1
|
Imoto D, Shudo H, Mizukami K, Kimizuka N, Yagi A, Itami K. Synthesis and size-dependent properties of multiple sizes of chlorinated fluorocycloparaphenylenes. Chem Commun (Camb) 2024; 60:12585-12588. [PMID: 39390955 DOI: 10.1039/d4cc03336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In recent years, fluorinated cycloparaphenylenes (FCPPs) have attracted attention as electron-negative CPPs as well as cyclic fluoroarenes. Herein, we report the synthesis of heterogenously polyhalogenated CPPs, chlorinated FCPPs (Cl-F[n]CPPs; n = 6, 8, 10, 12, 14), through nickel- and gold-based methods. The size-dependent photophysical behaviors of Cl-F[n]CPPs, which are different from those of pristine CPPs, have been uncovered in this study.
Collapse
Affiliation(s)
- Daiki Imoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Kiichi Mizukami
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan.
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan.
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Molecule Creation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
2
|
Kodali PK, Choppella S, Ankita, Kumar D, Pandey UK, Ravva MK, Singh SP. Ambipolar macrocycle derived from spiro-xanthene and carbazole: synthesis, structure-property relationships, electronic properties and host-guest investigation. Chem Commun (Camb) 2024; 60:11726-11729. [PMID: 39318232 DOI: 10.1039/d4cc03440f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
For the first time, we present the detailed synthesis, photophysical, electrochemical, host-guest and charge transport properties of spiro[fluorene-9,9'-xanthene] (SFX) and carbazole macrocycle SPS-NR-02. The electron and hole transport values measured using the space charge limited current (SCLC) method resulted in ambipolar charge transport with an electron to hole mobility ratio of 0.39.
Collapse
Affiliation(s)
- Phani Kumar Kodali
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | | | - Ankita
- Department of Electrical Engineering, School of Engineering, Shiv Nadar Institution of Eminence, Delhi NCR, 201314, India
| | - Deepak Kumar
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Upendra Kumar Pandey
- Department of Electrical Engineering, School of Engineering, Shiv Nadar Institution of Eminence, Delhi NCR, 201314, India
| | | | - Surya Prakash Singh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
3
|
Günther K, Kono H, Shudo H, Shimizu D, Isoda R, Nakamura M, Yagi A, Amaike K, Itami K. Water-Soluble Aromatic Nanobelt with Unique Cellular Internalization. Angew Chem Int Ed Engl 2024:e202414645. [PMID: 39344475 DOI: 10.1002/anie.202414645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
A water-soluble aromatic nanobelt was synthesized, and its cellular uptake behavior in HeLa cells was investigated. The late-stage functionalization of the parent methylene-bridged [6]cycloparaphenylene ([6]MCPP) provided an easily accessible alkyne-functionalized nanobelt in a single reaction step. The alkyne-substituted [6]MCPP was subjected to Cu-catalyzed azide-alkyne cycloaddition by using a dye-attached azide to obtain a water-soluble aromatic nanobelt. Cell-imaging experiments on the synthesized nanobelt in HeLa cells revealed stop-and-go cellular uptake dynamics. Similar experiments with control molecules and theoretical studies indicated that the unique dynamics of the nanobelt was derived from the belt-shaped structure.
Collapse
Affiliation(s)
- Konstantin Günther
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Hideya Kono
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Daisuke Shimizu
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Reika Isoda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kazuma Amaike
- Molecule Creation Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Molecule Creation Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Zhang X, Lan K, Cheng C. Figure-Eight Bismacrocycles Derived from a Tetraphenylmethane Core and Oligoparaphenylene Loops. Org Lett 2024; 26:7853-7857. [PMID: 39240131 DOI: 10.1021/acs.orglett.4c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cycloparaphenylenes have garnered significant interest due to their distinctive chemical and physical characteristics. This study presents the synthesis and comprehensive characterization of two bis-macrocycle molecules joined by cycloparaphenylene and tetraphenylmethane moieties. Both molecules were thoroughly characterized using NMR, MALDI-TOF-HRMS, and X-ray diffraction. UV-vis spectroscopy revealed maximum absorption peaks at 325 and 328 nm, while the two bismacrocycles exhibit fluorescence emissions at 470 and 457 nm, consistent with DFT calculations. The computational analysis also disclosed the HOMO-LUMO gaps of 3.373 and 3.342 eV.
Collapse
Affiliation(s)
- Xiaobo Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kai Lan
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chuyang Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Chinner K, Grabicki N, Hamaguchi R, Ikeguchi M, Kinbara K, Toyoda S, Sato K, Dumele O. Nanohoops in membranes: confined supramolecular spaces within phospholipid bilayer membranes. Chem Sci 2024:d4sc03408b. [PMID: 39309096 PMCID: PMC11409858 DOI: 10.1039/d4sc03408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Nanohoops, an exciting class of fluorophores with supramolecular binding abilities, have the potential to become innovative tools within biological imaging and sensing. Given the biological importance of cell membranes, incorporation of macrocyclic materials with the dual capability of fluorescence emission and supramolecular complexation would be particularly interesting. A series of different-sized nanohoops-ethylene glycol-decorated [n]cyclo-para-pyrenylenes (CPYs) (n = 4-8)-were synthesised via an alternate synthetic route which implements a stannylation-based precursor, producing purer material than the previous borylation approach, enabling the growth of single-crystals of the Pt-macrocycle. Reductive elimination of these single-crystals achieved significantly higher selectivity and yields towards smaller ring-sized nanohoops (n = 4-6). The supramolecular binding capabilities of these CPYs were then explored through host-guest studies with a series of polycyclic (aromatic)hydrocarbons, revealing the importance of molecular size, shape, and CH-π contacts for efficient binding. CPYs were incorporated within the hydrophobic layer of lipid bilayer membranes, as confirmed by microscopic imaging and emission spectroscopy, which also demonstrated the size-preferential incorporation of the five-fold nanohoop. Molecular dynamics simulations revealed the position and orientation within the membrane, as well as the unique non-covalent threading interaction between nanohoop and phospholipid.
Collapse
Affiliation(s)
- Kylie Chinner
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Niklas Grabicki
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Rei Hamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa 226-8501 Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University Yokohama Kanagawa 230-0045 Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa 226-8501 Japan
- Research Center for Autonomous SystemMaterialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8501 Japan
| | - Sayaka Toyoda
- Department of Chemistry, School of Science 1 Gakuen Uegahara Sanda-shi Hyogo 669-1330 Japan https://www.ksatolab.net
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology Yokohama Kanagawa 226-8501 Japan
- Department of Chemistry, School of Science 1 Gakuen Uegahara Sanda-shi Hyogo 669-1330 Japan https://www.ksatolab.net
| | - Oliver Dumele
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
- Institute of Organic Chemistry, University of Freiburg Albertstr. 21 Freiburg 79104 Germany https://www.dumelelab.com
| |
Collapse
|
6
|
Roy R, Brouillac C, Jacques E, Quinton C, Poriel C. π-Conjugated Nanohoops: A New Generation of Curved Materials for Organic Electronics. Angew Chem Int Ed Engl 2024; 63:e202402608. [PMID: 38744668 DOI: 10.1002/anie.202402608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nanohoops, cyclic association of π-conjugated systems to form a hoop-shaped molecule, have been widely developed in the last 15 years. Beyond the synthetic challenge, the strong interest towards these molecules arises from their radially oriented π-orbitals, which provide singular properties to these fascinating structures. Thanks to their particular cylindrical arrangement, this new generation of curved molecules have been already used in many applications such as host-guest complexation, biosensing, bioimaging, solid-state emission and catalysis. However, their potential in organic electronics has only started to be explored. From the first incorporation as an emitter in a fluorescent organic light emitting diode (OLED), to the recent first incorporation as a host in phosphorescent OLEDs or as charge transporter in organic field-effect transistors and in organic photovoltaics, this field has shown important breakthroughs in recent years. These findings have revealed that curved materials can play a key role in the future and can even be more efficient than their linear counterparts. This can have important repercussions for the future of electronics. Time has now come to overview the different nanohoops used to date in electronic devices in order to stimulate the future molecular designs of functional materials based on these macrocycles.
Collapse
Affiliation(s)
- Rupam Roy
- Univ Rennes, CNRS, ISCR-UMR CNRS 6226, F-35000, Rennes, France
- Department of Chemistry, University of Florida, Gainesville, Florida, United States, 32603
| | | | | | | | - Cyril Poriel
- Univ Rennes, CNRS, ISCR-UMR CNRS 6226, F-35000, Rennes, France
| |
Collapse
|
7
|
Endo M, Aoyama S, Tsuchido Y, Catti L, Yoshizawa M. Umbrella-Shaped Amphiphiles: Internal Alkylation of an Aromatic Micelle and Its Impact on Cavity Features. Angew Chem Int Ed Engl 2024; 63:e202404088. [PMID: 38622921 DOI: 10.1002/anie.202404088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
To develop new hybrid micelles with alkyl/polyaromatic core-shell structures, we synthesized umbrella-shaped amphiphiles bearing a bent anthracene dimer with a linear alkyl chain (i.e., octyl and hexadecyl groups). The amphiphiles quantitatively assemble into spherical micelles (~2-3 nm in core diameter), possessing an alkylated cavity surrounded by a polyaromatic framework, in water. The alkylation significantly enhances the stability of the micellar structures against dilution (up to 9 μM) and heat (up to >120 °C). The highly condensed hexadecyl core of the hybrid micelle, as indicated by solvatochromic guest probes, displays increased uptake ability toward large alkylated metallodyes. Interestingly, efficient uptake of aromatic macrocycles (i.e., [n]cycloparaphenylenes) by the present micelle provides pseudorotaxane-shaped host-guest composites with high emissivity (ΦF=up to 35 %). Internal multi-alkylation of an aromatic micelle can thus successfully enhance its assembly stability/guest uptake functions.
Collapse
Affiliation(s)
- Masaya Endo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinji Aoyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yoshitaka Tsuchido
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Lorenzo Catti
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
8
|
Kong X, Zhang X, Yuan B, Zhang W, Lu D, Du P. Synthesis and Photophysical Properties of a Chiral Carbon Nanoring Containing Rubicene. J Org Chem 2024. [PMID: 38771292 DOI: 10.1021/acs.joc.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein we report the construction of an inherently chiral carbon nanoring, cyclo[7]paraphenylene-2,9-rubicene ([7]CPPRu2,9), by combining rubicene with a C-shaped synthon through the Suzuki-Miyaura coupling reaction. The structure was fully confirmed by high-resolution mass spectroscopies (HR-MS) and various NMR techniques. The photophysical properties were investigated by UV-vis absorption and fluorescence spectroscopy as well as the time-resolved fluorescence decay. Moreover, two enantiomers (M)/(P)-[7]CPPRu2,9 were successfully resolved by recyclable HPLC and studied by CD and CPL spectra.
Collapse
Affiliation(s)
- Xin Kong
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Xinyu Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Bing Yuan
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Wen Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Dapeng Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P. R. China
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| |
Collapse
|
9
|
Guo S, Liu L, Li X, Liu G, Fan Y, He J, Lian Z, Yang H, Chen X, Jiang H. Highly Luminescent Chiral Carbon Nanohoops via Symmetry Breaking with a Triptycene Unit: Bright Circularly Polarized Luminescence and Size-Dependent Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308429. [PMID: 37988709 DOI: 10.1002/smll.202308429] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Chiral carbon nanohoops with both high fluorescence quantum yield and large luminescence dissymmetry factor are essential to the development of circularly polarized luminescence (CPL) materials. Herein, the rational design and synthesis of a series of highly fluorescent chiral carbon nanohoops TP-[8-13]CPPs via symmetry breaking with a chiral triptycene motif is reported. Theoretical calculations revealed that breaking the symmetry of nanohoops causes a unique size-dependent localization in the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular obtitals (LUMOs) as the increasing of sizes, which is sharply different from those of [n]cycloparaphenylenes. Photophysical investigations demonstrated that TP-[n]CPPs display size-dependent emissions with high fluorescence quantum yields up to 92.9% for TP-[13]CPP, which is the highest value among the reported chiral conjugated carbon nanohoops. The high fluorescence quantum yields are presumably attributed to both the unique acyclic, and radial conjugations and high radiative transition rates, which are further supported by theoretical investigations. Chiroptical studies revealed that chiral TP-[n]CPPs exhibit bright CPL with CPL brightness up to 100.5 M-1 cm-1 for TP-[11]CPP due to the high fluorescence quantum yield. Importantly, the investigations revealed the intrigued size-dependent properties of TP-[n]CPPs with regards to (chir)optical properties, which follow a nice linear relationship versus 1/n. Such a nice linear relationship is not observed in other reported conjugated nanohoops including CPPs.
Collapse
Affiliation(s)
- Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guoqin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Huiji Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
10
|
Brouillac C, McIntosh N, Heinrich B, Jeannin O, De Sagazan O, Coulon N, Rault‐Berthelot J, Cornil J, Jacques E, Quinton C, Poriel C. Grafting Electron-Accepting Fragments on [4]cyclo-2,7-carbazole Scaffold: Tuning the Structural and Electronic Properties of Nanohoops. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309115. [PMID: 38251412 PMCID: PMC10987112 DOI: 10.1002/advs.202309115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Since the first applications of nanohoops in organic electronics appear promising, the time has come to go deeper into their rational design in order to reach high-efficiency materials. To do so, systematic studies dealing with the incorporation of electron-rich and/or electron-poor functional units on nanohoops have to be performed. Herein, the synthesis, the electrochemical, photophysical, thermal, and structural properties of two [4]cyclo-2,7-carbazoles, [4]C-Py-Cbz, and [4]C-Pm-Cbz, possessing electron-withdrawing units on their nitrogen atoms (pyridine or pyrimidine) are reported. The synthesis of these nanohoops is first optimized and a high yield above 50% is reached. Through a structure-properties relationship study, it is shown that the substituent has a significant impact on some physicochemical properties (eg HOMO/LUMO levels) while others are kept unchanged (eg fluorescence). Incorporation in electronic devices shows that the most electrically efficient Organic Field-Effect transistors are obtained with [4]C-Py-Cbz although this compound does not present the best-organized semiconductor layer. These experimental data are finally confronted with the electronic couplings between the nanohoops determined at the DFT level and have highlighted the origin in the difference of charge transport properties. [4]C-Py-Cbz has the advantage of a more 2D-like transport character than [4]C-Pm-Cbz, which alleviates the impact of defects and structural organization.
Collapse
Affiliation(s)
| | - Nemo McIntosh
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsMonsB‐7000Belgium
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR 7504CNRS‐Université de Strasbourg23 rue du Loess, BP 43, Cedex 2Strasbourg67034France
| | | | | | | | | | - Jérôme Cornil
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsMonsB‐7000Belgium
| | | | | | | |
Collapse
|
11
|
Kayahara E, Mizuhata Y, Yamago S. Enhanced host-guest interaction between [10]cycloparaphenylene ([10]CPP) and [5]CPP by cationic charges. Beilstein J Org Chem 2024; 20:436-444. [PMID: 38410777 PMCID: PMC10896225 DOI: 10.3762/bjoc.20.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
A dication of [5]cycloparaphenylene ([5]CPP2+) was selectively encapsulated by neutral [10]CPP to form the shortest double-layer carbon nanotube, [10]CPP⊃[5]CPP2+. While the same host-guest complex consisted of neutral CPPs, [10]CPP⊃[5]CPP, was already reported, the cationic complex showed an about 20 times higher association constant in (CDCl2)2 at 25 °C (103 mol L-1). Electrochemical and photophysical analyses and theoretical calculations suggested the partial electron transfer from [10]CPP to [5]CPP2+ in the complex, and this charge-transfer (CT) interaction is most likely the origin of the higher association constant of the dicationic complex than the neutral one.
Collapse
Affiliation(s)
- Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | | | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
12
|
Ypsilantis K, Sifnaiou E, Garypidou A, Kordias D, Magklara A, Garoufis A. Ruthenium-Cyclopentadienyl-Cycloparaphenylene Complexes: Sizable Multicharged Cations Exhibiting High DNA-Binding Affinity and Remarkable Cytotoxicity. Molecules 2024; 29:514. [PMID: 38276592 PMCID: PMC10818589 DOI: 10.3390/molecules29020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Two novel sizable multicharged cationic complexes, of the formulae [(η6--[12]CPP)[Ru(η5--Cp)]12]Χ12 and [(η6--[11]CPP)[Ru(η5--Cp)]11]Χ11, CPP = cycloparaphenylene, Cp = cyclopentadienyl, X = [PF6]-, (1), (3) and [Cl]-, (2), (4), were synthesized and characterized using NMR techniques, high-resolution mass spectrometry, and elemental analyses. Complexes (1) and (3) were stable in acetone and acetonitrile solutions over 48 h. In contrast, the water-soluble (2) and (4) begin to decompose in aqueous media after 1 h, due to the [Cl]- tendency for nucleophilic attack on ruthenium of the {Ru(η5--Cp)} units. Fluorescence quenching experiments conducted during the stability window of (2) with the d(5'-CGCGAATTCGCG-3')2-EtBr adducts revealed remarkably high values for Ksv = 1.185 × 104 ± 0.025 M-1 and Kb = 3.162 × 105 ± 0.001 M-1. Furthermore, the cytotoxic activity of (2) against A2780, A2780res, and MCF-7 cancer cell lines shows that it is highly cytotoxic with IC50 values in the range of 4.76 ± 1.85 to 16 ± 0.81 μΜ.
Collapse
Affiliation(s)
- Konstantinos Ypsilantis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (K.Y.); (E.S.); (A.G.)
| | - Evangelia Sifnaiou
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (K.Y.); (E.S.); (A.G.)
| | - Antonia Garypidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (K.Y.); (E.S.); (A.G.)
| | - Dimitrios Kordias
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece; (D.K.); (A.M.)
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki Magklara
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece; (D.K.); (A.M.)
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina (U.R.C.I.), 45110 Ioannina, Greece
| | - Achilleas Garoufis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (K.Y.); (E.S.); (A.G.)
- Institute of Materials Science and Computing, University Research Centre of Ioannina (U.R.C.I.), 45110 Ioannina, Greece
| |
Collapse
|
13
|
Murugan G, Julietraja K, Alsinai A. Computation of Neighborhood M-Polynomial of Cycloparaphenylene and Its Variants. ACS OMEGA 2023; 8:49165-49174. [PMID: 38162762 PMCID: PMC10753576 DOI: 10.1021/acsomega.3c07294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
In the domains of materials and chemical and physical sciences, a significant aspiration is to design and synthesize extensively conjugated macrocycles possessing precisely defined structures. This objective bears substantial promise across a wide range of scientific and technological fields. These molecules offer a unique blend of structural complexity and electronic properties that make them particularly intriguing for both theoretical and practical reasons. Cycloparaphenylene (CPP) radial π-conjugated macrocycles is a specific example of a conjugated macrocycle that has garnered significant attention in the field of chemistry and materials science. It consists of a series of benzene rings linked together in a cyclic arrangement, forming a one-dimensional structure. CPP systems have been on the rise due to their novel and captivating characteristics, encompassing properties, such as electronic properties, heightened electrical conductivity, optoelectronic traits, and mechanical properties. Given the potential applications of CPP, it becomes essential to analyze this structure from a theoretical standpoint. Molecular descriptors play a crucial role in the theoretical analysis of such structures. Research on molecular descriptors has unequivocally demonstrated their significant correlation with the diverse properties of chemical compounds. This article illustrates the neighborhood sum M-polynomial-based descriptors' calculation using edge-partition techniques for CPP and its sidewalls consisting of pyrene and hexabenzocoronene units. The examination of these neighborhood sum M-polynomial-based descriptors for these structures has the potential to establish a foundational framework for delving deeper into CPP and its associated properties.
Collapse
Affiliation(s)
- Govindhan Murugan
- Department
of Mathematics, Chennai Institute of Technology, Chennai 600069, India
| | - Konsalraj Julietraja
- Department
of Mathematics, School of Engineering, Presidency
University, Bengaluru 560064, India
| | - Ammar Alsinai
- Department
of Mathematics, Ibb University, Ibb 70270, Yemen
| |
Collapse
|
14
|
Ari D, Dureau E, Jeannin O, Rault-Berthelot J, Poriel C, Quinton C. Modulation of [8]CPP properties by bridging two phenylene units. Chem Commun (Camb) 2023. [PMID: 38014495 DOI: 10.1039/d3cc04924h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report the synthesis and characterization of two new fluorophores, consisting of a [8]cyclo-para-phenylene core in which two phenylenes are bridged by either a nitrogen atom or a carbonyl group. The nitrogen bridge increases the HOMO-LUMO gap, whereas the carbonyl bridge decreases it. These results provide guidelines to control the electronic properties of nanohoops.
Collapse
Affiliation(s)
- Denis Ari
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| | - Elodie Dureau
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| | | | | | - Cyril Poriel
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| | | |
Collapse
|
15
|
Fan Y, Fan S, Liu L, Guo S, He J, Li X, Lian Z, Guo W, Chen X, Wang Y, Jiang H. Efficient manipulation of Förster resonance energy transfer through host-guest interaction enables tunable white-light emission and devices in heterotopic bisnanohoops. Chem Sci 2023; 14:11121-11130. [PMID: 37860654 PMCID: PMC10583698 DOI: 10.1039/d3sc04358d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
In this study, we synthesized and reported the heterotopic bisnanohoops P5-[8,10]CPPs containing cycloparaphenylenes (CPPs) and a pillar[5]arene unit, which act not only as energy donors but also as a host for binding energy acceptors. We demonstrated that a series of elegant FRET systems could be constructed successfully through self-assembly between donors P5-[8,10]CPPs and acceptors with different emissions via host-guest interaction. These FRET systems further allow us to finely adjust the donors P5-[8,10]CPPs and acceptors (BODIPY-Br and Rh-Br) for achieving multiple color-tunable emissions, particularly white-light emission. More importantly, these host-guest complexes were successfully utilized in the fabrication of white-light fluorescent films and further integrated with a 365 nm LED lamp to create white LED devices. The findings highlight a new application of carbon nanorings in white-light emission materials, beyond the common recognition of π-conjugated molecules.
Collapse
Affiliation(s)
- Yanqing Fan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Shimin Fan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Weijie Guo
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
16
|
Sangolkar AA, Kadiyam RK, Faizan M, Chedupaka O, Mucherla R, Pawar R. Electronic and photophysical properties of an atomically thin bowl-shaped beryllene encapsulated inside the cavity of [6]cycloparaphenylene (Be n@[6]CPP). Phys Chem Chem Phys 2023; 25:23262-23276. [PMID: 37608746 DOI: 10.1039/d3cp01952g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Exotic metallic nanostructures are being intensely pursued for a myriad of applications, with ultrathin membranes currently at the heart of several investigations. The objective of the present study was to systematically assess the atom-by-atom encapsulation of Be in the molecular nanoring of [6]cycloparaphenylene ([6]CPP). Further, the study aimed to scrutinize the structure, stability, and properties of the encapsulated Ben@[6]CPP systems. The outcomes clearly revealed that [6]CPP enabled the cooperative confinement of atomically thin bowl-shaped beryllene inside its circular cavity. The confinement of Be in [6]CPP generated topologically anisotropic surfaces with distinct interior and exterior charge distributions. The Ben@[6]CPP complexes could render a cationic or anionic nature to Be depending on its neighbouring environment. Thus, the systems may offer a promising opportunity for the synergistic co-adsorption of multiple reactants that are involved in multicomponent reactions. Energy decomposition analysis (EDA) elucidated that the bonding between Be and [6]CPP was partially ionic and covalent in character. The progressive encapsulation of Be atoms inside the cavity of [6]CPP led to a red-shift of the excitation wavelength to the visible region. The calculated optical absorption coefficient was higher than 104 L mol-1 cm-1, which shows promise for diverse optoelectronic applications.
Collapse
Affiliation(s)
- Akanksha Ashok Sangolkar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Rama Krishna Kadiyam
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Mohmmad Faizan
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Omshireesh Chedupaka
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Raghasudha Mucherla
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| |
Collapse
|
17
|
Liu Y, Yuan K, Li M, Zhao P, Zhao Y, Zhao X. Nanoscale Saturn Systems Based on C 60/70 Bucky Ball and a Newly Designed [4]Cyclopara-1,2-diphenylethylene Hoop: A Strategy for Fullerene Encapsulation Release and Selective Recognition for C 70. Inorg Chem 2023. [PMID: 37262348 DOI: 10.1021/acs.inorgchem.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new carbonaceous nanohoop, [4]cyclopara-1,2-diphenylethylene ([4]CPDPE, composed by four 1,2-diphenylethylene units linked via the para of the phenyls), is designed together with two rational synthesis paths being proposed. The Saturn-like host-guest systems formed with the [4]CPDPE nanoring and fullerene C60/70 are explored using density functional theory calculations. The results evidence that the geometry mutual matching between [4]CPDPE and C60/70 is perfect, and the [4]CPDPE⊃C60/70 complexes could be formed spontaneously with high binding energies. Thermodynamic calculation results show that it essentially prefers to selectively recognize C70 over its smaller cousin C60. More interestingly, the [4]CPDPE nanoring could present the regular ring cylinder and the saddle shapes via configuration transformation between its all-trans form and all-cis form, so as to theoretically realize the fullerene encapsulation and release under photoirradiation. Furthermore, the 2:1 interaction structure ([4]CPDPE2⊃Dimer-C60) and properties are investigated. Additionally, the ultraviolet-visible (UV-vis) spectra are simulated, and host-guest noncovalent interaction (NCI) regions are investigated based on the electron density and reduced density gradient (RDG), which may be helpful for a deep understanding of the present designed systems in future.
Collapse
Affiliation(s)
- Yanzhi Liu
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui 741001, China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui 741001, China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Yaoxiao Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Xiang Zhao
- Institute of Molecular Science & Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
18
|
Hayakawa M, Sunayama N, Takagi SI, Matsuo Y, Tamaki A, Yamaguchi S, Seki S, Fukazawa A. Flattened 1D fragments of fullerene C 60 that exhibit robustness toward multi-electron reduction. Nat Commun 2023; 14:2741. [PMID: 37188690 DOI: 10.1038/s41467-023-38300-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Fullerenes are compelling molecular materials owing to their exceptional robustness toward multi-electron reduction. Although scientists have attempted to address this feature by synthesizing various fragment molecules, the origin of this electron affinity remains unclear. Several structural factors have been suggested, including high symmetry, pyramidalized carbon atoms, and five-membered ring substructures. To elucidate the role of the five-membered ring substructures without the influence of high symmetry and pyramidalized carbon atoms, we herein report the synthesis and electron-accepting properties of oligo(biindenylidene)s, a flattened one-dimensional fragment of fullerene C60. Electrochemical studies corroborated that oligo(biindenylidene)s can accept electrons up to equal to the number of five-membered rings in their main chains. Moreover, ultraviolet/visible/near-infrared absorption spectroscopy revealed that oligo(biindenylidene)s exhibit enhanced absorption covering the entire visible region relative to C60. These results highlight the significance of the pentagonal substructure for attaining stability toward multi-electron reduction and provide a strategy for the molecular design of electron-accepting π-conjugated hydrocarbons even without electron-withdrawing groups.
Collapse
Affiliation(s)
- Masahiro Hayakawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoyuki Sunayama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shu I Takagi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yu Matsuo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Asuka Tamaki
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Aiko Fukazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
19
|
Freiberger M, Minameyer MB, Solymosi I, Frühwald S, Krug M, Xu Y, Hirsch A, Clark T, Guldi DM, von Delius M, Amsharov K, Görling A, Pérez-Ojeda ME, Drewello T. Two Rings Around One Ball: Stability and Charge Localization of [1 : 1] and [2 : 1] Complex Ions of [10]CPP and C 60/70 [ * ]. Chemistry 2023; 29:e202203734. [PMID: 36507855 DOI: 10.1002/chem.202203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C60 and C70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPP⊃C60 and [10]CPP⊃C70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energy-resolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C60 or C70 , while the charges reside on [10]CPP in the case of cationic complexes. [2 : 1] complexes of the ([10]CPP2 ⊃C60/70 )+ ⋅/- ⋅ type are observed for the first time as isolated solitary gas-phase species. Here, C60 -based [2 : 1] complexes are less stable than the respective C70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.
Collapse
Affiliation(s)
- Markus Freiberger
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Martin B Minameyer
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Iris Solymosi
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Stefan Frühwald
- Theoretical Chemistry Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Marcel Krug
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Youzhi Xu
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Hirsch
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Timothy Clark
- Computer-Chemistry-Center Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Dirk M Guldi
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Konstantin Amsharov
- Organic Chemistry Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Germany
| | - Andreas Görling
- Theoretical Chemistry Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - M Eugenia Pérez-Ojeda
- Organic Chemistry II Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Thomas Drewello
- Physical Chemistry I Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
20
|
Grabicki N, Fisher S, Dumele O. A Fourfold Gold(I)-Aryl Macrocycle with Hyperbolic Geometry and its Reductive Elimination to a Carbon Nanoring Host. Angew Chem Int Ed Engl 2023; 62:e202217917. [PMID: 36753601 DOI: 10.1002/anie.202217917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
An ethylene glycol-decorated [6]cyclo-meta-phenylene (CMP) macrocycle was synthesized and utilized as a subunit to construct a fourfold AuI 2 -aryl metallacycle with an overall square arrangement. The corners consist of rigid dinuclear gold(I) complexes previously known to form only triangular metallacycles. The interplay between the conformational flexibility of the [6]CMP macrocycle and the rigid dinuclear gold(I) moieties enable the square geometry, as revealed by single-crystal X-ray diffraction. The formation of the gold complex shows size-selectivity compared to an alternative route using platinum(II) corner motifs. Upon reductive elimination, an all-organic ether-decorated carbon nanoring was obtained. Investigation as a host for the complexation of large guest molecules with a suitable convex π-surfaces was accomplished using isothermal NMR binding titrations. Association constants for [6]cycloparaphenylene ([6]CPP), [7]CPP, C60 , and C70 were determined.
Collapse
Affiliation(s)
- Niklas Grabicki
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Sergey Fisher
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Oliver Dumele
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
21
|
Chen D, Wada Y, Kusakabe Y, Sun L, Kayahara E, Suzuki K, Tanaka H, Yamago S, Kaji H, Zysman-Colman E. A Donor-Acceptor 10-Cycloparaphenylene and Its Use as an Emitter in an Organic Light-Emitting Diode. Org Lett 2023; 25:998-1002. [PMID: 36744816 PMCID: PMC9942195 DOI: 10.1021/acs.orglett.3c00127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we explored the possibility of using cycloparaphenylenes (CPP) within a donor-acceptor TADF emitter design. 4PXZPh-[10]CPP contains four electron-donating moieties connected to a [10]CPP. In the 15 wt % doped in CzSi film, 4PXZPh-[10]CPP showed sky-blue emission with λPL = 475 nm, ΦPL = 29%, and triexponential emission decays with τPL of 4.4, 46.3, and 907.8 ns. Solution-processed OLEDs using 4PXZPh-[10]CPP exhibited sky-blue emission with an λEL of 465 nm and an EQEmax of 1.0%.
Collapse
Affiliation(s)
- Dongyang Chen
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Yoshimasa Wada
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Yu Kusakabe
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Liansheng Sun
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Eiichi Kayahara
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Katsuaki Suzuki
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Hiroyuki Tanaka
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Shigeru Yamago
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Japan,
| | - Hironori Kaji
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Japan,
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom,
| |
Collapse
|
22
|
Fan D, Du J, Dang J, Wang C, Mo Y. The strength and selectivity of perfluorinated nano-hoops and buckybowls for anion binding and the nature of anion-π interactions. J Comput Chem 2023; 44:138-148. [PMID: 35147229 DOI: 10.1002/jcc.26820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
Abstract
Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5-8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl- , Br- and I- ), and remarkable binding strengths up to -294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion.
Collapse
Affiliation(s)
- Dan Fan
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jingshuang Dang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
23
|
Sato R, Utagawa A, Fushimi K, Li F, Isono T, Tajima K, Satoh T, Sato SI, Hirata H, Kikkawa Y, Yamamoto T. Molecular Weight-Dependent Oxidation and Optoelectronic Properties of Defect-Free Macrocyclic Poly(3-hexylthiophene). Polymers (Basel) 2023; 15:polym15030666. [PMID: 36771966 PMCID: PMC9920727 DOI: 10.3390/polym15030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The redox behaviors of macrocyclic molecules with an entirely π-conjugated system are of interest due to their unique optical, electronic, and magnetic properties. In this study, defect-free cyclic P3HT with a degree of polymerization (DPn) from 14 to 43 was synthesized based on our previously established method, and its unique redox behaviors arising from the cyclic topology were investigated. Cyclic voltammetry (CV) showed that the HOMO level of cyclic P3HT decreases from -4.86 eV (14 mer) to -4.89 eV (43 mer), in contrast to the linear counterparts increasing from -4.94 eV (14 mer) to -4.91 eV (43 mer). During the CV measurement, linear P3HT suffered from electro-oxidation at the chain ends, while cyclic P3HT was stable. ESR and UV-Vis-NIR spectroscopy suggested that cyclic P3HT has stronger dicationic properties due to the interactions between the polarons. On the other hand, linear P3HT showed characteristics of polaron pairs with multiple isolated polarons. Moreover, the dicationic properties of cyclic P3HT were more pronounced for the smaller macrocycles.
Collapse
Affiliation(s)
- Ryohei Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Atsuo Utagawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koji Fushimi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Correspondence:
| |
Collapse
|
24
|
Lin J, Lv Y, Song K, Song X, Zang H, Du P, Zang Y, Zhu D. Cleavage of non-polar C(sp 2)‒C(sp 2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat Commun 2023; 14:293. [PMID: 36653339 PMCID: PMC9849230 DOI: 10.1038/s41467-022-35686-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Electrophilic aromatic substitution (EAS) is one of the most fundamental reactions in organic chemistry. Using an oriented external electric field (OEEF) instead of traditional reagents to tune the EAS reactivity can offer an environmentally friendly method to synthesize aromatic compounds and hold the promise of broadening its scope. Despite these advantages, OEEF catalysis of EAS is difficult to realize, due to the challenge of microscopically orienting OEEF along the direction of electron reorganizations. In this work, we demonstrate OEEF-catalyzed EAS reactions in a series of cycloparaphenylenes (CPPs) using the scanning tunneling microscope break junction (STM-BJ) technique. Crucially, the unique radial π-conjugation of CPPs enables a desired alignment for the OEEF to catalyze the EAS with Au STM tip (or substrate) acting as an electrophile. Under mild conditions, the OEEF-catalyzed EAS reactions can cleave the inherently inert C(sp2)-C(sp2) bond, leading to high-yield (~97%) formation of linear oligophenylenes terminated with covalent Au-C bonds. These results not only demonstrate the feasibility of OEEF catalysis of EAS, but also offer a way of exploring new mechanistic principles of classic organic reactions aided by OEEF.
Collapse
Affiliation(s)
- Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Lv
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Kai Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuwei Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjun Zang
- School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
25
|
Terabayashi T, Kayahara E, Zhang Y, Mizuhata Y, Tokitoh N, Nishinaga T, Kato T, Yamago S. Synthesis of Twisted [n]Cycloparaphenylene by Alkene Insertion. Angew Chem Int Ed Engl 2023; 62:e202214960. [PMID: 36349975 DOI: 10.1002/anie.202214960] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Mono-alkene-inserted [n]cycloparaphenylenes 1 [(ene)-[n]CPP] with n=6, 8, and 10, mono-ortho-phenylene-inserted [6]CPP 2, and di-alkene-insertved [n]CPP 3 [(ene)2 -[n]CPP] with n=4, 6, and 8 were synthesized by fusing CPP precursors and alkene or ortho- phenylene groups through coupling reactions. Single-crystal X-ray diffraction analyses reveal that the strips formed by the π-surfaces of 1 and 2 exhibited a Möbius topology in the solid state. While the Möbius topology in the parent 1 and 2 in solution was lost due to the free rotation of the paraphenylene unit even at low temperatures, ene-[6]CPP 4 with eight 1-pyrrolyl groups preserved the Möbius topology even in solution. Despite a twist, 1 has in-plane conjugation and possesses a unique size dependence of the electronic properties: namely, the opposite size dependency of the HOMO-LUMO energy relative to conventional π-conjugated molecules.
Collapse
Affiliation(s)
| | - Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Yichen Zhang
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | | | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Tohru Nishinaga
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tatsuhisa Kato
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
26
|
Li N, Sun M. Optical Physical Mechanisms of Helicene Carbon Nanohoop with Möbius Topology. Chemphyschem 2023; 24:e202200846. [PMID: 36594674 DOI: 10.1002/cphc.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Optical and spectral properties of carbon nanohoop with Möbius topology is of great interest in nano-science and nano-technology. And it can be imagined that it has a lot of unexpected potential application prospects. However, theoretical calculations based on some figure-of-eight helicene carbon nanohoop with Möbius topology are still insufficient. Therefore, in this paper, we theoretically study the optical and spectral properties of figure-of-eight helicene carbon nanohoop with Möbius topology. Optical and spectral properties are analyzed with visualization method of transition density matrix and charge density difference, which reveal the unique characterization of carbon nanohoop with Möbius topology. Our results can not only deepen the understanding of the optical physical mechanisms of the nanorings with mobius carbons, but also provide deeper insight on optical properties and potential design on optical nanodevices.
Collapse
Affiliation(s)
- Ning Li
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
| |
Collapse
|
27
|
Wei Y, Zhou P, Chen X, Bao Q, Xie L. Research Progress on Organic Nanohoops/Nanogrids. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
28
|
Lin J, Wang S, Zhang F, Yang B, Du P, Chen C, Zang Y, Zhu D. Highly efficient charge transport across carbon nanobelts. SCIENCE ADVANCES 2022; 8:eade4692. [PMID: 36563157 PMCID: PMC9788781 DOI: 10.1126/sciadv.ade4692] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Carbon nanobelts (CNBs) are a new form of nanocarbon that has promising applications in optoelectronics due to their unique belt-shaped π-conjugated systems. Recent synthetic breakthrough has led to the access to various CNBs, but their optoelectronic properties have not been explored yet. In this work, we study the electronic transport performance of a series of CNBs by incorporating them into molecular devices using the scanning tunneling microscope break junction technique. We show that, by tuning the bridging groups between the adjacent benzenes in the CNBs, we can achieve remarkably high conductance close to 0.1 G0, nearly one order of magnitude higher than their nanoring counterpart cycloparaphenylene. Density functional theory-based calculations further elucidate the crucial role of the structural distortion played in facilitating the unique radial π-electron delocalization and charge transport across the belt-shaped carbon skeletons. These results develop a basic understanding of electronic transport properties of CNBs and lay the foundation for further exploration of CNB-based optoelectronic applications.
Collapse
Affiliation(s)
- Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengda Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chuanfeng Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Chen S, Miao X, Zhou H, Peng C, Zhang R, Han X. Steric Hindrance Governs the Photoinduced Structural Planarization of Cycloparaphenylene Materials. J Phys Chem A 2022; 126:7452-7459. [PMID: 36205704 DOI: 10.1021/acs.jpca.2c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cycloparaphenylenes ([n]CPPs) and their derivatives are known for the unique size-dependent photophysical properties, which are largely attributed to the structural planarization-associated exciton localization, attracting substantial research attention. In this work, we show that the steric hindrance between neighboring structural units plays a key role in governing the photoinduced global/local structural planarization and electron-hole distribution features of [n]CPP materials, due to the tunable strength of H···H repulsion between neighboring units via structural modification or C-H distance variation as revealed by density functional theory (DFT) and time-dependent DFT calculations. According to our results, steric hindrance controls the manner and also the extent of excited-state structural planarization, where a weak (strong) steric hindrance favors (hinders) structural planarization upon relaxation in the first excited singlet (S1) state as compared to the ground (S0)-state structure. Depending on the molecular structures, steric hindrance leads to fully delocalized, partially separated, or more localized electron-hole distributions. For example, via H···H repulsion release by manually shortening the C-H distance or by chemical substitution of C-H with N atoms, the modified [10]CPP structures show fully planarized configurations (each dihedral angle can be less than 2°) and entirely delocalized electron-hole distribution upon photorelaxation. This work provides insights into the structural origin of the unusual photophysical properties of [n]CPPs and shows the promise of steric hindrance tuning in accessing diverse excited-state features in [n]CPP materials.
Collapse
Affiliation(s)
- Shunwei Chen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoyu Miao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huanyi Zhou
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Cunjin Peng
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ruiqin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 999077 Hong Kong SAR, China
| | - Xiujun Han
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
30
|
Alfonso Hernandez L, Freixas VM, Rodriguez-Hernandez B, Tretiak S, Fernandez-Alberti S, Oldani N. Exciton-vibrational dynamics induces efficient self-trapping in a substituted nanoring. Phys Chem Chem Phys 2022; 24:24095-24104. [PMID: 36178044 DOI: 10.1039/d2cp03162k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cycloparaphenylenes, being the smallest segments of carbon nanotubes, have emerged as prototypes of the simplest carbon nanohoops. Their unique structure-dynamics-optical properties relationships have motivated a wide variety of synthesis of new related nanohoop species. Studies of how chemical changes, introduced in these new materials, lead to systems with new structural, dynamics and optical properties, expand their functionalities for optoelectronics applications. Herein, we study the effect that conjugation extension of a cycloparaphenylene through the introduction of a satellite tetraphenyl substitution has on its structural and dynamical properties. Our non-adiabatic excited state molecular dynamics simulations suggest that this substitution accelerates the electronic relaxation from the high-energy band to the lowest excited state. This is partially due to efficient conjugation achieved between specific phenyl units as introduced by the tetraphenyl substitution. We observe a particular exciton redistribution during relaxation, in which the tetraphenyl substitution plays a significant role. As a result, an efficient inter-band energy transfer takes place. Besides, the observed phonon-exciton interplay induces a significant exciton self-trapping. Our results encourage and guide the future studies of new phenyl substitutions in carbon nanorings with desired optoelectronic properties.
Collapse
Affiliation(s)
- Laura Alfonso Hernandez
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | - Victor M Freixas
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | | | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - Nicolas Oldani
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| |
Collapse
|
31
|
Prabhu S, Murugan G, Therese SK, Arulperumjothi M, Siddiqui MK. Molecular Structural Characterization of Cycloparaphenylene and its Variants. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1942082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. Prabhu
- Department of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, India
| | - G. Murugan
- Department of Mathematics, Chennai Institute of Technology, Chennai, Tamil Nadu, India
| | - S. Kulandai Therese
- Department of Mathematics, St. Mary’s College, Thoothukudi, Tamil Nadu, India
| | - M. Arulperumjothi
- Department of Mathematics, Loyola College, University of Madras, Chennai, Tamil Nadu, India
| | | |
Collapse
|
32
|
Malinčík J, Gaikwad S, Mora‐Fuentes JP, Boillat M, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop**. Angew Chem Int Ed Engl 2022; 61:e202208591. [PMID: 35856293 PMCID: PMC9543836 DOI: 10.1002/anie.202208591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/13/2022]
Abstract
We present the first helicene carbon nanoohop that integrates a [6]helicene into [7]cycloparaphenylene. The [6]helicene endows the helicene carbon nanohoop with chiroptical properties and configurational stability typical for higher helicenes, while the radially conjugated seven para‐phenylenes largely determine the optoelectronic properties. The structure of the helicene carbon nanoohop was unambiguously characterized by NMR, MS and X‐ray analysis that revealed that it possesses a topology of a Möbius strip in the solid state and in solution. The chirality transfers from the [6]helicene to the para‐phenylenes and leads to a pronounced circular dichroism and bright circularly polarized luminescence, which is affected by the structural topology of the nanohoop.
Collapse
Affiliation(s)
- Juraj Malinčík
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| | - Sudhakar Gaikwad
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Juan P. Mora‐Fuentes
- Department of Organic Chemistry University of Granada Avda Fuentenueva, s/n 18 071 Granada Spain
| | - Marc‐Aurèle Boillat
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Daniel Häussinger
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada Avda Fuentenueva, s/n 18 071 Granada Spain
| | - Tomáš Šolomek
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
- Department of Chemistry Biochemistry and Pharamaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| |
Collapse
|
33
|
Malinčík J, Gaikwad S, Mora-Fuentes JP, Boillat MA, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juraj Malinčík
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Sudhakar Gaikwad
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Juan P. Mora-Fuentes
- University of Granada: Universidad de Granada Department of Organic Chemistry SPAIN
| | | | | | - Daniel Häussinger
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Araceli G. Campaña
- University of Granada: Universidad de Granada Department of Organic Chemistry SPAIN
| | - Tomáš Šolomek
- University of Bern: Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
34
|
Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Mitoma N, Kuwabara T, Yagi A, Segawa Y, Itami K. Perfluorocycloparaphenylenes. Nat Commun 2022; 13:3713. [PMID: 35764634 PMCID: PMC9240036 DOI: 10.1038/s41467-022-31530-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Perfluorinated aromatic compounds, the so-called perfluoroarenes, are widely used in materials science owing to their high electron affinity and characteristic intermolecular interactions. However, methods to synthesize highly strained perfluoroarenes are limited, which greatly limits their structural diversity. Herein, we report the synthesis and isolation of perfluorocycloparaphenylenes (PFCPPs) as a class of ring-shaped perfluoroarenes. Using macrocyclic nickel complexes, we succeeded in synthesizing PF[n]CPPs (n = 10, 12, 14, 16) in one-pot without noble metals. The molecular structures of PF[n]CPPs (n = 10, 12, 14) were determined by X-ray crystallography to confirm their tubular alignment. Photophysical and electrochemical measurements revealed that PF[n]CPPs (n = 10, 12, 14) exhibited wide HOMO–LUMO gaps, high reduction potentials, and strong phosphorescence at low temperature. PFCPPs are not only useful as electron-accepting organic materials but can also be used for accelerating the creation of topologically unique molecular nanocarbon materials. Synthetic methods for the preparation of perfluorinated aromatic compounds are desirable in materials science. Here, the authors synthesize perfluorocycloparaphenylenes, fully fluorinated carbon nanorings, through a nickel-mediated one-pot method.
Collapse
Affiliation(s)
- Hiroki Shudo
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Motonobu Kuwayama
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | | | - Taishi Nishihara
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Nobuhiko Mitoma
- RIKEN Center for Emergent Matter Science, Wako, 351-0198, Japan
| | - Takuya Kuwabara
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | - Akiko Yagi
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | - Yasutomo Segawa
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan. .,Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan. .,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, 444-8787, Japan.
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
35
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
36
|
Wang Y, Fu M, Zhang X, Jin D, Zhu S, Wang Y, Wu Z, Bao J, Cheng X, Yang L, Xie L. Cubic Nanogrids for Counterbalance Contradiction among Reorganization Energy, Strain Energy, and Wide Bandgap. J Phys Chem Lett 2022; 13:4297-4308. [PMID: 35532545 DOI: 10.1021/acs.jpclett.2c00827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular cross-scale gridization and polygridization of organic π-backbones make it possible to install 0/1/2/3-dimensional organic wide-bandgap semiconductors (OWBGSs) with potentially ZnO-like fascinating multifunctionality such as optoelectronic and piezoelectronic features. However, gridization effects are limited to uncover, because the establishment of gridochemistry still requires a long time, which offers a chance to understand the effects with a theoretical method, together with data statistics and machine learning. Herein, we demonstrate a state-of-the-art 3D cubic nanogridon with a size of ∼2 × 2 × 1.5 nm3 to examine its multigridization of π-segments on the bandgap, molecular strain energy (MSE), as well as reorganization energy (ROE). A cubic gridon (CG) consists of a four-armed bifluorene skeleton and a thiophene-containing fused arene plane with the Csp3 spiro-linkage, which can be deinstalled into face-on or edge-on monogrids. As a result, multigridization does not significantly reduce bandgaps (Eg ≥ 4.03 eV), while the MSE increases gradually from 4.72 to 23.83 kcal/mol. Very importantly, the ROE of a CG exhibits an extreme reduction down to ∼28 meV (λ+) that is near the thermal fluctuation energy (∼26 meV). Our multigridization results break through the limitation of the basic positively proportional relationship between reorganization energies and bandgaps in organic semiconductors. Furthermore, multigridization makes it possible to keep the ROE small under the condition of a high MSE in OWBGS that will guide the cross-scale design of multifunctional OWBGSs with both inorganics' optoelectronic performance and organics' mechanical flexibility.
Collapse
Affiliation(s)
- Yongxia Wang
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Mingyang Fu
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaofei Zhang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Dong Jin
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shiyuan Zhu
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yucong Wang
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhenyu Wu
- School of Internet of Things, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jianmin Bao
- School of Internet of Things, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaogang Cheng
- School of Communications and Information Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lei Yang
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Linghai Xie
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
37
|
Wang L, Nagashima Y, Abekura M, Uekusa H, Konishi G, Tanaka K. Rhodium‐Catalyzed Intermolecular Cycloaromatization Route to Cycloparaphenylenes that Exhibit Aggregation‐Induced Emission. Chemistry 2022; 28:e202200064. [DOI: 10.1002/chem.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masato Abekura
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
38
|
Nogami J, Nagashima Y, Sugiyama H, Miyamoto K, Tanaka Y, Uekusa H, Muranaka A, Uchiyama M, Tanaka K. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angew Chem Int Ed Engl 2022; 61:e202200800. [DOI: 10.1002/anie.202200800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | | | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
39
|
Peterson E, Maust RL, Jasti R, Kertesz M, Tovar JD. Splitting the Ring: Impact of Ortho and Meta Pi Conjugation Pathways through Disjointed [8]Cycloparaphenylene Electronic Materials. J Am Chem Soc 2022; 144:4611-4622. [PMID: 35245032 DOI: 10.1021/jacs.2c00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we describe the synthesis and electronic properties of small-molecule and polymeric [8]cycloparaphenylenes ([8]CPPs) with disjointed pi-conjugated substituents. Arylene-ethynylene linkers were installed on opposite sides of the [8]CPP nanohoop as separated by three phenyl units on either side such that the monomer systems have syn (C2 symmetry) and anti (C1 symmetry) conformers with a small energy gap (0.1-0.6 kcal/mol). This disjoined substitution pattern necessarily forces delocalization through and around the CPP radial structure. We demonstrate new electronic states from this radial/linear mixing in both the small molecules and the pi extended polymers. Quantum chemical calculations reveal that these electronic processes arise from multiple operative radial/linear conjugation pathways, as the disjoint pattern results in both ortho and meta connections to the CPP ring. These results affirm the unique nature of hybrid radial and linear pi electron delocalization operative in these new conjugation pathways.
Collapse
Affiliation(s)
- Eric Peterson
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ruth L Maust
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Miklos Kertesz
- Chemistry Department and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Nogami J, Nagashima Y, Sugiyama H, Miyamoto K, Tanaka Y, Uekusa H, Muranaka A, Uchiyama M, Tanaka K. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | | | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
41
|
Wang S, Li X, Wei K, Zhang X, Yang S, Zhuang G, Du P. Facile Synthesis of a Conjugated Macrocyclic Nanoring with Graphenic Hexabenzocoronene Sidewall as the Segment of [12,12] Carbon Nanotubes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shengda Wang
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Xingcheng Li
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Kang Wei
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Xinyu Zhang
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Shangfeng Yang
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Guilin Zhuang
- Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology Chemical Engineering 18 Chaowang Road 310032 Hangzhou CHINA
| | - Pingwu Du
- USTC: University of Science and Technology of China Chemistry and Materials Science & Engineering 96 Jinzhai Rd 430026 Hefei CHINA
| |
Collapse
|
42
|
Huijun Z, Jianbin L. Syntheses and Properties of Heteroatom-Doped Conjugated Nanohoops. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
He H, Li JA, Zhang Y, Idrees S, Cai J, Li Y, Osuka A, Xu B, Jiang HW. Synthesis, Structures and Fluorescence Properties of gem-Linked Cyclic Tetraphenylethylenes and Cyclic hexaphenylethylenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00395c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rigid cyclic molecules are of great interest due to their intriguing structures and unique properties. Here, we report the facile synthesis of gem-linked cyclic tetraphenylethylenes and cyclic hexaphenylethylenes, namely [n]CTPEs...
Collapse
|
44
|
Lv Y, Lin J, Song K, Song X, Zang H, Zang Y, Zhu D. Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial π-conjugation. SCIENCE ADVANCES 2021; 7:eabk3095. [PMID: 34936467 PMCID: PMC8694625 DOI: 10.1126/sciadv.abk3095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Conjugated macrocycles cycloparaphenylenes (CPPs) have unusual size-dependent electronic properties because of their unique radially π-conjugated structures. Contrary to linearly π-conjugated molecules, their highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap shrinks as the molecular size reduces, and this feature can, in principle, be leveraged to achieve unexpected size-dependent transport properties. Here, we examine charge transport characteristics of [n]CPPs (n = 5 to 12) at the single molecule level using the scanning tunneling microscope–break junction technique. We find that the [n]CPPs have a much higher conductance than their linear oligoparaphenylene counterparts at small ring size and at the same time show a large tunneling attenuation coefficient comparable to saturated alkane series. These results show that the radially π-conjugated molecular systems can offer much larger conductance modulation range than standard linear molecules and can be a new platform for building molecular devices with highly tunable transport behaviors.
Collapse
Affiliation(s)
- Yaxin Lv
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuwei Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjun Zang
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
45
|
Dumele O, Grabicki N. Confining the Inner Space of Strained Carbon Nanorings. Synlett 2021. [DOI: 10.1055/s-0040-1719853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractStrained aromatic macrocycles based on cycloparaphenylenes (CPPs) are the shortest repeating units of armchair single-walled carbon nanotubes. Since the development of several new synthetic methodologies for accessing these structures, their properties have been extensively studied. Besides the fundamental interest in these novel molecular scaffolds, their application in the field of materials science is an ongoing topic of research. Most of the reported CPP-type macrocycles display strong binding toward fullerenes, due to the perfect match between the convex and concave π-surfaces of fullerenes and CPPs, respectively. Highly functionalized CPP derivatives capable of supramolecular binding with other molecules are rarely reported. The synthesis of highly functionalized [n]cyclo-2,7-pyrenylenes leads to CPP-type macrocycles with a defined cavity capable of binding non-fullerene guests with high association constants.
Collapse
|
46
|
Ghosh A, Hegde RV, Rode HB, Ambre R, Mane MV, Patil SA, Sridhar B, Dateer RB. Catalyst- and Additive-Free Approach to Constructing Benzo-oxazine, Benzo-oxazepine, and Benzo-oxazocine: O Atom Transfer and C═O, C-N, and C-O Bond Formation at Room Temperature. Org Lett 2021; 23:8189-8193. [PMID: 34643397 DOI: 10.1021/acs.orglett.1c02895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An exclusive synthesis of benzo-oxazine, benzo-oxazepine, and benzo-oxazocine from aryl propanal and 2-(hydroxyamino)phenyl alcohol under metal-free conditions is described. O atom transfer and formation of new C═O, C-N, and C-O bonds occur at room temperature to form six-, seven-, and eight-membered heterocycles under one-pot reaction conditions without using an external oxidant and base. The photophysical properties are studied using ultraviolet-visible absorption and photoluminescence. The mechanistic elucidation is well supported by control experiment and literature precedents.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Rajeev V Hegde
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Ram Ambre
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan, Republic of China
| | - Manoj V Mane
- KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography Analytical Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| |
Collapse
|
47
|
Hasegawa M, Nojima Y, Mazaki Y. Circularly Polarized Luminescence in Chiral π‐Conjugated Macrocycles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masashi Hasegawa
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yuki Nojima
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yasuhiro Mazaki
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| |
Collapse
|
48
|
Kakarlamudi AC, Vennapusa SR. Intersystem crossing pathways in [5]-, [7]-, and [9]cycloparaphenylenes. J Chem Phys 2021; 155:044301. [PMID: 34340401 DOI: 10.1063/5.0056605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We analyze the energetics and internal conversion dynamics of singlet and triplet manifolds to identify the possible intersystem crossing pathways in odd-numbered [n]cycloparaphenylenes ([n]CPPs, n = 5, 7, and 9). Quantum wavepacket propagation calculations within the linear vibronic coupling framework suggest that both [5]- and [7]CPPs rapidly relax to S2 upon populating "bright" higher singlet excited states. The S2-S1 energy decreases with the increase in CPP size, and hence, [9]CPP exhibits a faster S2 → S1 internal conversion decay. Higher triplet states act as receiver states for the intersystem crossing happening either via S1 or S2. The wavepacket evolving on the receiver triplet state would decay to lower states via multiple conical intersections and reach T1. The estimated size-dependent fluorescence and emission energies are in good accord with the experiment.
Collapse
Affiliation(s)
- Akhil Chakravarthy Kakarlamudi
- School of Chemistry, Indian Institute of Science Education and Research, Maruthamala PO, Vithura, Thiruvanathapuram 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research, Maruthamala PO, Vithura, Thiruvanathapuram 695551, India
| |
Collapse
|
49
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021; 60:15743-15766. [PMID: 32902109 PMCID: PMC9542246 DOI: 10.1002/anie.202007024] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Indexed: 12/20/2022]
Abstract
In the last 13 years several synthetic strategies were developed that provide access to [n]cycloparaphenylenes ([n]CPPs) and related conjugated nanohoops. A number of potential applications emerged, including optoelectronic devices, and their use as templates for carbon nanomaterials and in supramolecular chemistry. To tune the structural or optoelectronic properties of carbon nanohoops beyond the size-dependent effect known for [n]CPPs, a variety of aromatic rings other than benzene were introduced. In this Review, we provide an overview of the syntheses, properties, and applications of conjugated nanohoops beyond [n]CPPs with intrinsic donor/acceptor structure or such that contain acceptor, donor, heteroaromatic or polycyclic aromatic units within the hoop as well as conjugated nanobelts.
Collapse
Affiliation(s)
- Mathias Hermann
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Daniel Wassy
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Birgit Esser
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
- Freiburg Materials Research CenterUniversity of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
50
|
Grabicki N, Nguyen KTD, Weidner S, Dumele O. Supramolekulare Bindungstaschen in [
n
]Cyclo‐2,7‐pyrenylenen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Niklas Grabicki
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Khoa T. D. Nguyen
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Steffen Weidner
- Bundesanstalt für Materialprüfung Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Oliver Dumele
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|