1
|
Xia Q, Pingcuo R, Yang C, Xiong W, Peng X, Xia J, Wang W, Hai M. A Review on the Chemical Properties, Plant Sources, Anti-shock Effects, Pharmacokinetics, Toxicity, and Clinical Applications of Anisodamine. Chem Biodivers 2024; 21:e202301477. [PMID: 38415906 DOI: 10.1002/cbdv.202301477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
Alkaloids are natural products that occur widely in many herbal plants. Anisodamine, widely present in the Solanaceae family, is an alkaloid extracted from the roots of the Anisodus tanguticus Maxim. It is an antagonist to M-choline receptors and exhibits diverse pharmacological effects, such as cholinolytic effect, calcium antagonist effect, anti-oxygenation effect. Anisodamine, a prominent constituent of the tropine alkaloid family, exhibits a range of pharmacological effects akin to those of atropine and scopolamine. owing to its low toxicity and moderate efficacy in clinical to wide applications, especially for varieties of shock treatment. However, there remains a dearth of research regarding the in vivo pharmacokinetics, mechanism of action, and toxicity of anisodamine. Consequently, this paper provides a comprehensive review of the anti-shock effects, toxicity, and pharmacokinetic characteristics of anisodamine to increase the understanding of its medicinal value, and provide reference and inspiration for the clinical application and further in-depth research of anisodamine.
Collapse
Affiliation(s)
- Qiurui Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Raoji Pingcuo
- Limei Tibetan Medicine Hospital, Liwuqi, 855600, China
| | - Ce Yang
- School of Pharmacy, Chongqing Three Gorges Medical Colleges, Chongqing, 404120, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, China
| | - Wei Xiong
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, China
| | - Xiaoyuan Peng
- School of Pharmacy, Chongqing Three Gorges Medical Colleges, Chongqing, 404120, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, China
| | - Jing Xia
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, China
| | - Wenxiang Wang
- School of Pharmacy, Chongqing Three Gorges Medical Colleges, Chongqing, 404120, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, China
| | - Meirong Hai
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
2
|
Shi M, Zhang S, Zheng Z, Maoz I, Zhang L, Kai G. Molecular regulation of the key specialized metabolism pathways in medicinal plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:510-531. [PMID: 38441295 DOI: 10.1111/jipb.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siwei Zhang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zizhen Zheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon, LeZion, 7505101, Israel
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
3
|
Zhou W, Wang C, Hao X, Chen F, Huang Q, Liu T, Xu J, Guo S, Liao B, Liu Z, Feng Y, Wang Y, Liao P, Xue J, Shi M, Maoz I, Kai G. A chromosome-level genome assembly of anesthetic drug-producing Anisodus acutangulus provides insights into its evolution and the biosynthesis of tropane alkaloids. PLANT COMMUNICATIONS 2024; 5:100680. [PMID: 37660252 PMCID: PMC10811374 DOI: 10.1016/j.xplc.2023.100680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.
Collapse
Affiliation(s)
- Wei Zhou
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Can Wang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaolong Hao
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qikai Huang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Tingyao Liu
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuai Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhixiang Liu
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yue Feng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yao Wang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiayu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, P.O. Box 15159, HaMaccabim Road 68, Rishon LeZion 7505101, Israel
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
4
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis. Int J Biol Macromol 2023; 253:127377. [PMID: 37839598 DOI: 10.1016/j.ijbiomac.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Farghaly TA, Masaret GS, Abdulwahab HG. The patent review of the biological activity of tropane containing compounds. Expert Opin Ther Pat 2023; 33:875-899. [PMID: 38165255 DOI: 10.1080/13543776.2023.2299349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Tropane-derived medications have historically played a substantial role in pharmacotherapy. Both natural and synthetic derivatives of tropane find application in addressing diverse medical conditions. Prominent examples of tropane-based drugs include hyoscine butylbromide, recognized for its antispasmodic properties, atropine, employed as a mydriatic, maraviroc, known for its antiviral effects. trospium chloride, utilized as a spasmolytic for overactive bladder, and ipratropium, a bronchodilator. AREAS COVERED We compiled patents pertaining to the biological activity of substances containing tropane up to the year 2023 and categorized them according to the specific type of biological activity they exhibit. ScienceFinder, ScienceDirect, and Patent Guru were used to search for scientific articles and patent literature up to 2023. EXPERT OPINION Pharmaceutical researchers in academic and industrial settings have shown considerable interest in tropane derivatives. Despite this, there remains a substantial amount of work to be undertaken. A focused approach is warranted for the exploration and advancement of both natural and synthetic bioactive molecules containing tropane, facilitated through collaborative efforts between academia and industry. Leveraging contemporary techniques and technologies in medicinal and synthetic chemistry, including high throughput screening, drug repurposing,and biotechnological engineering, holds the potential to unveil novel possibilities and accelerate the drug discovery process for innovative tropane-based pharmaceuticals.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
7
|
Bagal D, Chowdhary AA, Mehrotra S, Mishra S, Rathore S, Srivastava V. Metabolic engineering in hairy roots: An outlook on production of plant secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107847. [PMID: 37352695 DOI: 10.1016/j.plaphy.2023.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Plants are one of the vital sources of secondary metabolites. These secondary metabolites have diverse roles in human welfare, including therapeutic implication. Nevertheless, secondary metabolite yields obtained through the exploitation of natural plant populations is insufficient to meet the commercial demand due to their accumulation in low volumes. Besides, in-planta synthesis of these important metabolites is directly linked with the age and growing conditions of the plant. Such limitations have paved the way for the exploration of alternative production methodologies. Hairy root cultures, induced after the interaction of plants with Rhizobium rhizogenes (Agrobacterium rhizogenes), are a practical solution for producing valuable secondary metabolite at low cost and without the influence of seasonal, geographic or climatic variations. Hairy root cultures also offer the opportunity to get combined with other yield enhancements strategies (precursor feeding, elicitation and metabolic engineering) to further stimulate and/or enhance their production potential. Applications of metabolic engineering in exploiting hairy root cultures attracted the interest of several research groups as a means of yield enhancement. Currently, several engineering approaches like overexpression and silencing of pathway genes, and transcription factor overexpression are used to boost metabolite production, along with the contextual success of genome editing. This review attempts to cover metabolic engineering in hairy roots for the production of secondary metabolites, with a primary emphasis on alkaloids, and discusses prospects for taking this research forward to meet desired production demands.
Collapse
Affiliation(s)
- Diksha Bagal
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226020, India.
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India.
| | - Sonica Rathore
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India.
| |
Collapse
|
8
|
Gong H, He P, Lan X, Zeng L, Liao Z. Biotechnological Approaches on Engineering Medicinal Tropane Alkaloid Production in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:924413. [PMID: 35720595 PMCID: PMC9201383 DOI: 10.3389/fpls.2022.924413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Hyoscyamine and scopolamine, belonging to medicinal tropane alkaloids (MTAs), are potent anticholinergic drugs. Their industrial production relies on medicinal plants, but the levels of the two alkaloids are very low in planta. Engineering the MTA's production is an everlasting hot topic for pharmaceutical industry. With understanding the MTA's biosynthesis, biotechnological approaches are established to produce hyoscyamine and scopolamine in an efficient manner. Great advances have been obtained in engineering MTA's production in planta. In this review, we summarize the advances on the biosynthesis of MTAs and engineering the MTA's production in hairy root cultures, as well in plants. The problems and perspectives on engineering the MTA's production are also discussed.
Collapse
Affiliation(s)
- Haiyue Gong
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Southwest University, Chongqing, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Xiaozhong Lan
- Xizang Agricultural and Husbandry College, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, TAAHC-SWU Medicinal Plant Joint R&D Centre, Nyingchi, China
| | - Lingjiang Zeng
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Southwest University, Chongqing, China
- Chongqing Academy of Science and Technology, Chongqing, China
| |
Collapse
|
9
|
Mora-Vásquez S, Wells-Abascal GG, Espinosa-Leal C, Cardineau GA, García-Lara S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab Eng Commun 2022; 14:e00194. [PMID: 35242556 PMCID: PMC8881666 DOI: 10.1016/j.mec.2022.e00194] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 12/22/2022] Open
Abstract
Plants are a rich source of bioactive compounds, many of which have been exploited for cosmetic, nutritional, and medicinal purposes. Through the characterization of metabolic pathways, as well as the mechanisms responsible for the accumulation of secondary metabolites, researchers have been able to increase the production of bioactive compounds in different plant species for research and commercial applications. The intent of the current review is to describe the metabolic engineering methods that have been used to transform in vitro or field-grown medicinal plants over the last decade and to identify the most effective approaches to increase the production of alkaloids. The articles summarized were categorized into six groups: endogenous enzyme overexpression, foreign enzyme overexpression, transcription factor overexpression, gene silencing, genome editing, and co-overexpression. We conclude that, because of the complex and multi-step nature of biosynthetic pathways, the approach that has been most commonly used to increase the biosynthesis of alkaloids, and the most effective in terms of fold increase, is the co-overexpression of two or more rate-limiting enzymes followed by the manipulation of regulatory genes.
Collapse
Affiliation(s)
- Soledad Mora-Vásquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | | | - Claudia Espinosa-Leal
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | - Guy A. Cardineau
- Arizona State University, Beus Center for Law and Society, Mail Code 9520, 111 E. Taylor Street, Phoenix, AZ, 85004-4467, USA
| | - Silverio García-Lara
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
10
|
Wang D, Zhang Z, Yang L, Tian S, Liu Y. ARPI, β-AS, and UGE regulate glycyrrhizin biosynthesis in Glycyrrhiza uralensis hairy roots. PLANT CELL REPORTS 2021; 40:1285-1296. [PMID: 34002270 DOI: 10.1007/s00299-021-02712-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
ARPI, β-AS, and UGE were cloned from G. uralensis and their regulatory effects on glycyrrhizin biosynthesis were investigated. β-AS and UGE but not ARPI positively regulate the biosynthesis of glycyrrhizin. Glycyrrhiza uralensis Fisch. has been used to treat respiratory, gastric, and liver diseases since ancient China. The most important and widely studied active component in G. uralensis is glycyrrhizin (GC). Our pervious RNA-Seq study shows that GC biosynthesis is regulated by multiple biosynthetic pathways. In this study, three target genes, ARPI, β-AS, and UGE from different pathways were selected and their regulatory effects on GC biosynthesis were investigated using G. uralensis hairy roots. Our data show that hairy roots knocking out ARPI or UGE died soon after induction, indicating that the genes are essential for the growth of G. uralensis hairy roots. Hairy roots with β-AS knocked out grew healthily. However, they failed to produce GC, suggesting that β-AS is required for triterpenoid skeleton formation. Conversely, overexpression of UGE or β-AS significantly increased the GC content, whereas overexpression of ARPI had no obvious effects on GC accumulation in G. uralensis hairy roots. Our findings demonstrate that β-AS and UGE positively regulate the biosynthesis of GC.
Collapse
Affiliation(s)
- Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China.
| |
Collapse
|
11
|
Kluza A, Wojdyla Z, Mrugala B, Kurpiewska K, Porebski PJ, Niedzialkowska E, Minor W, Weiss MS, Borowski T. Regioselectivity of hyoscyamine 6β-hydroxylase-catalysed hydroxylation as revealed by high-resolution structural information and QM/MM calculations. Dalton Trans 2020; 49:4454-4469. [PMID: 32182320 DOI: 10.1039/d0dt00302f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyoscyamine 6β-hydroxylase (H6H) is a bifunctional non-heme 2-oxoglutarate/Fe2+-dependent dioxygenase that catalyzes the two final steps in the biosynthesis of scopolamine. Based on high resolution crystal structures of H6H from Datura metel, detailed information on substrate binding was obtained that provided insights into the onset of the enzymatic process. In particular, the role of two prominent residues was revealed - Glu-116 that interacts with the tertiary amine located on the hyoscyamine tropane moiety and Tyr-326 that forms CH-π hydrogen bonds with the hyoscyamine phenyl ring. The structures were used as the basis for QM/MM calculations that provided an explanation for the regioselectivity of the hydroxylation reaction on the hyoscyamine tropane moiety (C6 vs. C7) and quantified contributions of active site residues to respective barrier heights.
Collapse
Affiliation(s)
- Anna Kluza
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Beata Mrugala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Katarzyna Kurpiewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL-30387 Krakow, Poland
| | - Przemyslaw J Porebski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489, Berlin, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|
12
|
Comparative Proteomic Analysis of Dipsacus asperoides Roots from Different Habitats in China. Molecules 2020; 25:molecules25163605. [PMID: 32784367 PMCID: PMC7464434 DOI: 10.3390/molecules25163605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
Dipsacus asperoides is a kind of Chinese herbal medicine with beneficial health properties. To date, the quality of D. asperoides from different habitats has shown significant differences. However, the molecular differences in D. asperoides from different habitats are still unknown. The aim of this study was to investigate the differences in protein levels of D. asperoides from different habitats. Isobaric tags for relative and absolute quantification (iTRAQ) and 2DLC/MS/MS were used to detect statistically significant changes in D. asperoides from different habitats. Through proteomic analysis, a total of 2149 proteins were identified, of which 42 important differentially expressed proteins were screened. Through in-depth analysis of differential proteins, the protein metabolism energy and carbohydrate metabolism of D. asperoides from Hubei Province were strong, but their antioxidant capacity was weak. We found that three proteins, UTP-glucose-1-phosphate uridylyltransferase, allene oxide cyclase, and isopentyl diphosphate isomerase 2, may be the key proteins involved in dipsacus saponin VI synthesis. Eight proteins were found in D. asperoides in response to environmental stress from different habitats. Quantitative real-time PCR analysis confirmed the accuracy and authenticity of the proteomic analysis. The results of this study may provide the basic information for exploring the cause of differences in secondary metabolites in different habitats of D. asperoides and the protein mechanism governing differences in quality.
Collapse
|
13
|
Tian X, Bai JQ, Yang CW, Zhang YM, Li GD. Characterization of the complete chloroplast genome sequence of Anisodus acutangulus (Solanaceae). Mitochondrial DNA B Resour 2020; 5:893-894. [PMID: 33366800 PMCID: PMC7748740 DOI: 10.1080/23802359.2020.1717387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Xing Tian
- Faculty of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Ji-Qing Bai
- College of Pharmacy, Shanxi University of Chinese Medicine, Xianyang, China
| | - Cong-Wei Yang
- Faculty of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Ying-Min Zhang
- Faculty of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Guo-Dong Li
- Faculty of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
14
|
Wu N, Jian D, Xiang M, Chen M, Lan X, Liao Z, Liu X. Biochemical characterization reveals the functional divergence of two tropinone reductases from
Przewalskia tangutica. Biotechnol Appl Biochem 2019; 66:597-606. [DOI: 10.1002/bab.1760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Nianyang Wu
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| | - Dongqin Jian
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| | - Min Xiang
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| | - Min Chen
- SWU‐TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical SciencesSouthwest University Chongqing People's Republic of China
| | - Xiaozhong Lan
- TAAHC‐SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry ResourcesTibet Agricultural and Animal Husbandry College Nyingchi of Tibet People's Republic of China
| | - Zhihua Liao
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| | - Xiaoqiang Liu
- Key Laboratory of Eco‐environments in Three Gorges Reservoir Region (Ministry of Education), SWU‐TAAHC Medicinal Plant Joint R&D Centre, School of Life SciencesSouthwest University Chongqing People's Republic of China
| |
Collapse
|
15
|
Kohnen-Johannsen KL, Kayser O. Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules 2019; 24:E796. [PMID: 30813289 PMCID: PMC6412926 DOI: 10.3390/molecules24040796] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Tropane alkaloids (TA) are valuable secondary plant metabolites which are mostly found in high concentrations in the Solanaceae and Erythroxylaceae families. The TAs, which are characterized by their unique bicyclic tropane ring system, can be divided into three major groups: hyoscyamine and scopolamine, cocaine and calystegines. Although all TAs have the same basic structure, they differ immensely in their biological, chemical and pharmacological properties. Scopolamine, also known as hyoscine, has the largest legitimate market as a pharmacological agent due to its treatment of nausea, vomiting, motion sickness, as well as smooth muscle spasms while cocaine is the 2nd most frequently consumed illicit drug globally. This review provides a comprehensive overview of TAs, highlighting their structural diversity, use in pharmaceutical therapy from both historical and modern perspectives, natural biosynthesis in planta and emerging production possibilities using tissue culture and microbial biosynthesis of these compounds.
Collapse
Affiliation(s)
- Kathrin Laura Kohnen-Johannsen
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany.
| | - Oliver Kayser
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany.
| |
Collapse
|
16
|
Ping Y, Li X, Xu B, Wei W, Wei W, Kai G, Zhou Z, Xiao Y. Building Microbial Hosts for Heterologous Production of N-Methylpyrrolinium. ACS Synth Biol 2019; 8:257-263. [PMID: 30691267 DOI: 10.1021/acssynbio.8b00483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Methylpyrrolinium-derived alkaloids like tropane alkaloids, nicotine, and calystegines are valuable plant source specialized metabolites bearing pharmaceutical or biological activity. Microbial synthesis of the critical common intermediate N-methylpyrrolinium would allow for sustainable production of N-methylpyrrolinium-derived alkaloids. Here, we achieve the production of N-methylpyrrolinium both in Escherichia coli and in Saccharomyces cerevisiae by employing the biosynthetic genes derived from three different plants. Specifically, the diamine oxidases (DAOs) from Anisodus acutangulus were first characterized. Then, we produced N-methylpyrrolinium in vitro from l-ornithine via a combination of the three cascade enzymes, ornithine decarboxylase from Erythroxylum coca, putrescine N-methyltransferase from Anisodus tanguticus, and DAOs from A. acutangulus. Construction of the plant biosynthetic pathway in E. coli and S. cerevisiae resulted in de novo bioproduction of N-methylpyrrolinium with titers of 3.02 and 2.07 mg/L, respectively. Metabolic engineering of the yeast strain to produce N-methylpyrrolinium via decreasing the flux to the product catabolism pathway and improving the cofactor supply resulted in a final titer of 17.82 mg/L. This study not only presents the first microbial synthesis of N-methylpyrrolinium but also lays the foundation for heterologous biosynthesis of N-methylpyrrolinium-derived alkaloids. More importantly, the strains constructed herein can serve as important alternative tools for identifying undiscovered pathway enzymes with a synthetic biology strategy.
Collapse
Affiliation(s)
- Yu Ping
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaodong Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baofu Xu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Wei
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenping Wei
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zhihua Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
17
|
Asl KR, Hosseini B, Sharafi A, Palazon J. Influence of nano-zinc oxide on tropane alkaloid production, h6h gene transcription and antioxidant enzyme activity in Hyoscyamus reticulatus L. hairy roots. Eng Life Sci 2018; 19:73-89. [PMID: 32624958 DOI: 10.1002/elsc.201800087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 11/07/2022] Open
Abstract
The use of nanotechnology and biotechnology to improve the production of plant bioactive compounds is growing. Hyoscyamus reticulatus L. is a major source of tropane alkaloids with a wide therapeutic use, including treatment of Parkinson's disease and to calm schizoid patients. In the present study, hairy roots were obtained from two-week-old cotyledon explants of H. reticulatus L. using the A7 strain of Agrobacterium rhizogenes. The effects of different concentrations of the signaling molecule nano-zinc oxide (ZnO) (0, 50, 100 and 200 mg/L), with three exposure times (24, 48 and 72 h), on the growth rate, antioxidant enzyme activity, total phenol contents (TPC), tropane alkaloid contents and hyoscyamine-6-beta-hydroxylase (h6h) gene expression levels were investigated. Growth curve analysis revealed a decrease in fresh and dry weight of ZnO-treated hairy roots compared to the control. ANOVA results showed that the antioxidant activity of the enzymes catalase, guaiacol peroxidase and ascorbate peroxidase was significantly higher in the ZnO-treated hairy roots than in the control, as was the TPC. The highest levels of hyoscyamine (37%) and scopolamine (37.63%) were obtained in hairy roots treated with 100 mg/L of ZnO after 48 and 72 h, respectively. Semi-quantitative RT-PCR analysis revealed the highest h6h gene expression was in hairy roots treated with 100 mg/L of ZnO after 24 h. It can be concluded that ZnO is as an effective elicitor of tropane alkaloids such as hyoscyamine and scopolamine due to its enhancing effect on expression levels of the biosynthetic h6h gene.
Collapse
Affiliation(s)
- Kamal Rashidi Asl
- Department of Horticulture Faculty of Agriculture Urmia University Iran
| | - Bahman Hosseini
- Department of Horticulture Faculty of Agriculture Urmia University Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center Zanjan University of Medical Sciences Zanjan Iran
| | - Javier Palazon
- Department of Plant Physiology Faculty of Pharmacy University of Barcelona Barcelona Spain
| |
Collapse
|
18
|
Fischer C, Kwon M, Ro DK, van Belkum MJ, Vederas JC. Isolation, expression and biochemical characterization of recombinant hyoscyamine-6β-hydroxylase from Brugmansia sanguinea - tuning the scopolamine production. MEDCHEMCOMM 2018; 9:888-892. [PMID: 30108978 DOI: 10.1039/c8md00090e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022]
Abstract
Hyoscyamine-6β-hydroxylase (H6H, EC 1.14.11.11) is a plant enzyme that catalyses the last two steps in the biosynthesis of the anticholinergic drug scopolamine, i.e. the hydroxylation of hyoscyamine to 6β-hydroxyhyoscyamine (anisodamine) and subsequent oxidative ring-closure to the 6,7-β-epoxide. A H6H gene homologue was isolated from the plant Brugmansia sanguinea (BsH6H) and recombinantly cloned into Escherichia coli, expressed and purified using an effective SUMO-fusion procedure. Enzymatic activity is approximately 40-fold higher for the first reaction step and the substrate affinity is comparable to other characterized H6H homologues (Km ∼ 60 μM). Truncation of an H6H enzyme flexible N-terminal region yields an active and stable yet more compact enzyme version.
Collapse
Affiliation(s)
- Conrad Fischer
- University of Alberta , Department of Chemistry , Edmonton , AB T6G 2G2 , Canada . ; ; Tel: +780 492 5475
| | - Moonhyuk Kwon
- University of Calgary , Biological Sciences , Calgary , AB T2N 1N4 , Canada
| | - Dae-Kun Ro
- University of Calgary , Biological Sciences , Calgary , AB T2N 1N4 , Canada
| | - Marco J van Belkum
- University of Alberta , Department of Chemistry , Edmonton , AB T6G 2G2 , Canada . ; ; Tel: +780 492 5475
| | - John C Vederas
- University of Alberta , Department of Chemistry , Edmonton , AB T6G 2G2 , Canada . ; ; Tel: +780 492 5475
| |
Collapse
|
19
|
Lan X, Zeng J, Liu K, Zhang F, Bai G, Chen M, Liao Z, Huang L. Comparison of two hyoscyamine 6β-hydroxylases in engineering scopolamine biosynthesis in root cultures of Scopolia lurida. Biochem Biophys Res Commun 2018; 497:25-31. [PMID: 29407173 DOI: 10.1016/j.bbrc.2018.01.173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Scopolia lurida, a medicinal plant native to the Tibetan Plateau, is among the most effective producers of pharmaceutical tropane alkaloids (TAs). The hyoscyamine 6β-hydroxylase genes of Hyoscyamus niger (HnH6H) and S. lurida (SlH6H) were cloned and respectively overexpressed in hairy root cultures of S. lurida, to compare their effects on promoting the production of TAs, especially the high-value scopolamine. Root cultures with SlH6H/HnH6H overexpression were confirmed by PCR and real-time quantitative PCR, suggesting that the enzymatic steps defined by H6H were strongly elevated at the transcriptional level. Tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were analyzed by HPLC. Scopolamine and anisodamine contents were remarkably elevated in the root cultures overexpressing SlH6H/HnH6H, whereas that of hyoscyamine was more or less reduced, when compared with those of the control. These results also indicated that SlH6H and HnH6H promoted anisodamine production at similar levels in S. lurida root cultures. More importantly, HnH6H-overexpressing root cultures had more scopolamine in them that did SlH6H-overexpressing root cultures. This study not only provides a feasible way of overexpressing H6H to produce high-value scopolamine in engineered root cultures of S. lurida but also found that HnH6H was better than SlH6H for engineering scopolamine production.
Collapse
Affiliation(s)
- Xiaozhong Lan
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing 100700, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Tibet Agricultural and Animal Husbandry College, Nyingchi of Tibet 860000, China
| | - Junlan Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ke Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fangyuan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Tibet Agricultural and Animal Husbandry College, Nyingchi of Tibet 860000, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
20
|
Bai Z, Xia P, Wang R, Jiao J, Ru M, Liu J, Liang Z. Molecular cloning and characterization of five SmGRAS genes associated with tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. PLoS One 2017; 12:e0185322. [PMID: 28953930 PMCID: PMC5617194 DOI: 10.1371/journal.pone.0185322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/11/2017] [Indexed: 01/31/2023] Open
Abstract
The gibberellin-responsive element binding factor (GRAS) family of proteins plays an important role in the transcriptional regulation of plant development and hormone signaling. To date, there are no reports on GRAS family proteins expressed in Salvia miltiorrhiza. In this study, 28 ESTs that contained the GRAS domain were identified from a S. miltiorrhiza cDNA library. Of these, full-length sequences of five genes were cloned and sequence analysis indicated that all five proteins contain only one GRAS domain and therefore, belong to the GRAS family. The five genes were designated S. miltiorrhiza GRAS1-5 (SmGRAS1-5), which belong to groups I (SmGRAS2 and SmGRAS4), II (SmGRAS3), III (SmGRAS1), and VIII (SmGRAS5) respectively. Additionally, SmGRAS1-5 have different expression patterns in the reed head, stems, leaves, flowers, and roots of S. miltiorrhiza. In this study, the expression of SmGRAS1-5 was sensitive to Gibberellin (GA) stress and that of SmGRAS1, SmGRAS4 and SmGRAS5 was sensitive to Ethephon (Eth) stress respectively. Moreover, S. miltiorrhiza copalyl diphosphate synthases 1 (SmCPS1) and S. miltiorrhiza kaurene synthase like 1 (SmKSL1), which are two key enzymes gene in the diterpenoid biosynthesis pathway, were also response to GA and Eth stress. In addition, Dihydrotanshinone (DT-I) and Tanshinone I (T-I) content were enhanced by GA and Eth stress, Tanshinone IIA (T-IIA) content was increased by GA stress, and the accumulation of Cryptotanshinone (CT) was insensitive to both GA and Eth stress. Together, these results provide insights into functional conservation and diversification of SmGRASs and are useful information for further elucidating SmGRAS functions.
Collapse
Affiliation(s)
- Zhenqing Bai
- College of Life Science, Northwest A&F University, Yangling, China
| | - Pengguo Xia
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruilin Wang
- College of Life Science, Northwest A&F University, Yangling, China
| | - Jie Jiao
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Ru
- College of Life Science, Northwest A&F University, Yangling, China
| | - Jingling Liu
- College of Life Science, Northwest A&F University, Yangling, China
| | - Zongsuo Liang
- College of Life Science, Northwest A&F University, Yangling, China
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
- * E-mail:
| |
Collapse
|
21
|
Enhancement of triterpenoid saponins biosynthesis in Panax notoginseng cells by co-overexpressions of 3-hydroxy-3-methylglutaryl CoA reductase and squalene synthase genes. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Transcriptomic analysis of Pseudostellariae Radix from different fields using RNA-seq. Gene 2016; 588:7-18. [PMID: 27125225 DOI: 10.1016/j.gene.2016.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 01/10/2023]
Abstract
Pseudostellariae Radix is an important traditional Chinese medicine (TCM), which is consumed commonly for its positive health effects. However, a lack of transcriptomic and genomic information hinders research on Pseudostellariae Radix. Here, high-throughput RNA sequencing (RNA-seq) was employed for the de novo assembly to analyze the transcriptome in Pseudostellariae Radix, finding significantly differentially expressed genes in this TCM from different fields based on RNA-seq and bioinformatic analysis. A total of 146,408,539 paired-end reads were generated and assembled into 89,857 unigenes with an average length of 862bp. All of the assembly unigenes were annotated by running BLASTx and BLASTn similarity searches on the Non-redundant nucleotide database (NT), the Non-redundant protein database (NR), Swiss-Prot, Cluster of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Interpro. On the basis of bioinformatic analysis and the expression profiles for Pseudostellariae Radix, 29 significantly differentially expressed genes were identified, which provides the basic information for exploring the molecular mechanisms that determine the quality of Pseudostellariae Radix from different fields. The expression levels of 29 genes were validated by real-time quantitative PCR (RT-qPCR). This is the first study to sample Pseudostellariae Radix, which provides an invaluable resource for understanding the genome of this herb.
Collapse
|
23
|
Rusanov K, Atanassov A, Atanassov I. Engineering Cell and Organ Cultures from Medicinal and Aromatic Plants Toward Commercial Production of Bioactive Metabolites. REFERENCE SERIES IN PHYTOCHEMISTRY 2016. [DOI: 10.1007/978-3-319-32004-5_8-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Jiao J, Gai QY, Wang W, Luo M, Zu YG, Fu YJ, Ma W. Enhanced astragaloside production and transcriptional responses of biosynthetic genes in Astragalus membranaceus hairy root cultures by elicitation with methyl jasmonate. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Lan X, Quan H, Xia X, Yin W, Zheng W. Molecular cloning and transgenic characterization of the genes encoding chalcone synthase and chalcone isomerase from the Tibetan herbal plant Mirabilis himalaica. Biotechnol Appl Biochem 2015; 63:419-26. [PMID: 25817060 DOI: 10.1002/bab.1376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023]
Abstract
Mirabilis himalaica is an endangered medicinal plant species in the Tibetan Plateau. The two genes respectively encoding chalcone synthase (MhCHS) and chalcone isomerase (MhCHI) were isolated and characterized from M. himalaica. The sequence analysis revealed that the two genes were similar with their corresponding homologous genes in other plants. The tissue profiles showed that both MhCHS and MhCHI had higher expression levels in roots than in stems and leaves. Transgenic hairy root cultures respectively with overexpressing MhCHS and MhCHI were established. The genomic PCR detection confirmed the authority of transgenic hairy root lines, in which either MhCHS or MhCHI expression levels were much higher than that in non-transgenic hairy root line. Finally, the HPLC detection results demonstrated that the rotenoid contents in MhCHS/MhCHI-transformed hairy root lines were enhanced. This study provided two candidate genes that could be used to genetic engineering rotenoid biosynthesis in M. himalaica and an alternative method to produce rotenoid using transgenic hairy root cultures.
Collapse
Affiliation(s)
- Xiaozhong Lan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China.,TAAHC-SWU Medicinal Plant Joint R&D Centre, Agricultural and Animal Husbandry College, Tibet University, Nyingchi of Tibet, People's Republic of China
| | - Hong Quan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Agricultural and Animal Husbandry College, Tibet University, Nyingchi of Tibet, People's Republic of China.,Institute of Plateau Ecology, Agricultural and Animal Husbandry College, Tibet University, Nyingchi of Tibet, People's Republic of China
| | - Xinli Xia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Weilun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Weilie Zheng
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Agricultural and Animal Husbandry College, Tibet University, Nyingchi of Tibet, People's Republic of China
| |
Collapse
|
26
|
Cao YD, He YC, Li H, Kai GY, Xu JH, Yu HL. Efficient biosynthesis of rare natural product scopolamine using E. coli cells expressing a S14P/K97A mutant of hyoscyamine 6β-hydroxylase AaH6H. J Biotechnol 2015; 211:123-9. [PMID: 26239231 DOI: 10.1016/j.jbiotec.2015.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
Abstract
Hyoscyamine 6β-hydroxylase (H6H, EC 1.14.11.11), an α-ketoglutarate dependent dioxygenase catalyzes the hydroxylation of (-)-hyoscyamine and the subsequent epoxidation of 6β-hydroxyhyoscyamine to form scopolamine, a valuable natural alkaloid. In this study, random mutagenesis and site-directed saturation mutagenesis were used to enhance the hydroxylation activity of H6H from Anisodus acutangulus (AaH6H). A double mutant, AaH6HM1 (S14P/K97A), showed a 3.4-fold improved hydroxylation activity compared with the wild-type enzyme, and the in vivo epoxidation activity was also improved by 2.3 times. After 34h cultivation of Escherichia coli cells harboring Aah6hm1 in a 5-L bioreactor with a working volume of 3L, scopolamine was produced via a single-enzyme-mediated two-step transformation from 500mgL(-1) (-)-hyoscyamine in 97% conversion, and 1.068g of the product were isolated, corresponding to a space-time yield of 251mgL(-1)d(-1). This study shows that the protein engineering of some key enzymes is a promising and effective way for improving the production of rare natural products such as scopolamine.
Collapse
Affiliation(s)
- Yue-De Cao
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu-Cai He
- Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, PR China
| | - Hao Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Guo-Yin Kai
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, PR China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
27
|
Cui L, Huang F, Zhang D, Lin Y, Liao P, Zong J, Kai G. Transcriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus. Mol Genet Genomics 2015; 290:1367-77. [DOI: 10.1007/s00438-015-1005-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 01/29/2015] [Indexed: 11/29/2022]
|
28
|
Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Sci Rep 2015; 5:8227. [PMID: 25648209 PMCID: PMC4316170 DOI: 10.1038/srep08227] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/12/2015] [Indexed: 01/07/2023] Open
Abstract
Camptothecin (CPT) belongs to a group of monoterpenoidindole alkaloids (TIAs) and its derivatives such as irinothecan and topothecan have been widely used worldwide for the treatment of cancer, giving rise to rapidly increasing market demands. Genes from Catharanthus roseus encoding strictosidine synthase (STR) and geraniol 10-hydroxylase (G10H), were separately and simultaneously introduced into Ophiorrhiza pumila hairy roots. Overexpression of individual G10H (G lines) significantly improved CPT production with respect to non-transgenic hairy root cultures (NC line) and single STR overexpressing lines (S lines), indicating that G10H plays a more important role in stimulating CPT accumulation than STR in O. pumila. Furthermore, co-overexpression of G10H and STR genes (SG Lines) caused a 56% increase on the yields of CPT compared to NC line and single gene transgenic lines, showed that simultaneous introduction of G10H and STR can produce a synergistic effect on CPT biosynthesis in O. pumila. The MTT assay results indicated that CPT extracted from different lines showed similar anti-tumor activity, suggesting that transgenic O. pumila hairy root lines could be an alternative approach to obtain CPT. To our knowledge, this is the first report on the enhancement of CPT production in O. pumila employing a metabolic engineering strategy.
Collapse
|
29
|
Li M, Jiang F, Yu X, Miao Z. Engineering isoprenoid biosynthesis in Artemisia annua L. for the production of taxadiene: a key intermediate of taxol. BIOMED RESEARCH INTERNATIONAL 2015; 2015:504932. [PMID: 25705665 PMCID: PMC4331392 DOI: 10.1155/2015/504932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/01/2014] [Indexed: 11/18/2022]
Abstract
Taxadiene is the first committed precursor to paclitaxel, marketed as Taxol, arguably the most important anticancer agent against ovarian and breast cancer. In Taxus, taxadiene is directly synthesized from geranylgeranyl diphosphate (GGPP) that is the common precursor for diterpenoids and is found in most plants and microbes. In this study, Artemisia annua L., a Chinese medicinal herb that grows fast and is rich in terpenoids, was used as a genetic engineering host to produce taxadiene. The TXS (taxadiene synthase) gene, cloned from Taxus and inserted into pCAMBIA1304, was transformed into Artemisia annua L. using the Agrobacterium tumefaciens-mediated method. Thirty independent transgenic plants were obtained, and GC-MS analysis was used to confirm that taxadiene was produced and accumulated up to 129.7 μg/g dry mass. However, the high expression of TXS did not affect plant growth or photosynthesis in transgenic Artemisia annua L. It is notable that artemisinin is produced and stored in leaves and most taxadiene accumulated in the stem of transgenic Artemisia annua L., suggesting a new way to produce two important compounds in one transgenic plant: leaves for artemisinin and stem for taxadiene. Overall, this study demonstrates that genetic engineering of the taxane biosynthetic pathway in Artemisia annua L. for the production of taxadiene is feasible.
Collapse
Affiliation(s)
- Meiya Li
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Biotechnology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fusheng Jiang
- Institute of Biotechnology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiangli Yu
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiqi Miao
- Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
Xing B, Yang D, Guo W, Liang Z, Yan X, Zhu Y, Liu Y. Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots. Molecules 2014; 20:309-24. [PMID: 25547728 PMCID: PMC6272699 DOI: 10.3390/molecules20010309] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Phenolic acids and tanshinones are two groups of bioactive ingredients in Salvia miltiorrhiza Bunge. As a heavy metal elicitor, it has been reported that Ag+ can induce accumulations of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. In this study, the effects of Ag+ treatment on accumulations of six phenolic acids and four tanshinones in S. miltiorrhiza hairy roots were investigated. To further elucidate the molecular mechanism, expressions of key genes involved in the biosynthesis of these ingredients were also detected. The results showed that although the total phenolic acids content was almost not affected by Ag+, accumulations of rosmarinic acid (RA), caffeic acid and ferulic acid were significantly increased, while accumulations of salvianolic acid B (LAB), danshensu (DSU) and cinnamic acid were decreased. We speculate that LAB probably derived from the branch pathway of DSU biosynthesis. Contents of four tanshinones were enhanced by Ag+ and their accumulations were more sensitive to Ag+ than phenolic acids. Genes in the upstream biosynthetic pathways of these ingredients responded to Ag+ earlier than those in the downstream biosynthetic pathways. Ag+ probably induced the whole pathways, upregulated gene expressions from the upstream pathways to the downstream pathways, and finally resulted in the enhancement of ingredient production. Compared with phenolic acids, tanshinone production was more sensitive to Ag+ treatments. This study will help us understand how secondary metabolism in S. miltiorrhiza responds to elicitors and provide a reference for the improvement of the production of targeted compounds in the near future.
Collapse
Affiliation(s)
- Bingcong Xing
- College of Life Science, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China.
| | - Dongfeng Yang
- College of Life Science, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China.
| | - Wanli Guo
- College of Life Science, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China.
| | - Zongsuo Liang
- College of Life Science, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China.
| | - Xijun Yan
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin 300410, China.
| | - Yonghong Zhu
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin 300410, China.
| | - Yan Liu
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin 300410, China.
| |
Collapse
|
31
|
Kai G, Hao X, Cui L, Ni X, Zekria D, Wu JY. WITHDRAWN: Metabolic engineering and biotechnological approaches for production of bioactive diterpene tanshinones in Salvia miltiorrhiza. Biotechnol Adv 2014:S0734-9750(14)00150-5. [PMID: 25305517 DOI: 10.1016/j.biotechadv.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 01/03/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Guoyin Kai
- Laboratory of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China.
| | - Xiaolong Hao
- Laboratory of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Lijie Cui
- Laboratory of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - David Zekria
- Department of General Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
32
|
Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J, Wang B, Wang L, Yao Q. Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng 2014; 26:100-110. [PMID: 25305469 DOI: 10.1016/j.ymben.2014.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022]
Abstract
The widespread presence of polycyclic aromatic hydrocarbons (PAHs) and their potential harm to various organisms has generated interest in efficiently eliminating these compounds from the environment. Phytoremediation is an efficient technology for cleaning up pollutants. However, unlike microorganisms, plants lack the catabolic pathway for complete degradation of these dangerous groups of compounds. One way to enhance the potential of plants for remediation of these compounds is by transferring genes involved in xenobiotic degradation from microbes to plants. In this paper, four genes, namely nidA and nidB (encoding the large and small subunits of naphthalene dioxygenase of Mycobacterium vanbaalenii PYR-1) as well as NahAa and NahAb (encoding flavoprotein reductase and ferredoxin of the electron-transport chain of the Pseudomonas putida G7 naphthalene dioxygenase system), were transferred and ectopically expressed in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing the heterozygous naphthalene dioxygenase system exhibited enhanced tolerance toward 2-4 rings PAHs. Transgenic plants assimilated PAHs from the culture media faster and accumulated less in vivo than wild-type plants. Furthermore, examination of metabolic intermediates by gas chromatography-mass spectrometry revealed that the naphthalene metabolic pathway in transgenic plants mainly involves the dioxygenase pathway. Taken together, our findings suggest that grafting the naphthalene dioxygenase complex into plants is a possible strategy to breed PAH-tolerant plants to efficiently degrade PAHs in the environment.
Collapse
Affiliation(s)
- Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Bo Zhu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China.
| |
Collapse
|
33
|
Yuan Y, Liu W, Zhang Q, Xiang L, Liu X, Chen M, Lin Z, Wang Q, Liao Z. Overexpression of artemisinic aldehyde Δ11 (13) reductase gene-enhanced artemisinin and its relative metabolite biosynthesis in transgenicArtemisia annuaL. Biotechnol Appl Biochem 2014; 62:17-23. [DOI: 10.1002/bab.1234] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/10/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); Chongqing Engineering and Technology Research Center for Sweetpotato; School of Life Sciences; Southwest University; Chongqing 400715 People's Republic of China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering; Chongqing University of Science and Technology; Chongqing 401331 People's Republic of China
| | - Qiaozhuo Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); Chongqing Engineering and Technology Research Center for Sweetpotato; School of Life Sciences; Southwest University; Chongqing 400715 People's Republic of China
| | - Lien Xiang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); Chongqing Engineering and Technology Research Center for Sweetpotato; School of Life Sciences; Southwest University; Chongqing 400715 People's Republic of China
| | - Xiaoqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); Chongqing Engineering and Technology Research Center for Sweetpotato; School of Life Sciences; Southwest University; Chongqing 400715 People's Republic of China
| | - Min Chen
- College of Pharmaceutical Sciences; Southwest University; Chongqing 400715 People's Republic of China
| | - Zhi Lin
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); Chongqing Engineering and Technology Research Center for Sweetpotato; School of Life Sciences; Southwest University; Chongqing 400715 People's Republic of China
| | - Qiang Wang
- China Rural Technology Development Center; Ministry of Science and Technology; Beijing 100045 People's Republic of China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); Chongqing Engineering and Technology Research Center for Sweetpotato; School of Life Sciences; Southwest University; Chongqing 400715 People's Republic of China
| |
Collapse
|
34
|
Shi M, Luo X, Ju G, Yu X, Hao X, Huang Q, Xiao J, Cui L, Kai G. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Funct Integr Genomics 2014; 14:603-15. [PMID: 24913677 DOI: 10.1007/s10142-014-0385-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/24/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023]
Abstract
Tanshinone is widely used for treatment of cardio-cerebrovascular diseases with increasing demand. Herein, key enzyme genes SmHMGR (3-hydroxy-3-methylglutaryl CoA reductase) and SmDXR (1-deoxy-D-xylulose 5-phosphate reductoisomerase) involved in the tanshinone biosynthetic pathway were introduced into Salvia miltiorrhiza (Sm) hairy roots to enhance tanshinone production. Over-expression of SmHMGR or SmDXR in hairy root lines can significantly enhance the yield of tanshinone. Transgenic hairy root lines co-expressing HMGR and DXR (HD lines) produced evidently higher levels of total tanshinone (TT) compared with the control and single gene transformed lines. The highest tanshinone production was observed in HD42 with the concentration of 3.25 mg g(-1) DW. Furthermore, the transgenic hairy roots showed higher antioxidant activity than control. In addition, transgenic hairy root harboring HMGR and DXR (HD42) exhibited higher tanshinone content after elicitation by yeast extract and/or Ag(+) than before. Tanshinone can be significantly enhanced to 5.858, 6.716, and 4.426 mg g(-1) DW by YE, Ag(+), and YE-Ag(+) treatment compared with non-induced HD42, respectively. The content of cryptotanshinone and dihydrotanshinone was effectively elevated upon elicitor treatments, whereas there was no obvious promotion effect for the other two compounds tanshinone I and tanshinone IIA. Our results provide a useful strategy to improve tanshinone content as well as other natural active products by combination of genetic engineering with elicitors.
Collapse
Affiliation(s)
- Min Shi
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | | | | | | | | | | | | | | | | |
Collapse
|