1
|
Zhao R, Zhang Y, Wang Q, Cao YM, Hou MX, Sun XQ, Yu ST, Chen YJ, Wang KK, Li JT. Generation of transgenic fish cell line with α-lactalbumin nanocarriers co-delivering Tol2 transposase mRNA and plasmids. iScience 2024; 27:110480. [PMID: 39156651 PMCID: PMC11326935 DOI: 10.1016/j.isci.2024.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Fish cells, such as grass carp (Ctenopharyngodon idella) kidney (CIK) cells, are harder to transfect than mammalian cells. There is a need for an efficient gene delivery system for fish cells. Here, we used CIK cell line as a model to develop a strategy to enhance RNA and plasmid DNA transfection efficiency using a nanocarrier generated from α-lactalbumin (α-NC). α-NC absorbed nucleic acid cargo efficiently and exhibited low cytotoxicity. Plasmid transfection was more efficient with α-NC than with liposomal transfection reagents. We used α-NC to co-transfect Tol2 transposase mRNA and a plasmid containing Cas9 and GFP, generating a stable transgenic CIK cell line. Genome and RNA sequencing revealed that the Cas9 and GFP fragments were successfully inserted into the genome of CIK cells and efficiently transcribed. In this study, we established an efficient transfection system for fish cells using α-NC, simplifying the process of generating stable transgenic fish cell lines.
Collapse
Affiliation(s)
- Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yi-Ming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Ming-Xi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Shuang-Ting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying-Jie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kai-Kuo Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|
2
|
Moazzam M, Zhang M, Hussain A, Yu X, Huang J, Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol Ther 2024; 32:284-312. [PMID: 38204162 PMCID: PMC10861989 DOI: 10.1016/j.ymthe.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Five small interfering RNA (siRNA)-based therapeutics have been approved by the Food and Drug Administration (FDA), namely patisiran, givosiran, lumasiran, inclisiran, and vutrisiran. Besides, siRNA delivery to the target site without toxicity is a big challenge for researchers, and naked-siRNA delivery possesses several challenges, including membrane impermeability, enzymatic degradation, mononuclear phagocyte system (MPS) entrapment, fast renal excretion, endosomal escape, and off-target effects. The siRNA therapeutics can silence any disease-specific gene, but their intracellular and extracellular barriers limit their clinical applications. For this purpose, several modifications have been employed to siRNA for better transfection efficiency. Still, there is a quest for better delivery systems for siRNA delivery to the target site. In recent years, nanoparticles have shown promising results in siRNA delivery with minimum toxicity and off-target effects. Patisiran is a lipid nanoparticle (LNP)-based siRNA formulation for treating hereditary transthyretin-mediated amyloidosis that ultimately warrants the use of nanoparticles from different classes, especially lipid-based nanoparticles. These nanoparticles may belong to different categories, including lipid-based, polymer-based, and inorganic nanoparticles. This review briefly discusses the lipid, polymer, and inorganic nanoparticles and their sub-types for siRNA delivery. Finally, several clinical trials related to siRNA therapeutics are addressed, followed by the future prospects and conclusions.
Collapse
Affiliation(s)
- Muhammad Moazzam
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaotong Yu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China.
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics Co. Ltd., Suzhou 215127, China.
| |
Collapse
|
3
|
Zhu Y, Xiao W, Zhong W, Xi C, Ye J, Zhang Q, Wu H, Du S. Study of the skin-penetration promoting effect and mechanism of combined system of curcumin liposomes prepared by microfluidic chip and skin penetrating peptides TD-1 for topical treatment of primary melanoma. Int J Pharm 2023; 643:123256. [PMID: 37482229 DOI: 10.1016/j.ijpharm.2023.123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The transdermal drug delivery system (TDDS) is an effective strategy for the treatment of melanoma with fewer side effects and good biocompatible, but the skin penetration of drugs should be further promoted. Here, we proposed a new system that combined curcumin liposomes (Cur-Lips) with skin-penetrating peptides to promote skin penetration ability. However, the preparation of Cur-Lips has drawbacks of instability and low entrapment efficiency by the traditional methods. We thus innovatively designed and applied a microfluidic chip to optimize the preparation of Cur-Lips. Cur-Lips exhibited a particle size of 106.22 ± 4.94 nm with a low polydispersity index (<0.3) and high entrapment efficiency of 99.33 ± 1.05 %, which were prepared by the microfluidic chip. The Cur-Lips increased the skin penetration capability of Cur by 2.76 times compared to its solution in vitro skin penetration experiment. With the help of skin-penetrating peptide TD-1, the combined system further promoted the skin penetration capability by 4.48 times. The (TD-1 + Cur-Lips) system also exhibited a superior inhibition effect of the tumor to B16F10 in vitro. Furthermore, the topical application of (TD-1 + Cur-Lips) gel suppressed melanoma growth in vivo, and induced tumor cell apoptosis in tumor tissues. The skin-penetration promotion mechanism of the system was investigated. It was proved that the system could interact with the lipids and keratin on the stratum corneum to promote the Cur distribute into the stratum corneum through hair follicles and sweat glands. We proved that the microfluidic chips had unique advantages for the preparation of liposomes. The innovative combined system of liposomes and biological transdermal enhancers can effectively promote the skin penetration effect of drugs and have great potential for the prevention and treatment of melanoma.
Collapse
Affiliation(s)
- Yingyin Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wuqing Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Cheng Xi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jinhong Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Huichao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
4
|
Wu J, Jones N, Fayez NAL, Chao PH, Wu A, de Araujo DR, Rouhollahi E, Jia A, Li SD. Protamine-mediated efficient transcellular and transmucosal delivery of proteins. J Control Release 2023; 356:373-385. [PMID: 36878318 DOI: 10.1016/j.jconrel.2023.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Proteins and peptides often require frequent needle-based administrations. Here, we report a non-parenteral delivery method for proteins through physical mixing with protamine, an FDA-approved peptide. Protamine was shown to promote tubulation and rearrangement of cellular actin, leading to enhanced intracellular delivery of proteins compared to poly(arginine)8 (R8). While the R8-mediated delivery resulted in significant lysosomal accumulation of the cargo, protamine directed the proteins to the nuclei with little lysosomal uptake. Intranasal delivery of insulin mixed with protamine effectively reduced blood glucose levels in diabetic mice 0.5 h after administration and the effect lasted for ∼6 h, comparable to subcutaneously injected insulin at the same dose. In mice, protamine was shown to overcome mucosal and epithelial barriers and modulate adherens junctions, promoting insulin penetration to the lamina propria layer for systemic absorption.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nojoud A L Fayez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Angeline Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Daniele Ribeiro de Araujo
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Analisa Jia
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
5
|
Mandal D, Lohan S, Sajid MI, Alhazza A, Tiwari RK, Parang K, Montazeri Aliabadi H. Modified Linear Peptides Effectively Silence STAT-3 in Breast Cancer and Ovarian Cancer Cell Lines. Pharmaceutics 2023; 15:666. [PMID: 36839988 PMCID: PMC9962452 DOI: 10.3390/pharmaceutics15020666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
RNA interference (RNAi) has drawn enormous attention as a powerful tool because of its capability to interfere with mRNA and protein production. However, designing a safe and efficient delivery system in RNAi therapeutics remains challenging. Herein, we have designed and synthesized several linear peptides containing tryptophan (W) and arginine (R) residues separated by the β-alanine (βA) spacer and attached to a lipophilic fatty acyl chain, cholesterol, or PEG. The peptide backbone sequences were: Ac-C-βA-βA-W4-βA-βA-R4-CO-NH2 and Ac-K-βA-βA-W4-βA-βA-R4-CO-NH2, with only a difference in N-terminal amino acid. The cysteine side chain in the first sequence was used for the conjugation with PEG2000 and PEG550. Alternatively, the side chain of lysine in the second sequence was used for conjugation with cholesterol or oleic acid. We hypothesized that amphiphilic peptides and optimum fatty acyl chain or PEG could function as an effective siRNA carrier by complementing each structural component's self-assembly and membrane internalization properties. None of the designed peptides showed cytotoxicity up to 10 µM. Serum stability studies suggested that the newly designed peptides efficiently protected siRNA against early degradation by nucleases. Flow cytometry analysis indicated 50-90% cellular uptake of siRNA using the newly developed modified linear peptides (MLPs). Western blot results revealed more than 90% protein downregulation after targeting STAT3 in MDA-MB-231 and SKOV-3 cell lines. In summary, a new peptide class was developed to safely and efficiently deliver siRNA.
Collapse
Affiliation(s)
- Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Abdulelah Alhazza
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 76313, Saudi Arabia
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
6
|
Jana P, Samanta K, Ehlers M, Zellermann E, Bäcker S, Stauber RH, Schmuck C, Knauer SK. Impact of Peptide Sequences on Their Structure and Function: Mimicking of Virus-Like Nanoparticles for Nucleic Acid Delivery. Chembiochem 2023; 24:e202200519. [PMID: 36314419 PMCID: PMC10099937 DOI: 10.1002/cbic.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/30/2022] [Indexed: 01/05/2023]
Abstract
We rationally designed a series of amphiphilic hepta-peptides enriched with a chemically conjugated guanidiniocarbonylpyrrole (GCP) unit at the lysine side chain. All peptides are composed of polar (GCP) and non-polar (cyclohexyl alanine) residues but differ in their sequence periodicity, resulting in different secondary as well as supramolecular structures. CD spectra revealed the assembly of β-sheet-, α-helical and random structures for peptides 1, 2 and 3, respectively. Consequently, this enabled the formation of distinct supramolecular assemblies such as fibres, nanorod-like or spherical aggregates. Notably, all three cationic peptides are equipped with the anion-binding GCP unit and thus possess a nucleic acid-binding centre. However, only the helical (2) and the unstructured (3) peptide were able to assemble into small virus-like DNA-polyplexes and effectively deliver DNA into cells. Notably, as both peptides (2 and 3) were also capable of siRNA-delivery, they could be utilized to downregulate expression of the caner-relevant protein Survivin.
Collapse
Affiliation(s)
- Poulami Jana
- Department of Chemistry, Kaliachak College Sultanganj, Malda, 732201-, West Bengal, India
| | - Krishnananda Samanta
- Department of Chemistry, Balurghat College Dakshin Dinajpur, 733101-, West Bengal, India
| | - Martin Ehlers
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Elio Zellermann
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Sandra Bäcker
- Molecular Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology, ENT Department, University Mainz Medical Center, 55131, Mainz, Germany
| | - Carsten Schmuck
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology, University of Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
7
|
Samaddar S, Bose D, Loren BP, Skulsky JL, Ilnytska O, Struzik ZJ, Storch J, Thompson DH. Structure-function relationships of cholesterol mobilization from the endo-lysosome compartment of NPC1-deficient human cells by β-CD polyrotaxanes. PLoS One 2022; 17:e0268613. [PMID: 36584173 PMCID: PMC9803220 DOI: 10.1371/journal.pone.0268613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/04/2022] [Indexed: 01/01/2023] Open
Abstract
Niemann-Pick Type C is a rare metabolic disorder characterized by the cellular accumulation of cholesterol within endosomal and lysosomal compartments. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) containing polyrotaxanes represent an attractive approach for treating this disease due to their ability to circulate in the blood stream for longer periods of time as a prodrug form of HP-β-CD. Once inside the cell, the macromolecular structure is thought to break down into the Pluronic precursor and the active cyclodextrin agent that promotes cholesterol mobilization from the aberrant accumulations within NPC-deficient cells. We now report that both cholesterol and decaarginine (R10) endcapped polyrotaxanes are able to remove cholesterol from NPC1 patient fibroblasts. R10 endcapped materials enter these cells and are localized within endosomes after 16 h. The cholesterol mobilization from endo-lysosomal compartments of NPC1 cells by the polyrotaxanes was directly related to their extent of endcapping and their threading efficiency. Incorporation of 4-sulfobutylether-β-cyclodextrin (SBE-β-CD) significantly improved cholesterol mobilization due to the improved solubility of the compounds. Additionally, in our efforts to scale-up the synthesis for preclinical studies, we prepared a library of polyrotaxanes using a solid phase synthesis method. These compounds also led to significant cholesterol mobilization from the cells, however, cytotoxicity studies showed that they were substantially more toxic than those prepared by the solvent-assisted method, thus limiting the therapeutic utility of agents prepared by this expedited method. Our findings demonstrate that complete endcapping of the polyrotaxanes and improved solubility are important design features for delivering high copy numbers of therapeutic β-CD to promote enhanced sterol clearance in human NPC1-deficient cells.
Collapse
Affiliation(s)
- Shayak Samaddar
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Debosreeta Bose
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Bradley P. Loren
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph L. Skulsky
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Olga Ilnytska
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Zachary J. Struzik
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (DHT); (JS)
| | - David H. Thompson
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (DHT); (JS)
| |
Collapse
|
8
|
Yao J, Yin W, Chen Y, Chen X, Jiang Y, Wang T, Ma C, Zhou M, Chen T, Shaw C, Wang L. Conjugation of a Cationic Cell-Penetrating Peptide with a Novel Kunitzin-like Trypsin Inhibitor: New Insights for Enhancement of Peptide Bioactivities. Pharmaceutics 2022; 14:pharmaceutics14091805. [PMID: 36145553 PMCID: PMC9501525 DOI: 10.3390/pharmaceutics14091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cationic cell-penetrating peptides (CPPs), such as transactivator of transcription (TAT) peptide, have been proposed as effective drug carriers to improve intracellular delivery of biological macromolecules. Amphibian skin-derived Kunitz-type trypsin inhibitors (KTIs), short counterparts of KTIs from plant sources, were found to possess potent serine protease inhibitory activity. However, poor transmembrane permeability of these molecules has largely hindered the study of the full spectrum of their biological actions. As a result, this study aimed to extend the biological activities of amphibian KTIs by their conjugation to cationic CPPs. Herein, a novel peptide (kunitzin-OV2) and its phenylalanine-substituted analogue F9-kunitzin-OV2 (F9-KOV2) were evaluated for inhibition of trypsin/chymotrypsin and showed weak antibacterial activity against Escherichia coli (E. coli). As expected, the conjugation to TAT peptide did not increase membrane lysis compared with the original kunitzin-OV2, but effectively assisted this complex to enter cells. TAT-kunitzin-OV2 (TAT-KOV2) exhibited a 32-fold increase in antibacterial activity and an enhanced bactericidal rate against E. coli. In addition, the conjugation enabled the parent peptides to exhibit antiproliferative activity against cancer cells. Interestingly, TAT-F9-kunitzin-OV2 (TAT-F9-KOV2) showed stronger antiproliferative activity against human breast cancer (MCF-7) and human glioblastoma (U251MG) cell lines, which TAT-KOV2 did not possess. Moreover, TAT-F9-KOV2 showed a 20–25-fold increase in antiproliferative capacity against human lung cancer (H157, H460) cell lines compared with TAT-KOV2. Therefore, the conjugation of CPPs effectively solves the problem of cell penetration that short KTIs lack and provides evidence for new potential applications for their subsequent development as new antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Junting Yao
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Weining Yin
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yuqing Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (X.C.); (L.W.)
| | - Yangyang Jiang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tao Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (X.C.); (L.W.)
| |
Collapse
|
9
|
Aoki S, Yokoi K, Hisamatsu Y, Balachandran C, Tamura Y, Tanaka T. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Cham) 2022; 380:36. [PMID: 35948812 DOI: 10.1007/s41061-022-00401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet-triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as "post-complexation functionalization (PCF)." In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue -red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.
Collapse
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan.
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
10
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. J Control Release 2022; 343:600-619. [PMID: 35157938 DOI: 10.1016/j.jconrel.2022.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
|
12
|
Aoki S, Yokoi K, Balachandran C, Hisamatsu Y. Synthesis and Functionalization of Cyclometalated Iridium(III) Complexes by Post-Complexation Functionalization for Biomedical and Material Sciences-Development of Intelligent Molecules Using Metal Complex Building Blocks-. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
13
|
Zhao J, Lin H, Wang L, Guo K, Jing R, Li X, Chen Y, Hu Z, Gao S, Xu N. Suppression of FGF5 and FGF18 Expression by Cholesterol-Modified siRNAs Promotes Hair Growth in Mice. Front Pharmacol 2021; 12:666860. [PMID: 34305588 PMCID: PMC8293299 DOI: 10.3389/fphar.2021.666860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
FGF5 and FGF18 are key factors in the regulation of the hair follicle cycle. FGF5 is overexpressed during the late anagen phase and serves as a crucial regulatory factor that promotes the anagen-to-catagen transition in the hair follicle cycle. FGF18, which is overexpressed during the telogen phase, mainly regulates the hair follicle cycle by maintaining the telogen phase and inhibiting the entry of hair follicles into the anagen phase. The inhibition of FGF5 may prolong the anagen phase, whereas the inhibition of FGF18 may promote the transition of the hair follicles from the telogen phase to the anagen phase. In the present study, we used siRNA to suppress FGF5 or FGF18 expression as a way to inhibit the activity of these genes. Using qPCR, we showed that FGF5-targeting siRNA modified by cholesterol was more effective than the same siRNA bound to a cell-penetrating peptide at suppressing the expression of FGF5 both in vitro and in vivo. We then investigated the effects of the cholesterol-modified siRNA targeting either FGF5 or FGF18 on the hair follicle cycle in a depilated area of the skin on the back of mice. The cholesterol-modified siRNA, delivered by intradermal injection, effectively regulated the hair follicle cycle by inhibiting the expression of FGF5 and FGF18. More specifically, intradermal injection of a cholesterol-modified FGF5-targeted siRNA effectively prolonged the anagen phase of the hair follicles, whereas intradermal injection of the cholesterol-modified FGF18-targeted siRNA led to the mobilization of telogen follicles to enter the anagen phase earlier. The inhibitory effect of the cholesterol-modified FGF18-targeted siRNA on FGF18 expression was also evaluated for a topically applied siRNA. Topical application of a cream containing the cholesterol-modified FGF18-targeted siRNA on a depilated area of the skin of the back of mice revealed comparable inhibition of FGF18 expression with that observed for the same siRNA delivered by intradermal injection. These findings suggested that alopecia could be prevented and hair regrowth could be restored either through the intradermal injection of cholesterol-modified siRNA targeting FGF5 or FGF18 or the topical application of FGF18 siRNA.
Collapse
Affiliation(s)
- Jungang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Haojie Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lusheng Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuenan Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yu Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhenlin Hu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
14
|
Li W, Cheng S, Wang B, Mao Z, Zhang J, Zhang Y, Liu QH. The transport of a charged peptide through carbon nanotubes under an external electric field: a molecular dynamics simulation. RSC Adv 2021; 11:23589-23596. [PMID: 35479828 PMCID: PMC9036599 DOI: 10.1039/d0ra09184g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
The study of interactions between biomolecules and carbon nanotubes (CNTs) is of great importance in CNT-based drug delivery systems and biomedical devices. In this work, the transport of polyarginine (R8) peptide through CNTs under an external electric field was investigated via all-atom molecular dynamics (AAMD) simulation. It was found that the electric field can assist the R8 peptide to overcome the resistance and make the transport smooth. Moreover, the efficiency of transport was improved with the increasing intensity of the electric field in a suitable range. In addition, we also investigated the effects of different types of CNTs on the transport of the R8 peptide and found that the single-walled carbon nanotube (SWCNT) was more suitable for transporting the R8 peptide than the double-walled carbon nanotube (DWCNT) due to its lower energy barrier to the R8 peptide. All these findings shed light on the role of the electric field on the transport of the R8 peptide through CNTs and also gave some valuable insights into the effects of CNT types on the transport process of the peptide.
Collapse
Affiliation(s)
- Wen Li
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University Xiamen 361005 P. R. China
| | - Shun Cheng
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University Xiamen 361005 P. R. China
| | - Bin Wang
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University Xiamen 361005 P. R. China
| | - Zheng Mao
- Nanjing Institute of Technology No.1 Hongjing Avenue of Jiangning District Nanjing 211167 China
| | - Jianhua Zhang
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University Xiamen 361005 P. R. China
- Department of Physics, Hainan University 570228 Hainkou P. R. China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University Xiamen 361005 P. R. China
- Shenzhen Research Institute of Xiamen University Xiamen 361005 P. R. China
| | - Qing Huo Liu
- Department of Electrical and Computer Engineering, Duke University Durham NC 27708 USA
| |
Collapse
|
15
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
16
|
Chernikov IV, Meschaninova MI, Gladkikh DV, Ven’yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Interaction of Lipophilic Conjugates of Modified siRNAs with Hematopoietic Cells In Vitro and In Vivo. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): "Lactosome" Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy. Life (Basel) 2021; 11:life11020158. [PMID: 33670777 PMCID: PMC7923095 DOI: 10.3390/life11020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
Collapse
|
18
|
Bornerie M, Brion A, Guichard G, Kichler A, Douat C. Delivery of siRNA by tailored cell-penetrating urea-based foldamers. Chem Commun (Camb) 2021; 57:1458-1461. [PMID: 33438700 DOI: 10.1039/d0cc06285e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cell-penetrating foldamers (CPFs) have recently shown promise as efficient and safe nucleic acid delivery systems. However, the application of CPFs to siRNA transport remains scarce. Here, we report helical CPFs tailored with specific end-groups (pyridylthio- or n-octyl-ureas) as effective molecular systems in combination with helper lipids to intracellularly deliver biologically-relevant siRNA.
Collapse
Affiliation(s)
- Mégane Bornerie
- Univ. of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac F-33607, France.
| | - Anaïs Brion
- Equipe 3Bio, CAMB 7199 CNRS-Univ., Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch cedex F-67401, France.
| | - Gilles Guichard
- Univ. of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac F-33607, France.
| | - Antoine Kichler
- Equipe 3Bio, CAMB 7199 CNRS-Univ., Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch cedex F-67401, France.
| | - Céline Douat
- Univ. of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac F-33607, France. and Department Pharmazie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, München D-81377, Germany.
| |
Collapse
|
19
|
Oral peptide delivery: challenges and the way ahead. Drug Discov Today 2021; 26:931-950. [PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
Collapse
|
20
|
Tuttolomondo M, Ditzel HJ. Non-covalent Encapsulation of siRNA with Cell-Penetrating Peptides. Methods Mol Biol 2021; 2282:353-376. [PMID: 33928584 DOI: 10.1007/978-1-0716-1298-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
SiRNAs may act as selective and potent therapeutics, but poor deliverability in vivo is a limitation. Among the recently proposed vectors, cell-penetrating peptides (CPPs), also referred as protein transduction domains (PTDs), allow siRNA stabilization and increased cellular uptake. This chapter aims to guide scientists in the preparation and characterization of CPP-siRNA complexes, particularly the evaluation of novel CPPs variants for siRNA encapsulation and delivery. Herein, we present a collection of methods to determine CPP-siRNA interaction, encapsulation, stability, conformation, transfection, and silencing efficiency.
Collapse
Affiliation(s)
- Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
21
|
pH-dependent reversibly activatable cell-penetrating peptides improve the antitumor effect of artemisinin-loaded liposomes. J Colloid Interface Sci 2020; 586:391-403. [PMID: 33189320 DOI: 10.1016/j.jcis.2020.10.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022]
Abstract
Artemisinin (ART) is well known as an antimalarial drug, and it can also be used to treat inflammation as well as cancer. Although many researchers have reported the antitumor activity of ART, most of these studies were investigated in vitro. In addition, ART is sparingly soluble in water, limiting its clinical relevance in drug development. Based on the data from our preliminary study, ART is not cytotoxic at low micromolar concentrations. Thus, we hypothesized that smart nanocarriers are beneficial for not only increasing the solubility of ART but also elevating the concentration of the drug at the target, thereby inducing the ideal antitumor effect. In this article, a reversibly activatable cell-penetrating peptide ((HE)10-G5-R6 or HE-R6) was introduced to modify artemisinin (ART)-loaded liposomes (ART-Lip-HE-R6) against tumors, and in vitro and in vivo performance were investigated. ART-Lip-HE-R6 exhibited sustained release under different pH conditions. The internalization and cytotoxicity of liposomes were enhanced at low pH, i.e., 6.5, after modification with HE-R6 versus nonmodified liposomes. Moreover, a longer retention time in tumors could be observed in the ART-Lip-HE-R6 group, followed by higher efficiency of tumor suppression. In conclusion, Lip-HE-R6 might be a promising delivery system for ART in cancer therapy.
Collapse
|
22
|
Priwitaningrum DL, Jentsch J, Bansal R, Rahimian S, Storm G, Hennink WE, Prakash J. Apoptosis-inducing peptide loaded in PLGA nanoparticles induces anti-tumor effects in vivo. Int J Pharm 2020; 585:119535. [PMID: 32534162 DOI: 10.1016/j.ijpharm.2020.119535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 01/17/2023]
Abstract
Induction of apoptosis in tumor cells specifically within the complex tumor microenvironment is highly desirable to kill them efficiently and to enhance the effects of chemotherapy. Second mitochondria-derived activator of caspase (Smac) is a key pro-apoptotic pathway which can be activated with a Smac mimetic peptide. However, in vivo application of peptides is hampered by several limitations such as poor pharmacokinetics, rapid elimination, enzymatic degradation, and insufficient intracellular delivery. In this study, we developed a nanosystem to deliver a Smac peptide to tumor by passive targeting. We first synthesized a chimeric peptide that consists of the 8-mer Smac peptide and a 14-mer cell penetrating peptide (CPP) and then encapsulated the Smac-CPP into polymeric nanoparticles (Smac-CPP-NPs). In vitro, Smac-CPP-NPs were rapidly internalized by 4T1 mammary tumor cells and subsequently released Smac-CPP into the cells, as shown with fluorescence microscopy. Furthermore, Smac-CPP-NPs induced apoptosis in tumor cells, as confirmed with cell viability and caspase 3/7 assays. Interestingly, combination of Smac-CPP-NPs with doxorubicin (dox), a clinically used cytostatic drug, showed combined effects in vitro in 4T1 cells. The effect was significantly better than that of SMAC-CPP-NPs alone as well as empty nanoparticles and dox. In vivo, co-treatment with Smac-CPP-NPs and free dox reduced the tumor growth to 85%. Furthermore, the combination of Smac-CPP-NPs and free dox showed reduced proliferating tumor cells (Ki-67 staining) and increased apoptotic cells (cleaved caspase-3 staining) in tumors. In conclusion, the present study demonstrates that the intracellular delivery of Smac-mimetic peptide using nanoparticle system can be an interesting strategy to attenuate the tumor growth and to potentiate the therapeutic efficacy of chemotherapy in vivo.
Collapse
Affiliation(s)
- Dwi L Priwitaningrum
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Faculty of Pharmacy, University of Sumatera Utara, Medan, Indonesia
| | - Julian Jentsch
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Sima Rahimian
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sumatera Utara, Medan, Indonesia
| | - Jai Prakash
- Targeted Therapeutics and Nanomedicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
23
|
Nadal‐Bufí F, Henriques ST. How to overcome endosomal entrapment of cell‐penetrating peptides to release the therapeutic potential of peptides? Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ferran Nadal‐Bufí
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology Translational Research Institute Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology Translational Research Institute Brisbane Queensland Australia
| |
Collapse
|
24
|
Khan N, Halcrow PW, Lakpa KL, Afghah Z, Miller NM, Dowdy SF, Geiger JD, Chen X. Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. FASEB J 2020; 34:4147-4162. [PMID: 31950548 PMCID: PMC7079041 DOI: 10.1096/fj.201902534r] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
Abstract
HIV-1 Tat is essential for HIV-1 replication and appears to play an important role in the pathogenesis of HIV-associated neurological complications. Secreted from infected or transfected cells, Tat has the extraordinary ability to cross the plasma membrane. In the brain, Tat can be taken up by CNS cells via receptor-mediated endocytosis. Following endocytosis and its internalization into endolysosomes, Tat must be released in order for it to activate the HIV-1 LTR promoter and facilitate HIV-1 viral replication in the nucleus. However, the underlying mechanisms whereby Tat escapes endolysosomes remain unclear. Because Tat disrupts intracellular calcium homeostasis, we investigated the involvement of calcium in Tat endolysosome escape and subsequent LTR transactivation. We demonstrated that chelating endolysosome calcium with high-affinity rhodamine-dextran or chelating cytosolic calcium with BAPTA-AM attenuated Tat endolysosome escape and LTR transactivation. Significantly, we demonstrated that pharmacologically blocking and knocking down the endolysosome-resident two-pore channels (TPCs) attenuated Tat endolysosome escape and LTR transactivation. This calcium-mediated effect appears to be selective for TPCs because knocking down TRPML1 calcium channels was without effect. Our findings suggest that calcium released from TPCs is involved in Tat endolysosome escape and subsequent LTR transactivation. TPCs might represent a novel therapeutic target against HIV-1 infection and HIV-associated neurological complications.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Peter W. Halcrow
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Koffi L. Lakpa
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Zahra Afghah
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Nicole M. Miller
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Steven F. Dowdy
- Department of Cellular and Molecular MedicineUniversity of California San Diego (UCSD) School of MedicineLa JollaCAUSA
| | - Jonathan D. Geiger
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Xuesong Chen
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| |
Collapse
|
25
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
26
|
Yamamoto Y, Tamiya S, Shibuya M, Nakase I, Yoshioka Y. Peptides with the multibasic cleavage site of the hemagglutinin from highly pathogenic influenza viruses act as cell-penetrating via binding to heparan sulfate and neuropilins. Biochem Biophys Res Commun 2019; 512:453-459. [PMID: 30904159 DOI: 10.1016/j.bbrc.2019.03.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023]
Abstract
Cell-penetrating peptides (CPPs) show promise as an attractive delivery vehicle for therapeutic molecules-including nucleic acids, peptides, proteins, and even particulates-into several cell types. It is important to identify new CPPs and select the optimal CPP for each application, because CPPs differ in their internalized efficiency and internalization mechanisms. Here, we identified new CPPs derived from the peptides with the hemagglutinin cleavage site (pHACS) of highly pathogenic influenza viruses. We compared the potential of peptides from the pHACS of four subtypes of influenza A virus (H1, H3, H5, and H7) and an influenza B virus (H1-pHACS, H3-pHACS, H5-pHACS, H7-pHACS, and B-pHACS, respectively) to serve as CPPs. H5-pHACS and H7-pHACS, but not the other peptides, bound to mouse dendritic cells and human epithelial cells and were internalized efficiently into these cells. H5-pHACS and H7-pHACS required glycosaminoglycans, especially heparan sulfate and neuropilins, to bind to the cells. In addition, we designed a mutant H7-pHACS with superior cell-binding capability by changing a single amino acid. Furthermore, when conjugated with antigen, H5-pHACS and H7-pHACS induced antigen-specific antibody responses, demonstrating the usefulness of this antigen-delivery vehicle. Our results will improve our understanding of the mechanisms of CPPs and facilitate the development of novel drug-delivery vehicles designed to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Yasuyuki Yamamoto
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Tamiya
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Meito Shibuya
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ikuhiko Nakase
- Laboratory for Cellular Regulation Chemistry, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Yasuo Yoshioka
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
Biswas S, Samui S, Biswas S, Das AK, Naskar J. Molecular recognition of double-stranded DNA by a synthetic, homoaromatic tripeptide (YYY): The spectroscopic and calorimetric study. Int J Biol Macromol 2019; 123:221-227. [DOI: 10.1016/j.ijbiomac.2018.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
|
28
|
Gao B, Zhang Q, Wang X, Wang M, Ren XK, Guo J, Xia S, Zhang W, Feng Y. A “self-accelerating endosomal escape” siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomater Sci 2019; 7:3307-3319. [DOI: 10.1039/c9bm00451c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Highly efficient ERK2 silencing in VSMCs via a “self-accelerating endosomal escape” siRNA transport nanosystem.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Qiaoping Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Meiyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
29
|
Lv M, Zhao P, Zhuo L, Liao W, Wang H, Yang X, Wang J, Wang G, Song H, Feng Y, Chen Y, Yang Y, Wei H. Binding and cytotoxicity of 131I-labeled gastrin-releasing peptide receptor antagonists modified by cell penetrating peptides. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-018-6307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Chernikov IV, Gladkikh DV, Meschaninova MI, Karelina UA, Ven'yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Fluorophore Labeling Affects the Cellular Accumulation and Gene Silencing Activity of Cholesterol-Modified siRNAs In Vitro. Nucleic Acid Ther 2018; 29:33-43. [PMID: 30562146 DOI: 10.1089/nat.2018.0745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to analyze the effects of fluorophores on the intracellular accumulation and biological activity of small interfering RNA (siRNA) and its cholesterol conjugates. In this study, we used stem-loop real-time PCR and calibration curves to quantitate cellular siRNA accumulation. Attachment of fluorophores significantly affected both the accumulation and biological activity of siRNA conjugates. The severity of this effect depended significantly on the structure of the conjugate; fluorophores (Cy5.5 or Alexa-488) attached to siRNA, facing the side of the duplex opposite to cholesterol, enhanced the unproductive intracellular accumulation of the conjugate when delivered in carrier-free mode. Enhanced cellular accumulation of siRNA conjugates did not result in enhanced biological activity of the conjugate. Moreover, the attachment of a hydrophobic fluorophore, such as Cy5.5, to conventional siRNA also enhanced its apparent intracellular accumulation, but not its biological activity. Thus, the use of fluorescent labels for the study of the intracellular accumulation of siRNA and its conjugates formed with different molecules is possible only for a limited range of structures, and requires verification using alternative methods.
Collapse
Affiliation(s)
- Ivan V Chernikov
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Daniil V Gladkikh
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Mariya I Meschaninova
- 2 Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Ulyana A Karelina
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Alya G Ven'yaminova
- 2 Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Marina A Zenkova
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Valentin V Vlassov
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
31
|
Singh T, Murthy ASN, Yang HJ, Im J. Versatility of cell-penetrating peptides for intracellular delivery of siRNA. Drug Deliv 2018; 25:1996-2006. [PMID: 30799658 PMCID: PMC6319457 DOI: 10.1080/10717544.2018.1543366] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/05/2022] Open
Abstract
The plasma membrane is a large barrier to systemic drug delivery into cells, and it limits the efficacy of drug cargo. This issue has been overcome using cell-penetrating peptides (CPPs). CPPs are short peptides (6-30 amino acid residues) that are potentially capable of intracellular penetration to deliver drug molecules. CPPs broadened biomedical applications and provide a means to deliver a range of biologically active molecules, such as small molecules, proteins, imaging agents, and pharmaceutical nanocarriers, across the plasma membrane with high efficacy and low toxicity. This review is focused on the versatility of CPPs and advanced approaches for siRNA delivery.
Collapse
Affiliation(s)
- Tejinder Singh
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Akula S. N. Murthy
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Hye-Jin Yang
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Jungkyun Im
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
32
|
Ruan W, Zhai Y, Yu K, Wu C, Xu Y. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int J Pharm 2018; 553:298-309. [PMID: 30347273 DOI: 10.1016/j.ijpharm.2018.10.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 01/18/2023]
Abstract
BRAF is the most frequently mutated gene in skin melanoma. Applying BRAF siRNA (siBraf) to silencing BRAF gene is a current frontline therapy for melanoma. However, delivery of macromolecular siRNA into the tumor site and introduction of siRNA into the tumor cells remain as challenges. In this study, we for the first time developed a siBraf delivery system based on cell penetrating peptide octaarginine (R8) nanocomplexes combined with coated microneedles (MNs), i.e. R8/siBraf coated MNs, for targeted anti-melanoma treatment. The R8/siBraf nanocomplexes were optimized based on the internalization of siBraf by A375 cells. In vitro A375 cell experiments presented that R8/siBraf can enhance siBraf transfection, silence BRAF gene, and inhibit tumor cells growth, comparable to polyethylenimine (PEI)/siBraf. R8/siBraf coated MNs can effectively deliver R8/siBraf into the disease site. In vivo anti-melanoma experiments indicated that R8/siBraf coated MNs can significantly inhibit the melanoma development, induce the tumor cells apoptosis, and suppress their proliferation. The BRAF gene in tumor were also significantly silenced in vivo. SiBraf intradermal delivery via combining MNs and R8 nanocomplexes is a promising approach for skin melanoma treatment, which exploited both virtues of MNs and cell penetrating peptide to obtain the targeting inhibition efficacy on skin melanoma.
Collapse
Affiliation(s)
- Wenyi Ruan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanhao Zhai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaiyue Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
33
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
34
|
Wu J, Zheng Y, Liu M, Shan W, Zhang Z, Huang Y. Biomimetic Viruslike and Charge Reversible Nanoparticles to Sequentially Overcome Mucus and Epithelial Barriers for Oral Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9916-9928. [PMID: 29504398 DOI: 10.1021/acsami.7b16524] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticles (NPs) for oral delivery of peptide/protein drugs are largely limited due to the coexistence of intestinal mucus and epithelial barriers. Sequentially overcoming these two barriers is intractable for a single nanovehicle due to the requirements of different or even contradictory surface properties of NPs. To solve this dilemma, a mucus-penetrating virus-inspired biomimetic NP with charge reversal ability (P-R8-Pho NPs) was developed by densely coating poly(lactic- co-glycolic acid) NPs with cationic octa-arginine (R8) peptide and specific anionic phosphoserine (Pho). The small size (81.81 nm) and viruslike neutral charged surface (-2.39 mV) of the biomimetic NPs achieved rapid mucus penetration, which was almost equal to that of the conventional PEGylated mucus-penetrating nanoparticles. The hydrolysis of surface-anchored anionic Pho was achieved by intestinal alkaline phosphatase, which led to the turnover of ζ potential to positive (+7.37 mV). This timely charge reversal behavior also exposed cationic R8 peptide and induced efficient cell-penetrating peptide (CPP)-mediated cellular uptake and transepithelial transport on Caco-2/E12 cocultured cell model. What's more, P-R8-Pho NPs showed excellent stability in simulated gastrointestinal conditions and enhanced absorption in intestine in vivo. Finally, oral administration of insulin-loaded P-R8-Pho NPs enabled to induce a preferable hypoglycemic effect and a 1.9-fold higher oral bioavailability was achieved compared with single CPP-modified P-R8 NPs on diabetic rats. The combinative application of biomimetic mucus-penetrating strategy and enzyme-responsive charge reversal strategy in a single nanovehicle could sequentially overcome mucus and epithelial barriers, thus showing great potential for the oral peptide/protein delivery.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy , Sichuan University , No. 17, Block 3, South Renmin Road , Chengdu 610041 , P. R. China
| | - Yaxian Zheng
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy , Sichuan University , No. 17, Block 3, South Renmin Road , Chengdu 610041 , P. R. China
| | - Min Liu
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy , Sichuan University , No. 17, Block 3, South Renmin Road , Chengdu 610041 , P. R. China
| | - Wei Shan
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy , Sichuan University , No. 17, Block 3, South Renmin Road , Chengdu 610041 , P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy , Sichuan University , No. 17, Block 3, South Renmin Road , Chengdu 610041 , P. R. China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy , Sichuan University , No. 17, Block 3, South Renmin Road , Chengdu 610041 , P. R. China
| |
Collapse
|
35
|
Wang B, Zhang J, Zhang Y, Mao Z, Lu N, Liu QH. The penetration of a charged peptide across a membrane under an external electric field: a coarse-grained molecular dynamics simulation. RSC Adv 2018; 8:41517-41525. [PMID: 35559300 PMCID: PMC9091862 DOI: 10.1039/c8ra07654e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023] Open
Abstract
The processes of single polyarginine (R8) peptide penetration through planar and vesicle membranes under an external electric field are simulated via a coarse-grained molecular dynamics (CGMD) simulation.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Electromagnetics and Acoustics
- Department of Electronic Science
- Xiamen University
- Xiamen
- P. R. China
| | - Jianhua Zhang
- Institute of Electromagnetics and Acoustics
- Department of Electronic Science
- Xiamen University
- Xiamen
- P. R. China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics
- Department of Electronic Science
- Xiamen University
- Xiamen
- P. R. China
| | - Zheng Mao
- Institute of Electromagnetics and Acoustics
- Department of Electronic Science
- Xiamen University
- Xiamen
- P. R. China
| | - Nan Lu
- Institute of Electromagnetics and Acoustics
- Department of Electronic Science
- Xiamen University
- Xiamen
- P. R. China
| | - Qing Huo Liu
- Department of Electrical and Computer Engineering
- Duke University
- Durham
- USA
| |
Collapse
|
36
|
N,N,N-Tris(tert-butoxycarbonyl)-l-arginine: five isoforms whose obtainment depends on procedure and scrupulous NMR confirmation of their structures. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel) 2017; 9:toxins9100314. [PMID: 29023422 PMCID: PMC5666361 DOI: 10.3390/toxins9100314] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.
Collapse
|
38
|
Gagat M, Zielińska W, Grzanka A. Cell-penetrating peptides and their utility in genome function modifications (Review). Int J Mol Med 2017; 40:1615-1623. [PMID: 29039455 PMCID: PMC5716439 DOI: 10.3892/ijmm.2017.3172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/26/2017] [Indexed: 01/02/2023] Open
Abstract
For almost 30 years, studies have confirmed the effectiveness of cell-penetrating peptides (CPPs) in the facilitation of the intracellular delivery of various cargo molecules, including RNA, DNA, plasmids, proteins or nanoparticles, under in vitro and in vivo conditions. The cellular uptake of CPPs occurs via energy-dependent, as well as -independent mechanisms. In this relatively new direction of research, studies have attempted to introduce genome modification systems into cells by CPPs. Cellular uptake of CPPs carrying either covalently bound or electrostatically conjugated cargo, has several advantages over viral delivery systems, as it does not lead to any significant cytotoxicity or immunogenicity, and simultaneously it is more efficient than other non-viral systems. So far, CPPs have been successfully used to introduce Cre recombinase, zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats systems into cells. The present article systematically reviewed the information obtained from studies on CPPs and assessed their utility with regard to their effectiveness and safety of use.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| |
Collapse
|
39
|
Guarnieri D, Melone P, Moglianetti M, Marotta R, Netti PA, Pompa PP. Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes. NANOSCALE 2017; 9:11288-11296. [PMID: 28758654 DOI: 10.1039/c7nr02350b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Delivery of therapeutic agents inside the cytosol, avoiding the confinement in endo-lysosomal compartments and their degradative environment, is one of the key targets of nanomedicine to gain the maximum remedial effects. Current approaches based on cell penetrating peptides (CPPs), despite improving the cellular uptake efficiency of nanocarriers, have shown controversial results in terms of intracellular localization. To elucidate the delivery potential of CPPs, in this work we analyzed the role of the particle size in influencing the ability of a membranotropic peptide, namely gH625, to escape the endo-lysosomal pathway and deliver the particles in the cytosol. To this aim, we carried out a systematic assessment of the cellular uptake and distribution of monodisperse platinum nanoparticles (PtNPs), having different diameters (2.5, 5 and 20 nm) and citrate capping or gH625 peptide functionalization. The presence of gH625 significantly increased the amount of internalized NPs in human cervix epithelioid carcinoma cells, as a function of particle size. However, scanning transmission electron microscopy (STEM) and electron tomography (ET) revealed a prevalent confinement of PtNPs within vesicular structures, regardless of the particle size and surface functionalization. Only in the case of the smallest 2.5 nm particles, the membranotropic peptide was able to partly maintain its functionality, enabling cytosolic delivery of a small fraction of internalized PtNPs, though particle agglomeration in culture medium limited single-particle transport across the cell membrane. Interestingly, membrane crossing by 2.5 nm functionalized-PtNPs seemed to occur by diffusion through the lipid bilayer, with no apparent membrane damage. For larger particle sizes (≥5 nm), their hindrance likely blocked the membranotropic mechanism. Combining the enhanced uptake and partial cytosolic delivery promoted by gH625, we were able to achieve a strong improvement of the antioxidant nanozyme function of 2.5 nm PtNPs, decreasing both the endogenous ROS level and its overproduction following an external oxidative insult.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30-16163 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Bjorge JD, Pang A, Fujita DJ. Delivery of gene targeting siRNAs to breast cancer cells using a multifunctional peptide complex that promotes both targeted delivery and endosomal release. PLoS One 2017; 12:e0180578. [PMID: 28666009 PMCID: PMC5493434 DOI: 10.1371/journal.pone.0180578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
Abstract
RNA interference has been used to dissect the importance of individual gene products in various human disease processes, including cancer. Small-interfering RNA, or siRNA, is one of the tools utilized in this regard, but specially-designed delivery agents are required to allow the siRNA to gain optimal access to the cell interior. Our laboratory has utilized two different siRNA-binding delivery peptides containing a polyarginine core, and modified by myristoylation and targeting motifs (iRGD or Lyp-1). A third peptide was designed to assist with endosomal release. Various ratios of the peptides and siRNA were combined and assayed for the ability to form stable complexes, and optimized ratios were determined. The complexes were found to form particles, with the majority having a diameter of 100-300 nm, as visualized by electron microscopy. These siRNA complexes have enhanced protection from nucleases present in serum, as compared to "naked" unprotected siRNA. The particles were internalized by the cells and could be detected in the cell cytoplasm by confocal fluorescence microscopy. In functional assays, peptide/siRNA complexes were shown to cause the knock down of corresponding targeted proteins. The peptide with the LyP-1 targeting motif was more effective at knockdown in MDA-MB-231 breast cancer cells than the peptide with the iRGD motif. Inclusion of the endosomal release peptide in the complexes greatly enhanced the peptide/siRNA effects. Peptide/siRNA complexes simultaneously targeting Stat3 and c-Myc caused a marked reduction in anchorage-independent growth, a property correlated with tumorigenicity. This study demonstrates the ability of a peptide-based siRNA-delivery system to deliver siRNA into breast cancer cells and cause both protein knockdown and suppression of the malignant phenotype. Such peptide complexes are likely to become highly useful siRNA-delivery vehicles for the characterization, and potentially for the treatment, of human cancer.
Collapse
Affiliation(s)
- Jeffrey D. Bjorge
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (JDB); (DF)
| | - Andy Pang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Donald J. Fujita
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (JDB); (DF)
| |
Collapse
|
41
|
Tuttolomondo M, Casella C, Hansen PL, Polo E, Herda LM, Dawson KA, Ditzel HJ, Mollenhauer J. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:264-276. [PMID: 28918028 PMCID: PMC5514624 DOI: 10.1016/j.omtn.2017.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022]
Abstract
Small interfering RNA (siRNA) is a promising molecule for gene therapy, but its therapeutic administration remains problematic. Among the recently proposed vectors, cell-penetrating peptides show great promise in in vivo trials for siRNA delivery. Human protein DMBT1 (deleted in malignant brain tumor 1) is a pattern recognition molecule that interacts with polyanions and recognizes and aggregates bacteria. Taking advantage of these properties, we investigated whether specific synthetic DMBT1-derived peptides could be used to formulate nanoparticles for siRNA administration. Using an electrophoretic mobility shift assay and UV spectra, we identified two DMBT1 peptides that could encapsulate the siRNA with a self- and co-assembly mechanism. The complexes were stable for at least 2 hr in the presence of either fetal bovine serum (FBS) or RNase A, with peptide-dependent time span protection. ζ-potential, circular dichroism, dynamic light scattering, and transmission electron microscopy revealed negatively charged nanoparticles with an average diameter of 10–800 nm, depending on the reaction conditions, and a spherical or rice-shaped morphology, depending on the peptide and β-helix conformation. We successfully transfected human MCF7 cells with fluorescein isothiocyanate (FITC)-DMBT1-peptide-Cy3-siRNA complexes. Finally, DMBT1 peptides encapsulating an siRNA targeting a fluorescent reporter gene showed efficient gene silencing in MCF7-recombinant cells. These results lay the foundation for a new research line to exploit DMBT1-peptide nanocomplexes for therapeutic siRNA delivery.
Collapse
Affiliation(s)
- Martina Tuttolomondo
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark.
| | - Cinzia Casella
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Pernille Lund Hansen
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Ester Polo
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Luciana M Herda
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Henrik J Ditzel
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense C, Denmark.
| | - Jan Mollenhauer
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
42
|
Jana P, Samanta K, Bäcker S, Zellermann E, Knauer S, Schmuck C. Efficient Gene Transfection through Inhibition of β-Sheet (Amyloid Fiber) Formation of a Short Amphiphilic Peptide by Gold Nanoparticles. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Poulami Jana
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Krishnananda Samanta
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Sandra Bäcker
- Institute for Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Elio Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Shirley Knauer
- Institute for Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| |
Collapse
|
43
|
Jana P, Samanta K, Bäcker S, Zellermann E, Knauer S, Schmuck C. Efficient Gene Transfection through Inhibition of β-Sheet (Amyloid Fiber) Formation of a Short Amphiphilic Peptide by Gold Nanoparticles. Angew Chem Int Ed Engl 2017; 56:8083-8088. [DOI: 10.1002/anie.201700713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Poulami Jana
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Krishnananda Samanta
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Sandra Bäcker
- Institute for Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Elio Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| | - Shirley Knauer
- Institute for Biology; University of Duisburg-Essen; 45117 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45117 Essen Germany
| |
Collapse
|
44
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
45
|
Chen X, Liu M, Wang R, Yan P, Zhang C, Ma C, Yin L. Construction and Biological Evaluation of a Novel Integrin α νβ₃-Specific Carrier for Targeted siRNA Delivery In Vitro. Molecules 2017; 22:molecules22020231. [PMID: 28165399 PMCID: PMC6155842 DOI: 10.3390/molecules22020231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/05/2023] Open
Abstract
(1) Background: The great potential of RNA interference (RNAi)-based gene therapy is premised on the effective delivery of small interfering RNAs (siRNAs) to target tissues and cells. Hence, we aimed at developing and examining a novel integrin αvβ3-specific delivery carrier for targeted transfection of siRNA to malignant tumor cells; (2) Methods: Arginine-glycine-aspartate motif (RGD) was adopted as a tissue target for specific recognition of integrin αvβ3. To enable siRNA binding, a chimeric peptide was synthesized by adding nonamer arginine residues (9R) at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD)2-9R. The efficiency of 9R peptide transferring siRNA was biologically evaluated in vitro by flow cytometry, confocal microscopy, and Western blot; (3) Results: An optimal 10:1 molar ratio of c(RGD)2-9R to siRNA was confirmed by the electrophoresis on agarose gels. Both the flow cytometry and confocal microscopy results testified that transfection of c(RGD)2-9R as an siRNA delivery carrier was obviously higher than the naked-siRNA group. The results of Western blot demonstrated that these 9R peptides were able to transduce siRNA to HepG2 cells in vitro, resulting in efficient gene silencing; and (4) Conclusion: The chimeric peptide of c(RGD)2-9R can be developed as an effective siRNA delivery carrier and shows potential as a new strategy for RNAi-based gene therapy.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Chao Ma
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing 100034, China.
| |
Collapse
|
46
|
Wan Y, Moyle PM, Gn PZ, Toth I. Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine (Lond) 2017; 12:281-293. [DOI: 10.2217/nnm-2016-0354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To develop a new synthetic peptide-based nanoparticulate siRNA delivery system. Materials & methods: DEN-K(GALA)-TAT-K(STR) was generated by incorporating stearic acid into a multicomponent peptide (DEN-K(GALA)-TAT), containing a cationic poly-L-lysine dendron, an endosome-disrupting peptide GALA and a cell-penetrating peptide TAT(48–60). Its physicochemical characteristics, size, toxicity, cellular uptake and gene knockdown activity of the peptide/siRNA complexes were studied. Results: DEN-K(GALA)-TAT-K(STR) exhibited a pH-responsive behavior, which assists with endosomal escape. When siRNA was delivered by DEN-K(GALA)-TAT-K(STR), it showed a significantly enhanced cellular uptake, compared with the nonlipidic peptide. This system also displayed enhanced knockdown efficiency and reduced cytotoxicity over the widely used delivery system branched 25-kDa polyethyleneimine. Conclusion: Our stearylated multicomponent delivery system has great potential as an efficient siRNA delivery vector.
Collapse
Affiliation(s)
- Yu Wan
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Pei Z Gn
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
47
|
Chernikov IV, Gladkikh DV, Meschaninova MI, Ven'yaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. Cholesterol-Containing Nuclease-Resistant siRNA Accumulates in Tumors in a Carrier-free Mode and Silences MDR1 Gene. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 6:209-220. [PMID: 28325287 PMCID: PMC5363506 DOI: 10.1016/j.omtn.2016.12.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/26/2022]
Abstract
Chemical modifications are an effective way to improve the therapeutic properties of small interfering RNAs (siRNAs), making them more resistant to degradation in serum and ensuring their delivery to target cells and tissues. Here, we studied the carrier-free biodistribution and biological activity of a nuclease-resistant anti-MDR1 cholesterol-siRNA conjugate in healthy and tumor-bearing severe combined immune deficiency (SCID) mice. The attachment of cholesterol to siRNA provided its efficient accumulation in the liver and in tumors, and reduced its retention in the kidneys after intravenous and intraperitoneal injection. The major part of cholesterol-siRNA after intramuscular and subcutaneous injections remained in the injection place. Confocal microscopy data demonstrated that cholesterol-siRNA spread deep in the tissue and was present in the cytoplasm of almost all the liver and tumor cells. The reduction of P-glycoprotein level in human KB-8-5 xenograft overexpressing the MDR1 gene by 60% was observed at days 5–6 after injection. Then, its initial level recovered by the eighth day. The data showed that, regardless of the mode of administration (intravenous, intraperitoneal, or peritumoral), cholesterol-siMDR efficiently reduced the P-glycoprotein level in tumors. The designed anti-MDR1 conjugate has potential as an adjuvant therapeutic for the reversal of multiple drug resistance of cancer cells.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Daniil V Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Mariya I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alya G Ven'yaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
48
|
Freire JM, Rego de Figueiredo I, Valle J, Veiga AS, Andreu D, Enguita FJ, Castanho MARB. siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. J Control Release 2016; 245:127-136. [PMID: 27890856 DOI: 10.1016/j.jconrel.2016.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by a single gene mutation, a reciprocal translocation that originates the Bcr-Abl gene with constitutive tyrosine kinase activity. As a monogenic disease, it is an optimum target for RNA silencing therapy. We developed a siRNA-based therapeutic approach in which the siRNA is delivered by pepM or pepR, two cell-penetrating peptides (CPPs) derived from the dengue virus capsid protein. These peptides have a dual role: siRNA delivery into cells and direct action as bioportides, i.e. intracellularly bioactive CPPs, targetting cancer-related signaling processes. Both pepM and pepR penetrate the positive Bcr-Abl+ Cell Line (BV173). Five in silico designed anti-Bcr-Abl siRNA were selected for in vitro analysis after thorough screening. The Bcr-Abl downregulation kinetics (48h to 168h) was followed by quantitative PCR. The bioportide action of the peptide vectors was evaluated by genome-wide microarray analysis and further validated by testing BV173 cell cycle and cell proliferation monitoring different genes involved in housekeeping/cell stress (RPL13A, HPRT1), cell proliferation (ki67), cell apoptosis (Caspase 3 and Caspase 9) and cell cycle steps (CDK2, CCDN2, CDKN1A). Assays with a commercial transfection agent were carried out for comparison purposes. Maximal Bcr-Abl gene knockdown was observed for one of the siRNA when delivered by pepM at 120h. Both pepM and pepR showed downregulation effects on proliferative CML-related signaling pathways having direct impact on BV173 cell cycle and proliferation, thus reinforcing the siRNA effect by acting as anticancer molecules. With this work we show the therapeutic potential of a CPP shuttle that combines intrinsic anticancer properties with the ability to deliver functional siRNA into CML cell models. By such combination, the pepM-siRNA conjugates lowered Bcr-Abl gene expression levels more extensively than conventional siRNA delivery technologies and perturbed leukemogenic cell homeostasis, hence revealing their potential as novel alternative scaffolds for CML therapy.
Collapse
Affiliation(s)
- João Miguel Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Inês Rego de Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Javier Valle
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, E-08003 Barcelona, Spain
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, E-08003 Barcelona, Spain
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
49
|
Lönn P, Kacsinta AD, Cui XS, Hamil AS, Kaulich M, Gogoi K, Dowdy SF. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics. Sci Rep 2016; 6:32301. [PMID: 27604151 PMCID: PMC5015074 DOI: 10.1038/srep32301] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022] Open
Abstract
Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.
Collapse
Affiliation(s)
- Peter Lönn
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Apollo D Kacsinta
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Xian-Shu Cui
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Alexander S Hamil
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Manuel Kaulich
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Khirud Gogoi
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Steven F Dowdy
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| |
Collapse
|
50
|
Mussa Farkhani S, Asoudeh Fard A, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H. Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1029-1035. [DOI: 10.1080/21691401.2016.1200059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Samad Mussa Farkhani
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Asoudeh Fard
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Biotechnology Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|