tweezers has remained elusive due to the complexities of generating high enough ellipticity perpendicular to the direction of propagation. Further, trapping a perfectly spherical object at two locations and subsequent pitch rotation hasn't yet been demonstrated to be possible. Here, we use hexagonal-shaped upconverting particles and single cells trapped close to a gold-coated glass cover slip in a sample chamber to generate complete 360 degree and continuous pitch motion even with a single optical tweezer beam. The tweezers beam passing through the gold surface is partially absorbed and generates a hot-spot to produce circulatory convective flows in the vicinity which rotates the objects. The rotation rate can be controlled by the intensity of the laser light. Thus such a simple configuration can turn the particle in the pitch sense. The circulatory flows in this technique have a diameter of about 5 μm which is smaller than those reported using acousto-fluidic techniques.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M. Gunaseelan
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Amrendra Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Mithun Ajith
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gaurav Vaidya
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Soumya Dutta
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
19
|
Nagai M, Kato K, Soga S, Santra TS, Shibata T. Scalable Parallel Manipulation of Single Cells Using Micronozzle Array Integrated with Bidirectional Electrokinetic Pumps. MICROMACHINES 2020; 11:mi11040442. [PMID: 32331468 PMCID: PMC7231381 DOI: 10.3390/mi11040442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
High throughput reconstruction of in vivo cellular environments allows for efficient investigation of cellular functions. If one-side-open multi-channel microdevices are integrated with micropumps, the devices will achieve higher throughput in the manipulation of single cells while maintaining flexibility and open accessibility. This paper reports on the integration of a polydimethylsiloxane (PDMS) micronozzle array and bidirectional electrokinetic pumps driven by DC-biased AC voltages. Pt/Ti and indium tin oxide (ITO) electrodes were used to study the effect of DC bias and peak-to-peak voltage and electrodes in a low conductivity isotonic solution. The flow was bidirectionally controlled by changing the DC bias. A pump integrated with a micronozzle array was used to transport single HeLa cells into nozzle holes. The application of DC-biased AC voltage (100 kHz, 10 Vpp, and VDC: -4 V) provided a sufficient electroosmotic flow outside the nozzle array. This integration method of nozzle and pumps is anticipated to be a standard integration method. The operating conditions of DC-biased AC electrokinetic pumps in a biological buffer was clarified and found useful for cell manipulation.
Collapse
Affiliation(s)
- Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (K.K.); (S.S.); (T.S.)
- Correspondence: ; Tel.: +81-532-44-6701
| | - Keita Kato
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (K.K.); (S.S.); (T.S.)
| | - Satoshi Soga
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (K.K.); (S.S.); (T.S.)
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India;
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (K.K.); (S.S.); (T.S.)
| |
Collapse
|
20
|
Scheideler OJ, Yang C, Kozminsky M, Mosher KI, Falcón-Banchs R, Ciminelli EC, Bremer AW, Chern SA, Schaffer DV, Sohn LL. Recapitulating complex biological signaling environments using a multiplexed, DNA-patterning approach. SCIENCE ADVANCES 2020; 6:eaay5696. [PMID: 32206713 PMCID: PMC7080440 DOI: 10.1126/sciadv.aay5696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/17/2019] [Indexed: 05/22/2023]
Abstract
Elucidating how the spatial organization of extrinsic signals modulates cell behavior and drives biological processes remains largely unexplored because of challenges in controlling spatial patterning of multiple microenvironmental cues in vitro. Here, we describe a high-throughput method that directs simultaneous assembly of multiple cell types and solid-phase ligands across length scales within minutes. Our method involves lithographically defining hierarchical patterns of unique DNA oligonucleotides to which complementary strands, attached to cells and ligands-of-interest, hybridize. Highlighting our method's power, we investigated how the spatial presentation of self-renewal ligand fibroblast growth factor-2 (FGF-2) and differentiation signal ephrin-B2 instruct single adult neural stem cell (NSC) fate. We found that NSCs have a strong spatial bias toward FGF-2 and identified an unexpected subpopulation exhibiting high neuronal differentiation despite spatially occupying patterned FGF-2 regions. Overall, our broadly applicable, DNA-directed approach enables mechanistic insight into how tissues encode regulatory information through the spatial presentation of heterogeneous signals.
Collapse
Affiliation(s)
- Olivia J. Scheideler
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Chun Yang
- Department of Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Molly Kozminsky
- California Institute for Quantitative Biosciences, University of California, Berkeley, 174 Stanley Hall, Berkeley, CA 94720, USA
| | - Kira I. Mosher
- California Institute for Quantitative Biosciences, University of California, Berkeley, 174 Stanley Hall, Berkeley, CA 94720, USA
| | - Roberto Falcón-Banchs
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Emma C. Ciminelli
- Department of Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Andrew W. Bremer
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Sabrina A. Chern
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
| | - David V. Schaffer
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, 201 Gilman Hall, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall #3190, Berkeley, CA 94720, USA
- Corresponding author. (D.V.S.); (L.L.S.)
| | - Lydia L. Sohn
- UC Berkeley–UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
- Department of Mechanical Engineering, University of California, Berkeley, 5118 Etcheverry Hall, Berkeley, CA 94720, USA
- Corresponding author. (D.V.S.); (L.L.S.)
| |
Collapse
|
21
|
Musa M. Single-cell analysis on stromal fibroblasts in the microenvironment of solid tumours. Adv Med Sci 2020; 65:163-169. [PMID: 31972467 DOI: 10.1016/j.advms.2019.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 06/27/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023]
Abstract
Besides malignant cells, the tumour microenvironment consists of various stromal cells such as cancer-associated fibroblasts (CAFs) and myofibroblasts. Accumulation of heterogeneous populations of stromal cells in solid tumours is associated with lower survival rates and cancer recurrence in patients. Certain limitations presented by conventional experimental designs and techniques in cancer research have led to poor understanding of the fundamental basis of cancer niche. Recent developments in single-cell techniques allow more in-depth studies of the tumour microenvironment. Analyses at the single-cell level enables the detection of rare cell types, characterization of intra-tumour cellular heterogeneity and analysis of the lineage output of malignant cells. This subsequently, provides valuable insights on better diagnostic methods and treatment avenues for cancer. This review explores the recent advancements and applications of single-cell technologies in cancer research pertaining to the study of stromal fibroblasts in the microenvironment of solid tumours.
Collapse
Affiliation(s)
- Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
22
|
Liu X, Li Y, Xu X, Zhang Y, Li B. Optical fan for single-cell screening. JOURNAL OF BIOPHOTONICS 2020; 13:e201900155. [PMID: 31325226 DOI: 10.1002/jbio.201900155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The single-cell screening has attracted great attentions in advanced biomedicine and tissue biology, especially for the early disease diagnosis and treatment monitoring. In this work, by using a specific-designed fiber probe with a flat facet, we propose an "optical fan" strategy to screen K562 cells at the single-cell level from a populations of RBCs. After the 980-nm laser beam injected into the fiber probe, the RBCs were blown away but holding target K562 cells in place. Further, multiple leukemic cells can be screened from hundreds of red blood cells, providing an efficient approach for the cell screening. The experimental results were interpreted by the numerical simulation, and the stiffness of optical fan was also discussed.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Li L, Wang H, Huang L, Michael SA, Huang W, Wu H. A Controllable, Centrifugal-Based Hydrodynamic Microfluidic Chip for Cell-Pairing and Studying Long-Term Communications between Single Cells. Anal Chem 2019; 91:15908-15914. [DOI: 10.1021/acs.analchem.9b04370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lijun Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huirong Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lu Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
| | - Sean Alan Michael
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
| | - Wei Huang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
| |
Collapse
|
24
|
Liu TK, Pang Y, Zhou ZZ, Yao R, Sun W. An integrated cell printing system for the construction of heterogeneous tissue models. Acta Biomater 2019; 95:245-257. [PMID: 31128321 DOI: 10.1016/j.actbio.2019.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022]
Abstract
A new three-dimensional (3D) cell printing system was developed and investigated to organize multiple cells/biomaterials with a control precision within 100 μm. This system can be used for the in vitro construction of heterogeneous tissue models. The proposed printing system was achieved by the integration of extrusion printing and alternating viscous and inertial force jetting (AVIFJ) techniques using dual-nozzle switching. In this technique, hydrogels containing high cell densities were extruded using extrusion printing, while droplets containing single cells were precisely manipulated using AVIFJ. The droplets that contained single cells were at the scale of pico-liters and could be accurately positioned at the micron scale. Stable hydrogel structures with adjustable diameters were also printed, with cell viabilities exceeding 90% after printing. A heterogeneous tumor model that contained spheroids and human umbilical vein endothelial cells (HUVECs) was then constructed using the established integrated cell printing system in a stepwise or simultaneous fashion. HUVEC-loaded droplets were observed to locate around the preformed tumor spheroids as designed. Cells and spheroids in the model maintained high cell viability and sustained growth throughout the culture period. The ELISA results of albumin production also proved that the spheroids maintained increased cellular function during the culture. These results demonstrated the feasibility of this integrated 3D printing system for the engineering of in vitro heterogeneous tissue models for future biological and pathological studies. STATEMENT OF SIGNIFICANCE: Addressing the challenge of multi-scale printing in the construction of heterogeneous tissue models, a new 3D cell printing system was developed to organize cells/biomaterials of a control precision within 100 μm. AVIFJ was integrated with extrusion printing, thereby achieving the construction of cell interactions between single cells and spheroids, the manipulation of single cells in a 3D microenvironment with high accuracy, and the real-time on-demand printing. The printed heterogeneous tumor model maintained cell viability, sustained cell growth, and increased cell function during 7 days of culture. We believed that this work would benefit the production of functional artificial tissues, enabling the construction of more biomimetic cell arrangements and microenvironment to support cell functions.
Collapse
|
25
|
He CK, Chen YW, Wang SH, Hsu CH. Hydrodynamic shuttling for deterministic high-efficiency multiple single-cell capture in a microfluidic chip. LAB ON A CHIP 2019; 19:1370-1377. [PMID: 30888367 DOI: 10.1039/c9lc00036d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies on cellular heterogeneity have emerged as a powerful approach for developing new strategies to treat diseases including cancer. However, it is difficult to set up an in vitro co-culture experiment to study the interaction of individual live cells. In this paper, we report a hydrodynamic shuttling chip (HSC) which can deterministically capture single cells into microfluidic chambers to set up multiple single-cell co-culture experiments in which individual live cells can be microscopically observed. Using this chip device, we demonstrated a triple single-cell culture of oral squamous cell carcinoma and lymphatic endothelial cells to observe the effect of cell-cell interaction on the cell motility. Triple, single-cell pairing efficiency by our HSC device was eightfold higher than that of the probabilistic method. Using this HSC device, we were able to perform triple-culture experiments to show the cell type-dependent motility of oral squamous cell carcinoma and lymphatic endothelial cells, which was not observed in co-culture experiments.
Collapse
Affiliation(s)
- Cheng-Kun He
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
26
|
Bhowmick S, Wang J. Microchip Cytometry for Multiplexed Single-Cell Protein Detection in a Low-Resource Setting toward Point of Care Diagnosis. ACS Sens 2018; 3:2604-2612. [PMID: 30421607 DOI: 10.1021/acssensors.8b01015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiplex measurement of protein expression with the single-cell resolution has been challenging. Although a few conventional approaches including flow cytometry and immunofluorescence-based methods have been developed to detect proteins in individual cells, they are either dependent on bulky instrument or not multiplexed and high-throughput enough. Here we present a portable single-cell analysis system that is operable in a resource-limited environment. A stand-sit microchip housed in a clamp enables simple and instrument-free operation of all necessary steps, and the detection based on immunogold enhancement exonerates the reliance on fluorescence optics and electronics. The quantified sensitivity was found comparable to the conventional fluorescence approaches. We used this system to analyze five immune effector proteins and found the system is equally effective to detect those proteins in hundreds of single cells. Significant increase of cytokine protein production by THP1 monocytes was observed upon stimulation by lipopolysaccharide. Further study showed that a low-end imaging setup with low resolution can also detect signals without much loss of sensitivity. Taken together, this portable multiplex single-cell system may find broad biomedical applications in a field setting.
Collapse
Affiliation(s)
- Sirsendu Bhowmick
- Multiplex Biotechnology Laboratory, Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
- Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York 12144, United States
| |
Collapse
|
27
|
Zhang Q, Mao S, Khan M, Feng S, Zhang W, Li W, Lin JM. In Situ Partial Treatment of Single Cells by Laminar Flow in the “Open Space”. Anal Chem 2018; 91:1644-1650. [DOI: 10.1021/acs.analchem.8b05313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Alam MK, Koomson E, Zou H, Yi C, Li CW, Xu T, Yang M. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal Chim Acta 2018; 1044:29-65. [DOI: 10.1016/j.aca.2018.06.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
|
29
|
Abstract
Microfluidics has played a vital role in developing novel methods to investigate biological phenomena at the molecular and cellular level during the last two decades. Microscale engineering of cellular systems is nevertheless a nascent field marked inherently by frequent disruptive advancements in technology such as PDMS-based soft lithography. Viable culture and manipulation of cells in microfluidic devices requires knowledge across multiple disciplines including molecular and cellular biology, chemistry, physics, and engineering. There has been numerous excellent reviews in the past 15 years on applications of microfluidics for molecular and cellular biology including microfluidic cell culture (Berthier et al., 2012; El-Ali, Sorger, & Jensen, 2006; Halldorsson et al., 2015; Kim et al., 2007; Mehling & Tay, 2014; Sackmann et al., 2014; Whitesides, 2006; Young & Beebe, 2010), cell culture models (Gupta et al., 2016; Inamdar & Borenstein, 2011; Meyvantsson & Beebe, 2008), cell secretion (Schrell et al., 2016), chemotaxis (Kim & Wu, 2012; Wu et al., 2013), neuron culture (Millet & Gillette, 2012a, 2012b), drug screening (Dittrich & Manz, 2006; Eribol, Uguz, & Ulgen, 2016; Wu, Huang, & Lee, 2010), cell sorting (Autebert et al., 2012; Bhagat et al., 2010; Gossett et al., 2010; Wyatt Shields Iv, Reyes, & López, 2015), single cell studies (Lecault et al., 2012; Reece et al., 2016; Yin & Marshall, 2012), stem cell biology (Burdick & Vunjak-Novakovic, 2009; Wu et al., 2011; Zhang & Austin, 2012), cell differentiation (Zhang et al., 2017a), systems biology (Breslauer, Lee, & Lee, 2006), 3D cell culture (Huh et al., 2011; Li et al., 2012; van Duinen et al., 2015), spheroids and organoids (Lee et al., 2016; Montanez-Sauri, Beebe, & Sung, 2015; Morimoto & Takeuchi, 2013; Skardal et al., 2016; Young, 2013), organ-on-chip (Bhatia & Ingber, 2014; Esch, Bahinski, & Huh, 2015; Huh et al., 2011; van der Meer & van den Berg, 2012), and tissue engineering (Andersson & Van Den Berg, 2004; Choi et al., 2007; Hasan et al., 2014). In this chapter, we provide an overview of PDMS-based microdevices for microfluidic cell culture. We discuss the advantages and challenges of using PDMS-based soft lithography for microfluidic cell culture and highlight recent progress and future directions in this area.
Collapse
Affiliation(s)
- Melikhan Tanyeri
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA, United States
| | - Savaş Tay
- Institute of Molecular Engineering, University of Chicago, Chicago, IL, United States; Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
30
|
Liu Y, Ren D, Ling X, Liang W, Li J, You Z, Yalikun Y, Tanaka Y. Time Sequential Single-Cell Patterning with High Efficiency and High Density. SENSORS 2018; 18:s18113672. [PMID: 30380644 PMCID: PMC6264106 DOI: 10.3390/s18113672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022]
Abstract
Single-cell capture plays an important role in single-cell manipulation and analysis. This paper presents a microfluidic device for deterministic single-cell trapping based on the hydrodynamic trapping mechanism. The device is composed of an S-shaped loop channel and thousands of aligned trap units. This arrayed structure enables each row of the device to be treated equally and independently, as it has row periodicity. A theoretical model was established and a simulation was conducted to optimize the key geometric parameters, and the performance was evaluated by conducting experiments on MCF-7 and Jurkat cells. The results showed improvements in single-cell trapping ability, including loading efficiency, capture speed, and the density of the patterned cells. The optimized device can achieve a capture efficiency of up to 100% and single-cell capture efficiency of up to 95%. This device offers 200 trap units in an area of 1 mm2, which enables 100 single cells to be observed simultaneously using a microscope with a 20× objective lens. One thousand cells can be trapped sequentially within 2 min; this is faster than the values obtained with previously reported devices. Furthermore, the cells can also be recovered by reversely infusing solutions. The structure can be easily extended to a large scale, and a patterned array with 32,000 trap sites was accomplished on a single chip. This device can be a powerful tool for high-throughput single-cell analysis, cell heterogeneity investigation, and drug screening.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Dahai Ren
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Xixin Ling
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Weibin Liang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Jing Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China.
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
31
|
Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng FG, Chang HY, Nagai M, Santra TS. Current Trends of Microfluidic Single-Cell Technologies. Int J Mol Sci 2018; 19:E3143. [PMID: 30322072 PMCID: PMC6213733 DOI: 10.3390/ijms19103143] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
The investigation of human disease mechanisms is difficult due to the heterogeneity in gene expression and the physiological state of cells in a given population. In comparison to bulk cell measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. In this review, we describe the recent advances in single-cell technologies and their applications in single-cell manipulation, diagnosis, and therapeutics development.
Collapse
Affiliation(s)
- Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Loganathan Mohan
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Amogh Kumar
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Anjali Maddi
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan.
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| |
Collapse
|
32
|
Sun Y, Song W, Sun X, Zhang S. Inkjet-Printing Patterned Chip on Sticky Superhydrophobic Surface for High-Efficiency Single-Cell Array Trapping and Real-Time Observation of Cellular Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31054-31060. [PMID: 30148358 DOI: 10.1021/acsami.8b10703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-cell assays have broad applications in cellular studies, tissue engineering, fundamental studies of cell-cell interactions, and understanding of cell-to-cell variations. Most existing methods for micron-sized cell patterning are still based on lithography-based microfabrication process. Thus, exploiting new mask-free strategies while maintaining high-precision single-cell patterning is still a great challenge. Here, we presented a facile, low-cost, and mask-free approach for constructing high-resolution patterning on sticky superhydrophobic (SH) substrates based on inkjet printing with ordinary precision. In this work, the SH surface with both high contact angle and relatively high contact angle hysteresis can not only obtain high-resolution spots but also avoid droplets bouncing behavior. We improved the feature size of printed protein spots as small as 4 μm, which is much smaller than protein spots used for single-cell trapping. Moreover, with the assistance of a narrow microchannel, the inkjet-printing patterned chip with fibronectin ink allows for fast and high-efficiency trapping of multiple single-cell arrays. Using this method, single-cell occupancy could reach approximately 81% within 30 min on subcellular-sized patterning chip, and there was no significant effect on cell viability. As a proof of concept, this chip has been applied to study the real-time apoptosis of single cells and demonstrated the potential in cells' heterogeneity analysis.
Collapse
Affiliation(s)
- Yingnan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China
| | - Wenhua Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China
| | - Xiaohan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China
| |
Collapse
|
33
|
Rothbauer M, Zirath H, Ertl P. Recent advances in microfluidic technologies for cell-to-cell interaction studies. LAB ON A CHIP 2018; 18:249-270. [PMID: 29143053 DOI: 10.1039/c7lc00815e] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidic cell cultures are ideally positioned to become the next generation of in vitro diagnostic tools for biomedical research, where key biological processes such as cell signalling and dynamic cell-to-cell interactions can be reliably analysed under reproducible physiological cell culture conditions. In the last decade, a large number of microfluidic cell analysis systems have been developed for a variety of applications including drug target optimization, drug screening and toxicological testing. More recently, advanced in vitro microfluidic cell culture systems have emerged that are capable of replicating the complex three-dimensional architectures of tissues and organs and thus represent valid biological models for investigating the mechanism and function of human tissue structures, as well as studying the onset and progression of diseases such as cancer. In this review, we present the most important developments in single-cell, 2D and 3D microfluidic cell culture systems for studying cell-to-cell interactions published over the last 6 years, with a focus on cancer research and immunotherapy, vascular models and neuroscience. In addition, the current technological development of microdevices with more advanced physiological cell microenvironments that integrate multiple organ models, namely, the so-called body-, human- and multi-organ-on-a-chip, is reviewed.
Collapse
Affiliation(s)
- Mario Rothbauer
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | | | | |
Collapse
|
34
|
Mukundan S, Sharma K, Honselmann K, Singleton A, Liss A, Parekkadan B. Image-Based Profiling of Patient-Derived Pancreatic Tumor-Stromal Cell Interactions Within a Micropatterned Tumor Model. Technol Cancer Res Treat 2018; 17:1533033818803632. [PMID: 30348057 PMCID: PMC6201185 DOI: 10.1177/1533033818803632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a 5-year patient survival
rate of 8.2% and limited availability of therapeutic agents to target metastatic disease.
Pancreatic cancer is characterized by a dense stromal cell population with unknown
contribution to the progression or suppression of tumor growth. In this study, we describe
a microengineered tumor stromal assay of patient-derived pancreatic cancer cells to study
the heterotypic interactions of patient pancreatic cancer cells with different types of
stromal fibroblasts under basal and drug-treated conditions. The population dynamics of
tumor cells in terms of migration and viability were visualized as a functional end point.
Coculture with cancer-associated fibroblasts increased the migration of cancer cells when
compared to dermal fibroblasts. Finally, we imaged the response of a bromodomain and
extraterminal inhibitor on the viability of pancreatic cancer clusters surrounding by
stroma in microengineered tumor stromal assay. We visualized a codynamic reduction in both
cancer and stromal cells with bromodomain and extraterminal treatment compared to the
dimethyl sulfoxide-treated group. This study demonstrates the ability to engineer
tumor–stromal assays with patient-derived cells, study the role of diverse types of
stromal cells on cancer progression, and precisely visualize a coculture during the
screening of therapeutic compounds.
Collapse
Affiliation(s)
- Shilpaa Mukundan
- 1 Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Kriti Sharma
- 1 Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Kim Honselmann
- 2 Department of Surgery, Andrew L. Warshaw Institute for Pancreatic Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Singleton
- 3 Center for Surgery, Bioengineering, and Innovation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, USA
| | - Andrew Liss
- 2 Department of Surgery, Andrew L. Warshaw Institute for Pancreatic Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Biju Parekkadan
- 1 Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,3 Center for Surgery, Bioengineering, and Innovation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, USA.,4 Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
35
|
Giupponi E, Visone R, Occhetta P, Colombo F, Rasponi M, Candiani G. Development of a microfluidic platform for high-throughput screening of non-viral gene delivery vectors. Biotechnol Bioeng 2017; 115:775-784. [DOI: 10.1002/bit.26506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Elisa Giupponi
- Department of Chemistry; Materials, and Chemical Engineering “Giulio Natta,”; Politecnico di Milano; Milan Italy
| | - Roberta Visone
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; Milan Italy
| | - Paola Occhetta
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; Milan Italy
- Department of Biomedicine; University Hospital Basel; University of Basel; Basel Switzerland
| | - Federica Colombo
- Department of Chemistry; Materials, and Chemical Engineering “Giulio Natta,”; Politecnico di Milano; Milan Italy
| | - Marco Rasponi
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; Milan Italy
| | - Gabriele Candiani
- Department of Chemistry; Materials, and Chemical Engineering “Giulio Natta,”; Politecnico di Milano; Milan Italy
- “The Protein Factory” Research Centre; Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,”; Politecnico di Milano, and Department of Biotechnology and Life Science - University of Insubria; 20131, Milan Italy
| |
Collapse
|
36
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
37
|
Ning R, Zhuang Q, Lin JM. Biomaterial-Based Microfluidics for Cell Culture and Analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-5394-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Chung MT, Núñez D, Cai D, Kurabayashi K. Deterministic droplet-based co-encapsulation and pairing of microparticles via active sorting and downstream merging. LAB ON A CHIP 2017; 17:3664-3671. [PMID: 28967663 DOI: 10.1039/c7lc00745k] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Co-encapsulation of two distinct particles within microfluidic droplets provides the means to achieve various high-throughput single-cell assays, such as biochemical reactions and cell-cell interactions in small isolated volumes. However, limited by the Poisson statistics, the co-encapsulation rate of the conventional co-flow approach is low even under optimal conditions. Only up to 13.5% of droplets precisely contain a pair of two distinct particles, while the rest, either being empty or encapsulating unpaired particles become wastes. Thus, the low co-encapsulation efficiency makes droplet-based assays impractical in biological applications involving low abundant bioparticles. In this paper, we present a highly promising droplet merging strategy to increase the co-encapsulation efficiency. Our method first enriches droplets exactly encapsulating a single particle via fluorescence or scattering-light activated sorting. Then, two droplets, each with a distinct particle, are precisely one-to-one paired and merged in a novel microwell device. This deterministic approach overcomes the Poisson statistics limitation facing conventional stochastic methods, yielding an up to 90% post-sorting particle capture rate and an overall 88.1% co-encapsulation rate. With its superior single-particle pairing performance, our system provides a promising technological platform to enable highly efficient microdroplet assays.
Collapse
Affiliation(s)
- Meng Ting Chung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.
| | | | | | | |
Collapse
|
39
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
40
|
Ben Said S, Or D. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia. Front Microbiol 2017; 8:1125. [PMID: 28670307 PMCID: PMC5472676 DOI: 10.3389/fmicb.2017.01125] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/01/2017] [Indexed: 11/25/2022] Open
Abstract
The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of “microbial ecological power” observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to “discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems,” we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their potential applications. We briefly review existing tools to engineer such assemblies and optimize potential benefits resulting from the collective activity of their members. Prospective microbial consortia and proposed spatial configurations will be illustrated and preliminary calculations highlighting the advantages of SLMC over co-cultures will be presented, followed by a discussion of challenges and opportunities for moving forward with some designs.
Collapse
Affiliation(s)
- Sami Ben Said
- Department of Environmental Systems Science, Soil and Terrestrial Environmental Physics, ETH ZürichZürich, Switzerland
| | - Dani Or
- Department of Environmental Systems Science, Soil and Terrestrial Environmental Physics, ETH ZürichZürich, Switzerland
| |
Collapse
|
41
|
Xie S, Wang X, Jiao N, Tung S, Liu L. Programmable micrometer-sized motor array based on live cells. LAB ON A CHIP 2017; 17:2046-2053. [PMID: 28513721 DOI: 10.1039/c7lc00017k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Trapping and transporting microorganisms with intrinsic motility are important tasks for biological, physical, and biomedical applications. However, fast swimming speed makes the manipulation of these organisms an inherently challenging task. In this study, we demonstrated that an optoelectrical technique, namely, optically induced dielectrophoresis (ODEP), could effectively trap and manipulate Chlamydomonas reinhardtii (C. reinhardtii) cells swimming at velocities faster than 100 μm s-1. Furthermore, live C. reinhardtii cells trapped by ODEP can form a micrometer-sized motor array. The rotating frequency of the cells ranges from 50 to 120 rpm, which can be reversibly adjusted with a fast response speed by varying the optical intensity. Functional flagella have been demonstrated to play a decisive role in the rotation. The programmable cell array with a rotating motion can be used as a bio-micropump to drive the liquid flow in microfludic chips and may shed new light on bio-actuation.
Collapse
Affiliation(s)
- Shuangxi Xie
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, 10016, China.
| | | | | | | | | |
Collapse
|
42
|
A microfluidic chip for screening individual cancer cells via eavesdropping on autophagy-inducing crosstalk in the stroma niche. Sci Rep 2017; 7:2050. [PMID: 28515430 PMCID: PMC5435728 DOI: 10.1038/s41598-017-02172-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 04/11/2017] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a cellular homeostatic mechanism where proteins and organelles are digested and recycled to provide an alternative source of building blocks and energy to cells. The role of autophagy in cancer microenvironment is still poorly understood. Here, we present a microfluidic system allowing monitoring of the crosstalk between single cells. We used this system to study how tumor cells induced autophagy in the stromal niche. Firstly, we could confirm that transforming growth factor β1 (TGFβ1) secreted from breast tumor cells is a paracrine mediator of tumor-stroma interaction leading to the activation of autophagy in the stroma component fibroblasts. Through proof of concept experiments using TGFβ1 as a model factor, we could demonstrate real time monitoring of autophagy induction in fibroblasts by single tumor cells. Retrieval of individual tumor cells from the microfluidic system and their subsequent genomic analysis was possible, allowing us to determine the nature of the factor mediating tumor-stroma interactions. Therefore, our microfluidic platform might be used as a promising tool for quantitative investigation of tumor–stroma interactions, especially for and high-throughput screening of paracrine factors that are secreted from heterogeneous tumor cell populations.
Collapse
|
43
|
Fan Q, Hu W, Ohta AT. Localized Single-Cell Lysis and Manipulation Using Optothermally-Induced Bubbles. MICROMACHINES 2017; 8. [PMID: 29333289 PMCID: PMC5766267 DOI: 10.3390/mi8040121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Localized single cells can be lysed precisely and selectively using microbubbles optothermally generated by microsecond laser pulses. The shear stress from the microstreaming surrounding laser-induced microbubbles and direct contact with the surface of expanding bubbles cause the rupture of targeted cell membranes. High-resolution single-cell lysis is demonstrated: cells adjacent to targeted cells are not lysed. It is also shown that only a portion of the cell membrane can be punctured using this method. Both suspension and adherent cell types can be lysed in this system, and cell manipulation can be integrated for cell–cell interaction studies.
Collapse
Affiliation(s)
- Qihui Fan
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
- Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Wenqi Hu
- Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Aaron T. Ohta
- Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
- Correspondence: ; Tel.: +1-808-956-8196; Fax: +1-808-956-3427
| |
Collapse
|
44
|
Cheng YH, Chen YC, Brien R, Yoon E. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip. LAB ON A CHIP 2016; 16:3708-17. [PMID: 27510097 PMCID: PMC6559352 DOI: 10.1039/c6lc00778c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.
Collapse
Affiliation(s)
- Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA.
| | | | | | | |
Collapse
|
45
|
Sarkar S, Sabhachandani P, Stroopinsky D, Palmer K, Cohen N, Rosenblatt J, Avigan D, Konry T. Dynamic analysis of immune and cancer cell interactions at single cell level in microfluidic droplets. BIOMICROFLUIDICS 2016; 10:054115. [PMID: 27795747 PMCID: PMC5065572 DOI: 10.1063/1.4964716] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 05/06/2023]
Abstract
Cell-cell communication mediates immune responses to physiological stimuli at local and systemic levels. Intercellular communication occurs via a direct contact between cells as well as by secretory contact-independent mechanisms. However, there are few existing methods that allow quantitative resolution of contact-dependent and independent cellular processes in a rapid, precisely controlled, and dynamic format. This study utilizes a high-throughput microfluidic droplet array platform to analyze cell-cell interaction and effector functions at single cell level. Controlled encapsulation of distinct heterotypic cell pairs was achieved in a single-step cell loading process. Dynamic analysis of dendritic cell (DC)-T cell interactions demonstrated marked heterogeneity in the type of contact and duration. Non-stimulated DCs and T cells interacted less frequently and more transiently while antigen and chemokine-loaded DCs and T cells depicted highly stable interactions in addition to transient and sequential contact. The effector function of CD8+ T cells was assessed via cytolysis of multiple myeloma cell line. Variable cell conjugation periods and killing time were detected irrespective of the activation of T cells, although activated T cells delivered significantly higher cytotoxicity. T cell alloreactivity against the target cells was partially mediated by secretion of interferon gamma, which was abrogated by the addition of a neutralizing antibody. These results suggest that the droplet array-based microfluidic platform is a powerful technique for dynamic phenotypic screening and potentially applicable for evaluation of novel cell-based immunotherapeutic agents.
Collapse
Affiliation(s)
- S Sarkar
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - P Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - D Stroopinsky
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - K Palmer
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - N Cohen
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - J Rosenblatt
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - D Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - T Konry
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
46
|
Chen YC, Zhang Z, Fouladdel S, Deol Y, Ingram PN, McDermott SP, Azizi E, Wicha MS, Yoon E. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells. LAB ON A CHIP 2016; 16:2935-45. [PMID: 27381658 PMCID: PMC4977365 DOI: 10.1039/c6lc00062b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chiu YJ, Cai W, Shih YRV, Lian I, Lo YH. A Single-Cell Assay for Time Lapse Studies of Exosome Secretion and Cell Behaviors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3658-66. [PMID: 27254278 PMCID: PMC5023418 DOI: 10.1002/smll.201600725] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/18/2016] [Indexed: 05/17/2023]
Abstract
To understand the inhomogeneity of cells in biological systems, there is a growing demand on the capability of characterizing the properties of individual single cells. Since single-cell studies require continuous monitoring of the cell behaviors, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and, proliferation of single cells and convenient, noninvasive tests of single-cell behaviors from molecular markers. Here, a highly versatile single-cell assay is presented that can accommodate different cellular types, enable easy and efficient single-cell loading and culturing, and be suitable for the study of effects of in vitro environmental factors in combination with drug screening. One salient feature of the assay is the noninvasive collection and surveying of single-cell secretions at different time points, producing unprecedented insight of single-cell behaviors based on the biomarker signals from individual cells under given perturbations. Above all, the acquired information is quantitative, for example, measured by the number of exosomes each single-cell secretes for a given time period. Therefore, our single-cell assay provides a convenient, low-cost, and enabling tool for quantitative, time lapsed studies of single-cell properties.
Collapse
Affiliation(s)
- Yu-Jui Chiu
- Materials Science and Engineering Program, University of California at San Diego, La Jolla, California, USA
| | - Wei Cai
- Materials Science and Engineering Program, University of California at San Diego, La Jolla, California, USA
| | - Yu-Ru V. Shih
- Department of Bioengineering, University of California at San Diego, La Jolla, California, USA
| | - Ian Lian
- Department of Biology, Lamar University, Beaumont, Texas, USA
| | - Yu-Hwa Lo
- Materials Science and Engineering Program, University of California at San Diego, La Jolla, California, USA
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
48
|
|
49
|
Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang TJ. Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 2016; 7:11085. [PMID: 27004764 PMCID: PMC4814581 DOI: 10.1038/ncomms11085] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation. The precise rotational manipulation of single cells is technically challenging and relies on the optical, magnetic and electrical properties of the biospecimen. Here the authors develop an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms.
Collapse
Affiliation(s)
- Daniel Ahmed
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nagagireesh Bojanala
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Awani Upadhyay
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
50
|
Konry T, Sarkar S, Sabhachandani P, Cohen N. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction. Annu Rev Biomed Eng 2016; 18:259-84. [PMID: 26928209 DOI: 10.1146/annurev-bioeng-090215-112735] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.
Collapse
Affiliation(s)
- Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Pooja Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Noa Cohen
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| |
Collapse
|