1
|
Geaneotes PJ, Janosko CP, Afeke C, Deiters A, Floreancig PE. Potent and Selective Oxidatively Labile Ether-Based Prodrugs through Late-Stage Boronate Incorporation. Angew Chem Int Ed Engl 2024; 63:e202409229. [PMID: 38986017 DOI: 10.1002/anie.202409229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
This manuscript describes a new strategy for prodrug synthesis in which a relatively inert ether group is introduced at an early stage in a synthetic sequence and functionalized in the final step to introduce a prodrug-activating group through a chemoselective process. Boryl allyloxy (BAO) ether groups are synthesized through several metal-mediated processes to form entities that are readily cleaved under oxidative conditions commonly found in cancer cells. The high cleavage propensity of the BAO group allows for ether cleavage, making these compounds substantially more hydrolytically stable in comparison to acyl-linked prodrugs while retaining the ability to release alcohols. We report the preparation of prodrug analogues of the natural products camptothecin and pederin from acetal precursors that serve as protecting groups in their synthetic sequences. The BAO acetal groups cleave in the presence of hydrogen peroxide to release the cytotoxic agents. The pederin-based prodrug shows dramatically greater cytotoxicity than negative controls and outstanding selectivity and potency toward cancer cell lines in comparison to non-cancerous cell lines. This late-stage functionalization approach to prodrug synthesis should be applicable to numerous systems that can be accessed through chemoselective processes.
Collapse
Affiliation(s)
- Paul J Geaneotes
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Chasity P Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Cephas Afeke
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
2
|
Saady A, Malcolm GK, Fitzpatrick MP, Pairault N, Tizzard GJ, Mohammed S, Tavassoli A, Goldup SM. A Platform Approach to Cleavable Macrocycles for the Controlled Disassembly of Mechanically Caged Molecules. Angew Chem Int Ed Engl 2024; 63:e202400344. [PMID: 38276911 DOI: 10.1002/anie.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inspired by interlocked oligonucleotides, peptides and knotted proteins, synthetic systems where a macrocycle cages a bioactive species that is "switched on" by breaking the mechanical bond have been reported. However, to date, each example uses a bespoke chemical design. Here we present a platform approach to mechanically caged structures wherein a single macrocycle precursor is diversified at a late stage to include a range of trigger units that control ring opening in response to enzymatic, chemical, or photochemical stimuli. We also demonstrate that our approach is applicable to other classes of macrocycles suitable for rotaxane and catenane formation.
Collapse
Affiliation(s)
- Abed Saady
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia K Malcolm
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Fitzpatrick
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Noel Pairault
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Graham J Tizzard
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Soran Mohammed
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Stephen M Goldup
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Klootwyk B, Ryan AE, Lopez A, McCloskey MJR, Janosko CP, Deiters A, Floreancig PE. Peroxide-Mediated Release of Organophosphates from Boron-Containing Phosphotriesters: A New Class of Organophosphate Prodrugs. Org Lett 2023; 25:5530-5535. [PMID: 37463277 PMCID: PMC10391626 DOI: 10.1021/acs.orglett.3c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Phosphate mono- and diesters can be liberated efficiently from boryl allyloxy (BAO) and related phosphotriesters by H2O2. This protocol was applied to the release of a phosphorylated serine derivative and the nucleotide analogue AZT monophosphate. Nucleotide release in the presence of ATP and a kinase provides a diphosphate, demonstrating that this method can be applied to biological processes.
Collapse
Affiliation(s)
- Brittany
M. Klootwyk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Amy E. Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Arbil Lopez
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mitchell J. R. McCloskey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul E. Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Gayke M, Hirapara N, Narode H, Bhosle SD, Bhosale RS, Yadav JS. Zinc Chloride-Catalyzed Synthesis of Carbamates: An Application for the Synthesis of the Anti-Alzheimer's Drug Rivastigmine. ACS OMEGA 2022; 7:36017-36027. [PMID: 36249350 PMCID: PMC9557893 DOI: 10.1021/acsomega.2c05350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report a synthetic protocol for the synthesis of carbamates by employing zinc chloride as a catalyst from carbamoyl chlorides and aromatic/aliphatic alcohols. The developed protocol successfully utilizes the gram-scale synthesis of the FDA-approved rivastigmine drug and its derivative. The utility of zinc chloride over other catalysts such as zinc dust and zinc acetate exhibits a 49-87% yield of carbamates.
Collapse
|
5
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
6
|
Darrah K, Wesalo J, Lukasak B, Tsang M, Chen JK, Deiters A. Small Molecule Control of Morpholino Antisense Oligonucleotide Function through Staudinger Reduction. J Am Chem Soc 2021; 143:18665-18671. [PMID: 34705461 DOI: 10.1021/jacs.1c08723] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conditionally activated, caged morpholino antisense agents (cMOs) are tools that enable the temporal and spatial investigation of gene expression, regulation, and function during embryonic development. Cyclic MOs are conformationally gated oligonucleotide analogs that do not block gene expression until they are linearized through the application of an external trigger, such as light or enzyme activity. Here, we describe the first examples of small molecule-responsive cMOs, which undergo rapid and efficient decaging via a Staudinger reduction. This is enabled by a highly flexible linker design that offers opportunities for the installation of chemically activated, self-immolative motifs. We synthesized cyclic cMOs against two distinct, developmentally relevant genes and demonstrated phosphine-triggered knockdown of gene expression in zebrafish embryos. This represents the first report of a small molecule-triggered antisense agent for gene knockdown, adding another bioorthogonal entry to the growing arsenal of gene knockdown tools.
Collapse
Affiliation(s)
- Kristie Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Bradley Lukasak
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Ferhati X, Salas-Cubero M, Garrido P, García-Sanmartín J, Guerreiro A, Avenoza A, Busto JH, Peregrina JM, Martínez A, Jiménez-Moreno E, Bernardes GJL, Corzana F. Bioorthogonal Self-Immolative Linker Based on Grob Fragmentation. Org Lett 2021; 23:8580-8584. [PMID: 34694118 PMCID: PMC8576835 DOI: 10.1021/acs.orglett.1c03299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
A self-immolative
bioorthogonal conditionally cleavable linker
based on Grob fragmentation is described. It is derived from 1,3-aminocyclohexanols
and allows the release of sulfonate-containing compounds in aqueous
media. Modulation of the amine pKa promotes
fragmentation even at slightly acidic pH, a common feature of several
tumor environments. The Grob fragmentation can also occur under physiological
conditions in living cells, highlighting the potential bioorthogonal
applicability of this reaction.
Collapse
Affiliation(s)
- Xhenti Ferhati
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Marina Salas-Cubero
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Pablo Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Josune García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina de Universidad de Lisboa, 1649-028 Lisboa, Portugal
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Ester Jiménez-Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina de Universidad de Lisboa, 1649-028 Lisboa, Portugal.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
8
|
Hu X, Zeng T, Husic CC, Robb MJ. Mechanically Triggered Release of Functionally Diverse Molecular Payloads from Masked 2-Furylcarbinol Derivatives. ACS CENTRAL SCIENCE 2021; 7:1216-1224. [PMID: 34345671 PMCID: PMC8323246 DOI: 10.1021/acscentsci.1c00460] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 05/27/2023]
Abstract
Polymers that release functional small molecules in response to mechanical force are appealing targets for drug delivery, sensing, catalysis, and many other applications. Mechanically sensitive molecules called mechanophores are uniquely suited to enable molecular release with excellent selectivity and control, but mechanophore designs capable of releasing cargo with diverse chemical functionality are limited. Here, we describe a general and highly modular mechanophore platform based on masked 2-furylcarbinol derivatives that spontaneously decompose under mild conditions upon liberation via a mechanically triggered reaction, resulting in the release of a covalently installed molecular payload. We identify key structure-property relationships for the reactivity of 2-furylcarbinol derivatives that enable the mechanically triggered release of functionally diverse molecular cargo with release kinetics being tunable over several orders of magnitude. In particular, the incorporation of an electron-donating phenoxy group on the furan ring in combination with an α-methyl substituent dramatically lowers the activation barrier for fragmentation, providing a highly active substrate for molecular release. Moreover, we find that phenoxy substitution enhances the thermal stability of the mechanophore without adversely affecting its mechanochemical reactivity. The generality and efficacy of this molecular design platform are demonstrated using ultrasound-induced mechanical force to trigger the efficient release of a broad scope of cargo molecules, including those bearing alcohol, phenol, alkylamine, arylamine, carboxylic acid, and sulfonic acid functional groups.
Collapse
Affiliation(s)
- Xiaoran Hu
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tian Zeng
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Corey C. Husic
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J. Robb
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Sinast M, Claasen B, Stöckl Y, Greulich A, Zens A, Baro A, Laschat S. Synthesis of Highly Functionalized Hydrindanes via Sequential Organocatalytic Michael/Mukaiyama Aldol Addition and Telescoped Hydrozirconation/Cross-Coupling as Key Steps: En Route to the AB System of Clifednamides. J Org Chem 2021; 86:7537-7551. [PMID: 34014095 DOI: 10.1021/acs.joc.1c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The AB ring systems of the clifednamide family, polycyclic tetramate macrolactames (PoTeMs), were prepared by a new, convergent approach employing an intramolecular Diels-Alder (IMDA) reaction. Key steps comprise an organocatalytic Michael addition (>90% enantiomeric excess (ee)), a Mukaiyama aldol reaction for the convergent installation of a diene moiety, and a telescoped hydrozirconation/cross-coupling grafting an enone. The following IMDA furnished a highly functionalized hydrindane (diastereomeric ratio (dr) = 91:1) with the same configuration as the clifednamide scaffold. Advantages of this route are only one required protecting group, 13% overall yield over 9 steps (reduced from previously 17 steps/1.3% overall), and the potential access to the key intermediates in the clifednamide biosynthesis.
Collapse
Affiliation(s)
- Moritz Sinast
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yannick Stöckl
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Greulich
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Angelika Baro
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Boronic acid/boronate prodrugs for cancer treatment: current status and perspectives. Future Med Chem 2021; 13:859-861. [PMID: 33845596 DOI: 10.4155/fmc-2021-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Maslah H, Skarbek C, Pethe S, Labruère R. Anticancer boron-containing prodrugs responsive to oxidative stress from the tumor microenvironment. Eur J Med Chem 2020; 207:112670. [DOI: 10.1016/j.ejmech.2020.112670] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
13
|
Acharya V, Mal S, Kilaru JP, Montgomery MG, Deshpande SH, Sonawane RP, Manjunath BN, Pal S. Synthesis of Carbamates from Alkyl Bromides and Secondary Amines Using Silver Carbonate. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vanitha Acharya
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
- Department of Chemistry; Mangalore University, Mangalagangothri; 576119 Karnataka India
| | - Sanjib Mal
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Jagadeesh P. Kilaru
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Mark G. Montgomery
- Jealott's Hill International Research Centre; Syngenta; 42 6EY Bracknell Berkshire United Kingdom
| | | | - Ravindra P. Sonawane
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Bhanu N. Manjunath
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Sitaram Pal
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| |
Collapse
|
14
|
Wesalo JS, Luo J, Morihiro K, Liu J, Deiters A. Phosphine-Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. Chembiochem 2020; 21:141-148. [PMID: 31664790 PMCID: PMC6980333 DOI: 10.1002/cbic.201900464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/03/2019] [Indexed: 11/06/2022]
Abstract
The Staudinger reduction and its variants have exceptional compatibility with live cells but can be limited by slow kinetics. Herein we report new small-molecule triggers that turn on proteins through a Staudinger reduction/self-immolation cascade with substantially improved kinetics and yields. We achieved this through site-specific incorporation of a new set of azidobenzyloxycarbonyl lysine derivatives in mammalian cells. This approach allowed us to activate proteins by adding a nontoxic, bioorthogonal phosphine trigger. We applied this methodology to control a post-translational modification (SUMOylation) in live cells, using native modification machinery. This work significantly improves the rate, yield, and tunability of the Staudinger reduction-based activation, paving the way for its application in other proteins and organisms.
Collapse
Affiliation(s)
- Joshua S. Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Ji Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Kunihiko Morihiro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| |
Collapse
|
15
|
Fairhall JM, Murayasu M, Dadhwal S, Hook S, Gamble AB. Tuning activation and self-immolative properties of the bioorthogonal alkene–azide click-and-release strategy. Org Biomol Chem 2020; 18:4754-4762. [DOI: 10.1039/d0ob00936a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Combinations of aryl azides and trans-cyclooctenes have been studied in a bioorthogonal click-and-release strategy, with two reaction pairings rapidly releasing phenol at micromolar concentrations.
Collapse
Affiliation(s)
| | | | - Sumit Dadhwal
- School of Pharmacy
- University of Otago
- Dunedin
- New Zealand
| | - Sarah Hook
- School of Pharmacy
- University of Otago
- Dunedin
- New Zealand
| | | |
Collapse
|
16
|
Wang H, Li W, Zeng K, Wu Y, Zhang Y, Xu T, Chen Y. Photocatalysis Enables Visible‐Light Uncaging of Bioactive Molecules in Live Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haoyan Wang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCentre of Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei‐Guang Li
- Centre for Brain Science and Department of Anatomy and PhysiologyShanghai Jiao Tong University School of Medicine 280 South Chongqing Road Shanghai 200025 China
| | - Kaixing Zeng
- State Key Laboratory of Bioorganic and Natural Products ChemistryCentre of Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Yan‐Jiao Wu
- Centre for Brain Science and Department of Anatomy and PhysiologyShanghai Jiao Tong University School of Medicine 280 South Chongqing Road Shanghai 200025 China
| | - Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCentre of Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian‐Le Xu
- Centre for Brain Science and Department of Anatomy and PhysiologyShanghai Jiao Tong University School of Medicine 280 South Chongqing Road Shanghai 200025 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products ChemistryCentre of Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
17
|
Wang H, Li WG, Zeng K, Wu YJ, Zhang Y, Xu TL, Chen Y. Photocatalysis Enables Visible-Light Uncaging of Bioactive Molecules in Live Cells. Angew Chem Int Ed Engl 2018; 58:561-565. [PMID: 30418695 DOI: 10.1002/anie.201811261] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/31/2018] [Indexed: 12/17/2022]
Abstract
The photo-manipulation of bioactive molecules provides unique advantages due to the high temporal and spatial precision of light. The first visible-light uncaging reaction by photocatalytic deboronative hydroxylation in live cells is now demonstrated. Using Fluorescein and Rhodamine derivatives as photocatalysts and ascorbates as reductants, transient hydrogen peroxides were generated from molecular oxygen to uncage phenol, alcohol, and amine functional groups on bioactive molecules in bacteria and mammalian cells, including neurons. This effective visible-light uncaging reaction enabled the light-inducible protein expression, the photo-manipulation of membrane potentials, and the subcellular-specific photo-release of small molecules.
Collapse
Affiliation(s)
- Haoyan Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei-Guang Li
- Centre for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Kaixing Zeng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Yan-Jiao Wu
- Centre for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Tian-Le Xu
- Centre for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
18
|
Peiró Cadahía J, Bondebjerg J, Hansen CA, Previtali V, Hansen AE, Andresen TL, Clausen MH. Synthesis and Evaluation of Hydrogen Peroxide Sensitive Prodrugs of Methotrexate and Aminopterin for the Treatment of Rheumatoid Arthritis. J Med Chem 2018; 61:3503-3515. [PMID: 29605999 DOI: 10.1021/acs.jmedchem.7b01775] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of novel hydrogen peroxide sensitive prodrugs of methotrexate (MTX) and aminopterin (AMT) were synthesized and evaluated for therapeutic efficacy in mice with collagen induced arthritis (CIA) as a model of chronic rheumatoid arthritis (RA). The prodrug strategy selected is based on ROS-labile 4-methylphenylboronic acid promoieties linked to the drugs via a carbamate linkage or a direct C-N bond. Activation under pathophysiological concentrations of H2O2 proved to be effective, and prodrug candidates were selected in agreement with relevant in vitro physicochemical and pharmacokinetic assays. Selected candidates showed moderate to good solubility, high chemical and enzymatic stability, and therapeutic efficacy comparable to the parent drugs in the CIA model. Importantly, the prodrugs displayed the expected safer toxicity profile and increased therapeutic window compared to MTX and AMT while maintaining a comparable therapeutic efficacy, which is highly encouraging for future use in RA patients.
Collapse
Affiliation(s)
- Jorge Peiró Cadahía
- Center for Nanomedicine & Theranostics, Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , DK-2800 Kongens Lyngby , Denmark
| | - Jon Bondebjerg
- MC2 Therapeutics , Agern Alle 24-26 , 2970 Hørsholm , Denmark
| | | | - Viola Previtali
- Center for Nanomedicine & Theranostics, Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , DK-2800 Kongens Lyngby , Denmark
| | - Anders E Hansen
- Center for Nanomedicine & Theranostics, Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsteds Plads, Building 345 , DK-2800 Kongens Lyngby , Denmark
| | - Thomas L Andresen
- Center for Nanomedicine & Theranostics, Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsteds Plads, Building 345 , DK-2800 Kongens Lyngby , Denmark
| | - Mads H Clausen
- Center for Nanomedicine & Theranostics, Department of Chemistry , Technical University of Denmark , Kemitorvet 207 , DK-2800 Kongens Lyngby , Denmark
| |
Collapse
|
19
|
Hanna RD, Naro Y, Deiters A, Floreancig PE. Alcohol, Aldehyde, and Ketone Liberation and Intracellular Cargo Release through Peroxide-Mediated α-Boryl Ether Fragmentation. J Am Chem Soc 2016; 138:13353-13360. [PMID: 27636404 PMCID: PMC7075644 DOI: 10.1021/jacs.6b07890] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
α-Boryl ethers, carbonates, and acetals, readily prepared from the corresponding alcohols that are accessed through ketone diboration, react rapidly with hydrogen peroxide to release alcohols, aldehydes, and ketones through the collapse of hemiacetal intermediates. Experiments with α-boryl acetals containing a latent fluorophore clearly demonstrate that cargo can be released inside cells in the presence of exogenous or endogenous hydrogen peroxide. These experiments show that this protocol can be used for drug activation in an oxidative environment without generating toxic byproducts.
Collapse
Affiliation(s)
- Ramsey D. Hanna
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul E. Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Brooks AD, Mohapatra H, Phillips ST. Design, Synthesis, and Characterization of Small-Molecule Reagents That Cooperatively Provide Dual Readouts for Triaging and, When Necessary, Quantifying Point-of-Need Enzyme Assays. J Org Chem 2015; 80:10437-45. [PMID: 26458224 DOI: 10.1021/acs.joc.5b02013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A newly designed small molecule reagent provides both qualitative and quantitative readouts in assays that detect enzyme biomarkers. The qualitative readout enables rapid triaging of samples so that only samples that contain relevant concentrations of the target analyte must be quantified. The reagent is accessible in essentially three steps and 34% overall yield, is stable as a solid when heated to 44 °C for >1 month, and does not produce background signal when used in an assay. This paper describes the design and synthesis of the reagent, characterizes its response properties, and establishes the scope of its reactivity.
Collapse
Affiliation(s)
- Adam D Brooks
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Hemakesh Mohapatra
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Scott T Phillips
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
21
|
Brooks AD, Yeung K, Lewis GG, Phillips ST. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7186-7192. [PMID: 26604988 PMCID: PMC4654960 DOI: 10.1039/c5ay00508f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics.
Collapse
|
22
|
Alouane A, Labruère R, Le Saux T, Schmidt F, Jullien L. Self-immolative spacers: kinetic aspects, structure-property relationships, and applications. Angew Chem Int Ed Engl 2015; 54:7492-509. [PMID: 26053475 DOI: 10.1002/anie.201500088] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/08/2022]
Abstract
Self-immolative spacers are covalent assemblies tailored to correlate the cleavage of two chemical bonds after activation of a protective part in a precursor: Upon stimulation, the protective moiety is removed, which generates a cascade of disassembling reactions leading to the temporally sequential release of smaller molecules. Originally introduced to overcome limitations for drug delivery, self-immolative spacers have gained wide interest in medicinal chemistry, analytical chemistry, and material science. For most applications, the kinetics of the disassembly of the activated self-immolative spacer governs functional properties. This Review addresses kinetic aspects of self-immolation. It provides information for selecting a particular self-immolative motif for a specific demand. Moreover, it should help researchers design kinetic experiments and fully exploit the rich perspectives of self-immolative spacers.
Collapse
Affiliation(s)
- Ahmed Alouane
- Ecole Normale Supérieure-PSL Research University, Department of Chemistry, 24, rue Lhomond, 75005 Paris (France).,Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, 75005 Paris (France).,CNRS, UMR 8640 PASTEUR, 75005 Paris (France).,Institut Curie, Centre de Recherche, 26, rue d'Ulm, 75248 Paris (France).,CNRS, UMR 3666, 75248 Paris (France).,INSERM, U 1143, 75248 Paris (France)
| | - Raphaël Labruère
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Université Paris Sud, 91405 Orsay Cedex (France)
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University, Department of Chemistry, 24, rue Lhomond, 75005 Paris (France).,Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, 75005 Paris (France).,CNRS, UMR 8640 PASTEUR, 75005 Paris (France)
| | - Frédéric Schmidt
- Institut Curie, Centre de Recherche, 26, rue d'Ulm, 75248 Paris (France). .,CNRS, UMR 3666, 75248 Paris (France). .,INSERM, U 1143, 75248 Paris (France).
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University, Department of Chemistry, 24, rue Lhomond, 75005 Paris (France). .,Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, 75005 Paris (France). .,CNRS, UMR 8640 PASTEUR, 75005 Paris (France).
| |
Collapse
|
23
|
Alouane A, Labruère R, Le Saux T, Schmidt F, Jullien L. Selbstzerlegende Spacer: kinetische Aspekte, Struktur-Eigenschafts-Beziehungen und Anwendungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500088] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Romieu A. “AND” luminescent “reactive” molecular logic gates: a gateway to multi-analyte bioimaging and biosensing. Org Biomol Chem 2015; 13:1294-306. [DOI: 10.1039/c4ob02076f] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This feature article focuses on the recent development of “AND” luminescent molecular logic gates, in which the optical output is produced in response to multiple (bio)chemical inputs and through cascades of covalent bond-modifying reactions triggered by target (bio)analytes, for biosensing and bioimaging applications in complex media.
Collapse
Affiliation(s)
- Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Université de Bourgogne
- 21078 Dijon
- France
| |
Collapse
|
25
|
Pereira FS, Pereira LJ, Crédito DFA, Girão LHV, Idehara AHS, González ERP. Cycling of waste fusel alcohols from sugar cane industries using supercritical carbon dioxide. RSC Adv 2015. [DOI: 10.1039/c5ra16346c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work describes the clean synthesis of non-phosgene organic carbonates (NPOCs) with two important by-products from sugar and alcohol industries, namely, fusel alcohols and carbon dioxide, in the presence of DBU, DBN or TBD and an alkylating agent.
Collapse
Affiliation(s)
- F. S. Pereira
- Universidade Estadual Paulista – Faculdade de Ciências e Tecnologia
- Departamento de Física
- Química e Biologia – Laboratório de Química Orgânica Fina C.P. 467
- Presidente Prudente
- Brazil
| | - L. J. Pereira
- Universidade Estadual Paulista – Faculdade de Ciências e Tecnologia
- Departamento de Física
- Química e Biologia – Laboratório de Química Orgânica Fina C.P. 467
- Presidente Prudente
- Brazil
| | - D. F. A. Crédito
- Universidade Estadual Paulista – Faculdade de Ciências e Tecnologia
- Departamento de Física
- Química e Biologia – Laboratório de Química Orgânica Fina C.P. 467
- Presidente Prudente
- Brazil
| | - L. H. V. Girão
- Universidade Estadual Paulista – Faculdade de Ciências e Tecnologia
- Departamento de Física
- Química e Biologia – Laboratório de Química Orgânica Fina C.P. 467
- Presidente Prudente
- Brazil
| | - A. H. S. Idehara
- Universidade Estadual Paulista – Faculdade de Ciências e Tecnologia
- Departamento de Física
- Química e Biologia – Laboratório de Química Orgânica Fina C.P. 467
- Presidente Prudente
- Brazil
| | - E. R. P. González
- Universidade Estadual Paulista – Faculdade de Ciências e Tecnologia
- Departamento de Física
- Química e Biologia – Laboratório de Química Orgânica Fina C.P. 467
- Presidente Prudente
- Brazil
| |
Collapse
|
26
|
Lu C, Su X, Floreancig PE. Stereocontrolled cyanohydrin ether synthesis through chiral Brønsted acid-mediated vinyl ether hydrocyanation. J Org Chem 2013; 78:9366-76. [PMID: 23968162 DOI: 10.1021/jo4016002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinyl ethers can be protonated to generate oxocarbenium ions that react with Me3SiCN to form cyanohydrin alkyl ethers. Reactions that form racemic products proceed efficiently upon conversion of the vinyl ether to an α-chloro ether prior to cyanide addition in a pathway that proceeds through Brønsted acid-mediated chloride ionization. Enantiomerically enriched products can be accessed by directly protonating the vinyl ether with a chiral Brønsted acid to form a chiral ion pair. Me3SiCN acts as the nucleophile and PhOH serves as a stoichiometric proton source in a rare example of asymmetric bimolecular nucleophilic addition into an oxocarbenium ion. Computational studies have provided a model for the interaction between the catalyst and the oxocarbenium ion.
Collapse
Affiliation(s)
- Chunliang Lu
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | |
Collapse
|
27
|
Alouane A, Labruère R, Le Saux T, Aujard I, Dubruille S, Schmidt F, Jullien L. Light Activation for the Versatile and Accurate Kinetic Analysis of Disassembly of Self-Immolative Spacers. Chemistry 2013; 19:11717-24. [DOI: 10.1002/chem.201301298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Indexed: 11/08/2022]
|