1
|
Wang W, Su W, Han J, Song W, Li X, Xu C, Sun Y, Wang L. Microfluidic platforms for monitoring cardiomyocyte electromechanical activity. MICROSYSTEMS & NANOENGINEERING 2025; 11:4. [PMID: 39788940 PMCID: PMC11718118 DOI: 10.1038/s41378-024-00751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases account for ~40% of global deaths annually. This situation has revealed the urgent need for the investigation and development of corresponding drugs for pathogenesis due to the complexity of research methods and detection techniques. An in vitro cardiomyocyte model is commonly used for cardiac drug screening and disease modeling since it can respond to microphysiological environmental variations through mechanoelectric feedback. Microfluidic platforms are capable of accurate fluid control and integration with analysis and detection techniques. Therefore, various microfluidic platforms (i.e., heart-on-a-chip) have been applied for the reconstruction of the physiological environment and detection of signals from cardiomyocytes. They have demonstrated advantages in mimicking the cardiovascular structure and function in vitro and in monitoring electromechanical signals. This review presents a summary of the methods and technologies used to monitor the contractility and electrophysiological signals of cardiomyocytes within microfluidic platforms. Then, applications in common cardiac drug screening and cardiovascular disease modeling are presented, followed by design strategies for enhancing physiology studies. Finally, we discuss prospects in the tissue engineering and sensing techniques of microfluidic platforms.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China.
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China.
| |
Collapse
|
2
|
Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006176. [PMID: 33369875 DOI: 10.1002/smll.202006176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To advance the understanding of cardiomyocyte (CM) identity and function, appropriate tools to isolate pure primary CMs are needed. A label-free method to purify viable CMs from mouse neonatal hearts is developed using a simple particle size-based inertial microfluidics biochip achieving purities of over 90%. Purified CMs are viable and retained their identity and function as depicted by the expression of cardiac-specific markers and contractility. The physico-mechanical properties of sorted cells are evaluated using downstream real-time deformability cytometry. CMs exhibited different physico-mechanical properties when compared with non-CMs. Taken together, this CM isolation and phenotyping method could serve as a valuable tool to progress the understanding of CM identity and function, and ultimately benefit cell therapy and diagnostic applications.
Collapse
Affiliation(s)
- Hossein Tavassoli
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prunella Rorimpandey
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Young Chan Kang
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chris Brownlee
- Flow Cytometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John E Pimanda
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Peggy P Y Chan
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Vashe Chandrakanthan
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Puluca N, Durmus NG, Lee S, Belbachir N, Galdos FX, Ogut MG, Gupta R, Hirano KI, Krane M, Lange R, Wu JC, Wu SM, Demirci U. Levitating Cells to Sort the Fit and the Fat. ACTA ACUST UNITED AC 2020; 4:e1900300. [PMID: 32352239 DOI: 10.1002/adbi.201900300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 01/22/2023]
Abstract
Density is a core material property and varies between different cell types, mainly based on differences in their lipid content. Sorting based on density enables various biomedical applications such as multi-omics in precision medicine and regenerative repair in medicine. However, a significant challenge is sorting cells of the same type based on density differences. Here, a new method for real-time monitoring and sorting of single cells based on their inherent levitation profiles driven by their lipid content is reported. As a model system, human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) from a patient with neutral lipid storage disease (NLSD) due to loss of function of adipose triglyceride lipase (ATGL) resulting in abnormal lipid storage in cardiac muscle are used. This levitation-based strategy detects subpopulations within ATGL-deficient hiPSC-CMs with heterogenous lipid content, equilibrating at different levitation heights due to small density differences. In addition, sorting of these differentially levitating subpopulations are monitored in real time. Using this approach, sorted healthy and diseased hiPSC-CMs maintain viability and function. Pixel-tracking technologies show differences in contraction between NLSD and healthy hiPSC-CMs. Overall, this is a unique approach to separate diseased cell populations based on their intracellular lipid content that cannot be achieved using traditional flow cytometry techniques.
Collapse
Affiliation(s)
- Nazan Puluca
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, München, 80333, Germany.,Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, München, 80333, Germany.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Naside Gözde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Soah Lee
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nadjet Belbachir
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Francisco X Galdos
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mehmet Giray Ogut
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Rakhi Gupta
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Ken-Ichi Hirano
- Department of Cardiovascular Medicine, Osaka University School of Medicine, Osaka, 565-0871, Japan
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, München, 80333, Germany.,Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, München, 80333, Germany.,German Heart Center Munich-DZHK Partner Site Munich Heart Alliance, Munich, Germany
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, München, 80333, Germany.,Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, München, 80333, Germany.,German Heart Center Munich-DZHK Partner Site Munich Heart Alliance, Munich, Germany
| | - Joseph C Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Utkan Demirci
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| |
Collapse
|
4
|
Ni L, KC P, Zhang G, Zhe J. Enabling single cell electrical stimulation and response recording via a microfluidic platform. BIOMICROFLUIDICS 2019; 13:064126. [PMID: 31867086 PMCID: PMC6910869 DOI: 10.1063/1.5128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/30/2019] [Indexed: 05/12/2023]
Abstract
Electrical stimulation (ES) has been recognized to play important roles in regulating cell behaviors. A microfluidic device was developed for the electrical stimulation of single cells and simultaneous recording of extracellular field potential (EFP). Each single cell was trapped onto an electrode surface by a constriction channel for ES testing and was then driven to the outlet by the pressure afterward. This design allows the application of ES on and detection of EFP of single cells continuously in a microfluidic channel. Human cardiomyocytes and primary rat cortex neurons were tested with specific ES with the device. Each cell's EFP signal was detected and analyzed during the ES process. Results have shown that after applying specific ES on the excitable single cells, the cells evoked electrical responses. In addition, increased secretion of glutamic acid was detected from the stimulated neurons. Altogether, these results indicated that the developed device can be used to continuously apply ES on and accurately determine cell responses of single cells with shorter probing time. The throughput of the measurement can achieve 1 cell per minute, which is higher than the traditional ES methods that need culturing cells or manually positioning the cells onto the electrode surface. Before and after the application of ES, the cell viability had no significant change. Such a device can be used to study the biological process of various types of cells under electrical stimulation.
Collapse
Affiliation(s)
- Liwei Ni
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Pawan KC
- Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
5
|
Zhang Y, Zhao Y, Chen D, Wang K, Wei Y, Xu Y, Huang C, Wang J, Chen J. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells. Analyst 2019; 144:1008-1015. [PMID: 30648705 DOI: 10.1039/c8an02100g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a crossing constriction channel-based microfluidic system for high-throughput characterization of specific membrane capacitance (Csm) and cytoplasm conductivity (σcy) of single cells. In operations, cells in suspension were forced through the major constriction channel and instead of invading the side constriction channel, they effectively sealed the side constriction channel, which led to variations in impedance data. Based on an equivalent circuit model, these raw impedance data were translated into Csm and σcy. As a demonstration, the developed microfluidic system quantified Csm (3.01 ± 0.92 μF cm-2) and σcy (0.36 ± 0.08 S m-1) of 100 000 A549 cells, which could generate reliable results by properly controlling cell positions during their traveling in the crossing constriction channels. Furthermore, the developed microfluidic impedance cytometry was used to distinguish paired low- and high-metastatic carcinoma cell types of SACC-83 (ncell = ∼100 000) and SACC-LM cells (ncell = ∼100 000), distinguishing significant differences in both Csm (3.16 ± 0.90 vs. 2.79 ± 0.67 μF cm-2) and σcy (0.36 ± 0.06 vs.0.41 ± 0.08 S m-1). As high-throughput microfluidic impedance cytometry, this technique may add a new marker-free dimension to flow cytometry in single-cell analysis.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Portillo-Lara R, Spencer AR, Walker BW, Shirzaei Sani E, Annabi N. Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials 2019; 198:78-94. [PMID: 30201502 PMCID: PMC11044891 DOI: 10.1016/j.biomaterials.2018.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Andrew R Spencer
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
A microfluidic device for noninvasive cell electrical stimulation and extracellular field potential analysis. Biomed Microdevices 2019; 21:20. [PMID: 30790059 DOI: 10.1007/s10544-019-0364-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We developed a device that can quickly apply versatile electrical stimulation (ES) signals to cells suspended in microfluidic channels and measure extracellular field potential simultaneously. The device could trap cells onto the surface of measurement electrodes for ES and push them to the downstream channel after ES by increasing pressure for continuous measurement. Cardiomyocytes, major functional cells in heart, together with human fibroblast cells and human umbilical vein endothelial cells, were tested with the device. Extracellular field potential signals generated from the cells were recorded. We found that under electrical stimulation, cardiomyocytes were triggered to alter their field potential, while non-excitable cells were not triggered. Hence this device can noninvasively distinguish electrically excitable cells from electrically non-excitable cells. Results have also shown that increased cardiomyocyte cell number led to increased magnitude and occurrence of the cell responses. This relationship could be used to detect the viable cells in a cardiac tissue. Application of variable ES signals on different cardiomyocyte clusters has shown that the application of ES clearly boosted cardiomyocytes electrical activities according to the stimulation frequency. In addition, we confirmed that the device can apply ES onto and detect the electrical responses from a mixed cell cluster; the responses from the mixed cluster is dependent on the ratio of cardiomyocytes. These results demonstrated that our device could be used as a tool to optimize ES conditions to facilitate the functional engineered cardiac tissue development.
Collapse
|
8
|
Chien JC, Ameri A, Yeh EC, Killilea AN, Anwar M, Niknejad AM. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies. LAB ON A CHIP 2018; 18:2065-2076. [PMID: 29872834 DOI: 10.1039/c8lc00299a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work presents a microfluidics-integrated label-free flow cytometry-on-a-CMOS platform for the characterization of the cytoplasm dielectric properties at microwave frequencies. Compared with MHz impedance cytometers, operating at GHz frequencies offers direct intracellular permittivity probing due to electric fields penetrating through the cellular membrane. To overcome the detection challenges at high frequencies, the spectrometer employs on-chip oscillator-based sensors, which embeds simultaneous frequency generation, electrode excitation, and signal detection capabilities. By employing an injection-locking phase-detection technique, the spectrometer offers state-of-the-art sensitivity, achieving a less than 1 aFrms capacitance detection limit (or 5 ppm in frequency-shift) at a 100 kHz noise filtering bandwidth, enabling high throughput (>1k cells per s), with a measured cellular SNR of more than 28 dB. With CMOS/microfluidics co-design, we distribute four sensing channels at 6.5, 11, 17.5, and 30 GHz in an arrayed format whereas the frequencies are selected to center around the water relaxation frequency at 18 GHz. An issue in the integration of CMOS and microfluidics due to size mismatch is also addressed through introducing a cost-efficient epoxy-molding technique. With 3-D hydrodynamic focusing microfluidics, we perform characterization on four different cell lines including two breast cell lines (MCF-10A and MDA-MB-231) and two leukocyte cell lines (K-562 and THP-1). After normalizing the higher frequency signals to the 6.5 GHz ones, the size-independent dielectric opacity shows a differentiable distribution at 17.5 GHz between normal (0.905 ± 0.160, mean ± std.) and highly metastatic (1.033 ± 0.107) breast cells with p ≪ 0.001.
Collapse
Affiliation(s)
- Jun-Chau Chien
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Zhao Y, Wang K, Chen D, Fan B, Xu Y, Ye Y, Wang J, Chen J, Huang C. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells. Biosens Bioelectron 2018; 111:138-143. [PMID: 29665553 DOI: 10.1016/j.bios.2018.04.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
Abstract
This paper presents a new microfluidic impedance cytometry with crossing constriction microchannels, enabling the characterization of cellular electrical markers (e.g., specific membrane capacitance (Csm) and cytoplasm conductivity (σcy)) in large cell populations (~ 100,000 cells) at a rate greater than 100 cells/s. Single cells were aspirated continuously through the major constriction channel with a proper sealing of the side constriction channel. An equivalent circuit model was developed and the measured impedance values were translated to Csm and σcy. Neural network was used to classify different cell populations where classification success rates were calculated. To evaluate the developed technique, different tumour cell lines, and the effects of epithelial-mesenchymal transitions on tumour cells were examined. Significant differences in both Csm and σcy were found for H1299 and HeLa cell lines with a classification success rate of 90.9% in combination of the two parameters. Meanwhile, tumour cells A549 showed significant decreases in both Csm and σcy after epithelial-mesenchymal transitions with a classification success rate of 76.5%. As a high-throughput microfluidic impedance cytometry, this technique can add a new marker-free dimension to flow cytometry in single-cell analysis.
Collapse
Affiliation(s)
- Yang Zhao
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, PR China
| | - Ke Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Beiyuan Fan
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, PR China
| | - Yifei Ye
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Chengjun Huang
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
10
|
Abstract
A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis. A significant shift in the phase spectrum is also observed during the time course of this process. By fitting experimental data to physical models, the electrical parameters of cells can be extracted and parameter variations quantified during the process. In the cell lysis experiments, the equivalent conductivity of the cell membrane is found to increase significantly due to pore formation in the membrane during lysis. An increase in the specific capacitance of the membrane is also observed. On the other hand, the conductivity of the cytoplasm is observed to decrease, which may be explained the fact that excess water enters the cell through the gradual permeabilization of the membrane during lysis. Cells can be trapped in the device for periods up to several days, and their electrical response can be monitored by real-time impedance measurements in a label-free and non-invasive manner. Furthermore, due to the highly efficient single cell trapping capacity of the device, a number of cells can be trapped and held in separate wells for concurrent parallel experiments, allowing for the possibility of stepped parametric experiments and studying cell heterogeneity by combining measurements across the array.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Engineering, Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge, CB3 0FF, UK
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ashwin A Seshia
- Department of Engineering, Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge, CB3 0FF, UK.
| |
Collapse
|
11
|
Ban K, Bae S, Yoon YS. Current Strategies and Challenges for Purification of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Theranostics 2017. [PMID: 28638487 PMCID: PMC5479288 DOI: 10.7150/thno.19427] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) are considered a most promising option for cell-based cardiac repair. Hence, various protocols have been developed for differentiating hPSCs into CMs. Despite remarkable improvement in the generation of hPSC-CMs, without purification, these protocols can only generate mixed cell populations including undifferentiated hPSCs or non-CMs, which may elicit adverse outcomes. Therefore, one of the major challenges for clinical use of hPSC-CMs is the development of efficient isolation techniques that allow enrichment of hPSC-CMs. In this review, we will discuss diverse strategies that have been developed to enrich hPSC-CMs. We will describe major characteristics of individual hPSC-CM purification methods including their scientific principles, advantages, limitations, and needed improvements. Development of a comprehensive system which can enrich hPSC-CMs will be ultimately useful for cell therapy for diseased hearts, human cardiac disease modeling, cardiac toxicity screening, and cardiac tissue engineering.
Collapse
|
12
|
Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep 2016; 6:24637. [PMID: 27097795 PMCID: PMC4838928 DOI: 10.1038/srep24637] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/29/2016] [Indexed: 01/25/2023] Open
Abstract
Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) – a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration.
Collapse
|
13
|
Zhou Y, Basu S, Laue E, Seshia AA. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectron 2016; 81:249-258. [PMID: 26963790 PMCID: PMC4833703 DOI: 10.1016/j.bios.2016.02.069] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 10/31/2022]
Abstract
Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0h, 24h and 48h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24h), compare with cells at undifferentiated (0h) and fully differentiated (48h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population.
Collapse
Affiliation(s)
- Ying Zhou
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, United Kingdom
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Ernest Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Ashwin A Seshia
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, United Kingdom.
| |
Collapse
|
14
|
Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1728-48. [PMID: 26524115 PMCID: PMC5221745 DOI: 10.1016/j.bbamcr.2015.10.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom.
| | - Viola Borgdorff
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - James Crutchley
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Karl S A Firth
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Vinoj George
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Alexander Kondrashov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Asha Patel
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Ljupcho Prodanov
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Lorraine E Young
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
15
|
Jastrzebska E, Tomecka E, Jesion I. Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 2015; 75:67-81. [PMID: 26298640 DOI: 10.1016/j.bios.2015.08.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 12/26/2022]
Abstract
Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.
Collapse
Affiliation(s)
- Elzbieta Jastrzebska
- Institute of Biotechnology, Department of Microbioanalytics, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Ewelina Tomecka
- Institute of Biotechnology, Department of Microbioanalytics, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Jesion
- Department of Animal Environment Biology, Faculty of Animal Science, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
16
|
Single Cell Electrical Characterization Techniques. Int J Mol Sci 2015; 16:12686-712. [PMID: 26053399 PMCID: PMC4490468 DOI: 10.3390/ijms160612686] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/13/2015] [Indexed: 01/09/2023] Open
Abstract
Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell’s electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell’s electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed.
Collapse
|
17
|
Cao H, Kang BJ, Lee CA, Shung KK, Hsiai TK. Electrical and Mechanical Strategies to Enable Cardiac Repair and Regeneration. IEEE Rev Biomed Eng 2015; 8:114-24. [PMID: 25974948 DOI: 10.1109/rbme.2015.2431681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inadequate replacement of lost ventricular myocardium from myocardial infarction leads to heart failure. Investigating the regenerative capacity of mammalian hearts represents an emerging direction for tissue engineering and cell-based therapy. Recent advances in stem cells hold promise to restore cardiac functions. However, embryonic or induced pluripotent stem cell-derived cardiomyocytes lack functional phenotypes of the native myocardium, and transplanted tissues are not fully integrated for synchronized electrical and mechanical coupling with the host. In this context, this review highlights the mechanical and electrical strategies to promote cardiomyocyte maturation and integration, and to assess the functional phenotypes of regenerating myocardium. Simultaneous microelectrocardiogram and high-frequency ultrasound techniques will also be introduced to assess electrical and mechanical coupling for small animal models of heart regeneration.
Collapse
|
18
|
Reinhardt M, Bader A, Giri S. Devices for stem cell isolation and delivery: current need for drug discovery and cell therapy. Expert Rev Med Devices 2014; 12:353-64. [DOI: 10.1586/17434440.2015.995094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Titmarsh DM, Chen H, Glass NR, Cooper-White JJ. Concise review: microfluidic technology platforms: poised to accelerate development and translation of stem cell-derived therapies. Stem Cells Transl Med 2013; 3:81-90. [PMID: 24311699 DOI: 10.5966/sctm.2013-0118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction.
Collapse
Affiliation(s)
- Drew M Titmarsh
- Australian Institute for Bioengineering and Nanotechnology and
| | | | | | | |
Collapse
|
20
|
Gross A, Schöndube J, Niekrawitz S, Streule W, Riegger L, Zengerle R, Koltay P. Single-Cell Printer. ACTA ACUST UNITED AC 2013; 18:504-18. [DOI: 10.1177/2211068213497204] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Kamei KI. Cutting-Edge Microfabricated Biomedical Tools for Human Pluripotent Stem Cell Research. ACTA ACUST UNITED AC 2013; 18:469-81. [DOI: 10.1177/2211068213495394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Zheng Y, Nguyen J, Wei Y, Sun Y. Recent advances in microfluidic techniques for single-cell biophysical characterization. LAB ON A CHIP 2013; 13:2464-83. [PMID: 23681312 DOI: 10.1039/c3lc50355k] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biophysical (mechanical and electrical) properties of living cells have been proven to play important roles in the regulation of various biological activities at the molecular and cellular level, and can serve as promising label-free markers of cells' physiological states. In the past two decades, a number of research tools have been developed for understanding the association between the biophysical property changes of biological cells and human diseases; however, technical challenges of realizing high-throughput, robust and easy-to-perform measurements on single-cell biophysical properties have yet to be solved. In this paper, we review emerging tools enabled by microfluidic technologies for single-cell biophysical characterization. Different techniques are compared. The technical details, advantages, and limitations of various microfluidic devices are discussed.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|