1
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Kanth S, Malgar Puttaiahgowda Y, Gupta S, T S. Recent advancements and perspective of ciprofloxacin-based antimicrobial polymers. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:918-949. [PMID: 36346071 DOI: 10.1080/09205063.2022.2145872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years, microbial pathogens, which are major sources of infections, have become a widespread concern across the world. The number of deaths caused by infectious diseases is continually rising, according to World Health Organization records. Antimicrobial resistance, particularly resistance to several drugs, is steadily growing in percentages of organisms. Ciprofloxacin is a second-generation fluoroquinolone with significant antimicrobial activity and pharmacokinetic characteristics. According to studies, many bacteria are resistant to the antibiotic ciprofloxacin. In this article, we look into polymers as ciprofloxacin macromolecular carriers with a wide range of antibacterial activity. We also discuss the latter form of coupling, in which ciprofloxacin and polymers are covalently bonded. This article also discusses the use of antimicrobial polymers in combination with ciprofloxacin in a various sectors. The current review article provides an overview of publications in the last five years on polymer loaded or modified with ciprofloxacin having applications in numerous sectors.
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Swathi T
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
3
|
Reddy SS, Varyambath A, Kalla RMN, Song W, Kim I. Synthesis of 3‐Indole Substituted Sulfonyl 4
H
‐Chromenes Using Recyclable Cyclometrix Polyphosphazene‐Base Catalysts. ChemistrySelect 2021. [DOI: 10.1002/slct.202100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Anuraj Varyambath
- Department of Polymer Science and Engineering Pusan National University Busan 46241, Republic of Korea
| | - Reddi Mohan Naidu Kalla
- Department of Science and Humanities Sri Venkateswara Engineering College Tirupati Andhra Pradesh India
| | - Wenliang Song
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Il Kim
- Department of Polymer Science and Engineering Pusan National University Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Ni Z, Yu H, Wang L, Shen D, Elshaarani T, Fahad S, Khan A, Haq F, Teng L. Recent research progress on polyphosphazene-based drug delivery systems. J Mater Chem B 2021; 8:1555-1575. [PMID: 32025683 DOI: 10.1039/c9tb02517k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, synthetic polymer materials have become a research hotspot in the field of drug delivery. Compared with natural polymer materials, synthetic polymer materials have more flexible structural adjustability, and can be designed to obtain clinically required delivery vehicles. Polyphosphazenes are one of the most promising biomedical materials in the future due to their controllable degradation properties and structural flexibility. These materials can be designed by controlling the hydrophilic and hydrophobic balance, introducing functional groups or drugs to form different forms of administration, such as nanoparticles, polyphosphazene-drug conjugates, injectable hydrogels, coatings, etc. In addition, the flexible backbone of polyphosphazenes and the flexibility of substitution enable them to meet researchers' design requirements in terms of stereochemistry, nanostructures, and topologies. At present, researchers have achieved a lot of successful practices in the field of targeted delivery of anticancer drugs/proteins/genes, bone tissue engineering repair, cell imaging tracking, photothermal therapy, and immunologic preparations. This review provides a summary of the progress of the recent 10 years of polyphosphazene-based drug delivery systems in terms of of chemical structure and functions.
Collapse
Affiliation(s)
- Zhipeng Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Amin Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Lison Teng
- Biological Surgery and Cancer Center, The First Affiliated Hospital, Zhejiang University, 310003, P. R. China
| |
Collapse
|
5
|
Su X, Wang L, Xie J, Liu X, Tomás H. Cyclotriphosphazene-based Derivatives for Antibacterial Applications: An Update on Recent Advances. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201001154127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a phosphorus scaffold, hexachlorocyclotriphosphazene (HCCP) is widely used
for the synthesis of varieties of derivatives, including metal-binding complexes and several
unique organometallic compounds, which exhibit potential catalytic, flame retardant and biological
activities. Some metal-binding HCCP derivatives have shown antibacterial activities as
free ligands and metal complexes. These derivatives can also serve as building blocks for the
formation of antibacterial metal-containing polymers. This mini-review is focused on the design
and development of HCCP derivatives as potential antibacterial agents with representative
examples as well as antibacterial mechanisms from recent years.
Collapse
Affiliation(s)
- Xiqi Su
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - JingHua Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - XiaoHui Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
6
|
Tang M, Chen C, Zhu J, Allcock HR, Siedlecki CA, Xu LC. Inhibition of bacterial adhesion and biofilm formation by a textured fluorinated alkoxyphosphazene surface. Bioact Mater 2021; 6:447-459. [PMID: 32995672 PMCID: PMC7490642 DOI: 10.1016/j.bioactmat.2020.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/18/2023] Open
Abstract
The utilization of biomaterials in implanted blood-contacting medical devices often induces a persistent problem of microbial infection, which results from bacterial adhesion and biofilm formation on the surface of biomaterials. In this research, we developed new fluorinated alkoxyphosphazene materials, specifically poly[bis(octafluoropentoxy) phosphazene] (OFP) and crosslinkable OFP (X-OFP), with improved mechanical properties, and further modified the surface topography with ordered pillars to improve the antibacterial properties. Three X-OFP materials, X-OFP3.3, X-OFP8.1, X-OFP13.6, with different crosslinking densities were synthesized, and textured films with patterns of 500/500/600 nm (diameter/spacing/height) were fabricated via a two stage soft lithography molding process. Experiments with 3 bacterial strains: Staphylococcal epidermidis, Staphylococcal aureus, and Pseudomonas aeruginosa showed that bacterial adhesion coefficients were significantly lower on OFP and X-OFP smooth surfaces than on the polyurethane biomaterial, and surface texturing further reduced bacterial adhesion due to the reduction in accessible surface contact area. Furthermore the anti-bacterial adhesion effect shows a positive relationship with the crosslinking degree. Biofilm formation on the substrates was examined using a CDC biofilm reactor for 7 days and no biofilm formation was observed on textured X-OFP biomaterials. The results suggested that the combination of fluorocarbon chemistry and submicron topography modification in textured X-OFP materials may provide a practical approach to improve the biocompatibility of current biomaterials with significant reduction in risk of pathogenic infection.
Collapse
Affiliation(s)
- Meixian Tang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Jieru Zhu
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Christopher A. Siedlecki
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033, United States
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033, United States
| |
Collapse
|
7
|
Xu LC, Chen C, Zhu J, Tang M, Chen A, Allcock HR, Siedlecki CA. New cross-linkable poly[bis(octafluoropentoxy) phosphazene] biomaterials: Synthesis, surface characterization, bacterial adhesion, and plasma coagulation responses. J Biomed Mater Res B Appl Biomater 2020; 108:3250-3260. [PMID: 32558200 PMCID: PMC9427203 DOI: 10.1002/jbm.b.34662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/13/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Biomaterial-associated microbial infection and thrombosis represent major issues to the success of long-term use of implantable blood-contacting medical devices. The development of new poly[bis(octafluoropentoxy) phosphazene (OFP) biomaterials provides new routes for combatting microbial infection and thrombosis. However, the limited mechanical properties of OFP to date render them unsuitable for application in medical devices and inhibit any attempts at subsequent surface topography modification. In this study, we synthesized cross-linkable OFPs (X-OFPs) with the different degrees of cross-linking in an effort to improve the mechanical properties. The results showed that the surface chemistry and surface topography of X-OFPs do not change significantly, but the surface mechanical stiffness increased after cross-linking. Atomic force microscopic phase images showed that the polymer phase separation structures changed due to cross-linking. Experiments with three bacterial strains: Staphylococcal epidermidis, Staphylococcal aureus, and Pseudomonas aeruginosa showed that bacterial adhesion was significantly decreased on the OFP and X-OFPs for both the pre-cross-linked and cross-linked as compared to polyurethane biomaterials. Furthermore, bacterial adhesions were lower on X-OFP surfaces than on pre-cross-linked materials, suggesting that mechanical stiffness is an important parameter influencing bacterial adhesion. Blood plasma coagulation responses revealed longer coagulation times for OFP and X-OFP materials than on polyurethanes, indicating that the new cross-linked OFPs are resistant to plasma coagulation compared to currently used polyurethane biomaterials.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Jieru Zhu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Meixian Tang
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Andy Chen
- Hershey High School, Hershey, PA 17033, United States
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
8
|
Abstract
Although the best-known examples of synthetic polymers are derived from carbon-based monomers, there exists another large and growing family of macromolecules based on the chemistry of phosphorus. These are the poly(organophosphazenes): polymers with a backbone of alternating phosphorus and nitrogen atoms and with two organic side groups attached to each phosphorus. The methods of synthesis of these polymers allow access to property combinations not found in all-organic counterparts, and this provides pathways to new materials that are important in biomedical research, energy generation and storage, aerospace materials, and numerous other specialized applications.
Collapse
Affiliation(s)
- Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Ogueri KS, Allcock HR, Laurencin CT. Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid). Prog Polym Sci 2019; 98:101146. [PMID: 31551636 PMCID: PMC6758934 DOI: 10.1016/j.progpolymsci.2019.101146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
New fields such as regenerative engineering have driven the design of advanced biomaterials with a wide range of properties. Regenerative engineering is a multidisciplinary approach that integrates the fields of advanced materials science and engineering, stem cell science, physics, developmental biology, and clinical translation for the regeneration of complex tissues. The complexity and demands of this innovative approach have motivated the synthesis of new polymeric materials that can be customized to meet application-specific needs. Polyphosphazene polymers represent this fundamental change and are gaining renewed interest as biomaterials due to their outstanding synthetic flexibility, neutral bioactivity (buffering degradation products), and tunable properties across the range. Polyphosphazenes are a unique class of polymers composed of an inorganic backbone with alternating phosphorus and nitrogen atoms. Each phosphorus atom bears two substituents, with a wide variety of side groups available for property optimization. Polyphosphazenes have been investigated as potential biomaterials for regenerative engineering. Polyphosphazenes for use in regenerative applications have evolved as a class to include different generations of degradable polymers. The first generation of polyphosphazenes for tissue regeneration entailed the use of hydrolytically active side groups such as imidazole, lactate, glycolate, glucosyl, or glyceryl groups. These side groups were selected based on their ability to sensitize the polymer backbone to hydrolysis, which allowed them to break down into non-toxic small molecules that could be metabolized or excreted. The second generation of degradable polyphosphazenes developed consisted of polymers with amino acid ester side groups. When blended with poly (lactic acid-co-glycolic acid) (PLGA), the feasibility of neutralizing acidic degradation products of PLGA was demonstrated. The blends formed were mostly partially miscible. The desire to improve miscibility led to the design of the third generation of degradable polyphosphazenes by incorporating dipeptide side groups which impart significant hydrogen bonding capability to the polymer for the formation of completely miscible polyphosphazene-PLGA blends. Blend system of the dipeptide-based polyphosphazene and PLGA exhibit a unique degradation behavior that allows the formation of interconnected porous structures upon degradation. These inherent pore-forming properties have distinguished degradable polyphosphazenes as a potentially important class of biomaterials for further study. The design considerations and strategies for the different generations of degradable polyphosphazenes and future directions are discussed.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Quiñones JP, Iturmendi A, Henke H, Roschger C, Zierer A, Brüggemann O. Polyphosphazene-based nanocarriers for the release of agrochemicals and potential anticancer drugs. J Mater Chem B 2019; 7:7783-7794. [DOI: 10.1039/c9tb01985e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesised polyphosphazene-based nanocarriers allowed sustained diosgenin and brassinosteroid release over 4 days, with strong to moderate MCF-7 cytotoxicity and good agrochemical activity at medium and low concentrations.
Collapse
Affiliation(s)
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Helena Henke
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Cornelia Roschger
- Johannes Kepler University Linz
- Kepler University Hospital GmbH
- Department for Cardiac-, Vascular- and Thoracic Surgery
- 4020 Linz
- Austria
| | - Andreas Zierer
- Johannes Kepler University Linz
- Kepler University Hospital GmbH
- Department for Cardiac-, Vascular- and Thoracic Surgery
- 4020 Linz
- Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| |
Collapse
|
11
|
Mulas K, Stefanowicz Z, Oledzka E, Sobczak M. Current state of the polymeric delivery systems of fluoroquinolones – A review. J Control Release 2019; 294:195-215. [DOI: 10.1016/j.jconrel.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/29/2023]
|
12
|
Ren Y, Yang K, Shan D, Tong C, Allcock HR. Polyphosphazenes and Cyclotriphosphazenes with Propeller-like Tetraphenylethyleneoxy Side Groups: Tuning Mechanical and Optoelectronic Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | | | - Cuiyan Tong
- Institute of Chemistry, Northeast Normal University, Changchun 130024, China
| | | |
Collapse
|
13
|
Iturmendi A, Theis S, Maderegger D, Monkowius U, Teasdale I. Coumarin-Caged Polyphosphazenes with a Visible-Light Driven On-Demand Degradation. Macromol Rapid Commun 2018; 39:e1800377. [PMID: 30048024 DOI: 10.1002/marc.201800377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/28/2018] [Indexed: 01/08/2023]
Abstract
Polymers that, upon photochemical activation with visible light, undergo rapid degradation to small molecules are described. Through functionalization of a polyphosphazene backbone with pendant coumarin groups sensitive to light, polymers which are stable in the dark could be prepared. Upon irradiation, cleavage of the coumarin moieties exposes carboxylic acid moieties along the polymer backbone. The subsequent macromolecular photoacid is found to catalyze the rapid hydrolytic degradation of the polyphosphazene backbone. Water-soluble and non-water-soluble polymers are reported, which due to their sensitivity toward light in the visible region could be significant as photocleavable materials in biological applications.
Collapse
Affiliation(s)
- Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| | - Sabrina Theis
- Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| | - Dominik Maderegger
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| | - Uwe Monkowius
- Linz School of Education, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| |
Collapse
|
14
|
Ren Y, Li Z, Allcock HR. Molecular Engineering of Polyphosphazenes and SWNT Hybrids with Potential Applications as Electronic Materials. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Ren
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Physical Science and Technology, Shanghai Technical University, Shanghai 201210, P. R. China
| | - Zhongjing Li
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Fedorowicz J, Sączewski J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. MONATSHEFTE FUR CHEMIE 2018; 149:1199-1245. [PMID: 29983452 PMCID: PMC6006264 DOI: 10.1007/s00706-018-2215-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 01/27/2023]
Abstract
ABSTRACT This review is aimed to provide extensive survey of quinolones and fluoroquinolones for a variety of applications ranging from metal complexes and nanoparticle development to hybrid conjugates with therapeutic uses. The review covers the literature from the past 10 years with emphasis placed on new applications and mechanisms of pharmacological action of quinolone derivatives. The following are considered: metal complexes, nanoparticles and nanodrugs, polymers, proteins and peptides, NO donors and analogs, anionic compounds, siderophores, phosphonates, and prodrugs with enhanced lipophilicity, phototherapeutics, fluorescent compounds, triazoles, hybrid drugs, bis-quinolones, and other modifications. This review provides a comprehensive resource, summarizing a broad range of important quinolone applications with great utility as a resource concerning both chemical modifications and also novel hybrid bifunctional therapeutic agents. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
16
|
Khan RU, Wang L, Yu H, Zain-ul-Abdin, Akram M, Wu J, Haroon M, Ullah RS, Deng Z, Xia X. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Xu LC, Li Z, Tian Z, Chen C, Allcock HR, Siedlecki CA. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses. Acta Biomater 2018; 67:87-98. [PMID: 29229544 DOI: 10.1016/j.actbio.2017.11.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
Abstract
A new poly[bis(octafluoropentoxy) phosphazene] (OFP) was synthesized for the purpose of blood contacting medical devices. OFP was further either developed into crosslinkable polyphosphazene (X-OFP) or blended with polyurethane (PU) as the mixture (OFP/PU) for improvement of mechanical property of polyphosphazene polymers. All the materials were fabricated as smooth films or further textured with submicron pillars for the assay of antimicrobial and antithrombotic properties. Results showed that crosslinkable OFP (X-OFP) and blends of OFP/PU successfully improved the mechanical strength of OFP and fewer defects of pillars were found on the textured polyphosphazene surfaces. The antithrombotic experiments showed that polyphosphazene OFP materials reduced human Factor XII activation and platelet adhesion, thereby being resistant to plasma coagulation and thrombosis. The bacterial adhesion and biofilm experiments demonstrated that OFP materials inhibited staphylococcal bacterial adhesion and biofilm formation. The surface texturing further reduced the platelet adhesion and bacterial adhesion, and inhibited biofilm formation up to 23 days. The data suggested that textured OFP materials may provide a practical approach to improve the biocompatibility of current biomaterials in the application of blood contacting medical devices with significant reduction in risk of pathogenic infection and thrombosis. STATEMENT OF SIGNIFICANCE The thromboembolic events and microbial infection have been the significant barriers for the long term use of biomaterials in blood-contacting medical devices. The development of new materials with multiple functions including anti-thrombosis and antibacterial surfaces is a high research priority. This study synthesized new biostable and biocompatible polyphosphazene polymers, poly[bis(octafluoropentoxy)phosphazene] (OFP) and crosslinkable OFP, and successfully improved the mechanical strength of polyphosphazenes. Polymers were fabricated into textured films with submicron pillars on the surfaces. The antimicrobial and antithrombotic assays demonstrated that new materials combined with surface physical modification have significant reduction in risk of pathogenic infection and thrombosis, and improve the biocompatibility of current biomaterials in the application of blood-contacting medical devices. It would be interest to biomaterials and bioengineering related communities.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States.
| | - Zhongjing Li
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Zhicheng Tian
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States; Department of Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
18
|
Wang B, Liu H, Sun L, Jin Y, Ding X, Li L, Ji J, Chen H. Construction of High Drug Loading and Enzymatic Degradable Multilayer Films for Self-Defense Drug Release and Long-Term Biofilm Inhibition. Biomacromolecules 2017; 19:85-93. [PMID: 29191005 DOI: 10.1021/acs.biomac.7b01268] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou
Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou 32500, China
| | - Huihua Liu
- Wenzhou
Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou 32500, China
| | - Lin Sun
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoxu Ding
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lingli Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Ji
- MOE
Key Laboratory of Macromolecule Synthesis and Functionalization, Department
of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou
Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou 32500, China
| |
Collapse
|
19
|
Álvarez-Paino M, Muñoz-Bonilla A, Fernández-García M. Antimicrobial Polymers in the Nano-World. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E48. [PMID: 28336882 PMCID: PMC5333033 DOI: 10.3390/nano7020048] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 02/08/2023]
Abstract
Infections are one of the main concerns of our era due to antibiotic-resistant infections and the increasing costs in the health-care sector. Within this context, antimicrobial polymers present a great alternative to combat these problems since their mechanisms of action differ from those of antibiotics. Therefore, the microorganisms' resistance to these polymeric materials is avoided. Antimicrobial polymers are not only applied in the health-care sector, they are also used in many other areas. This review presents different strategies that combine nanoscience and nanotechnology in the polymer world to combat contaminations from bacteria, fungi or algae. It focuses on the most relevant areas of application of these materials, viz. health, food, agriculture, and textiles.
Collapse
Affiliation(s)
- Marta Álvarez-Paino
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/ Juan de la Cierva 3, Madrid 28006, Spain.
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/ Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
20
|
Ogueri KS, Escobar Ivirico JL, Nair LS, Allcock HR, Laurencin CT. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017; 3:15-31. [PMID: 28596987 DOI: 10.1007/s40883-016-0022-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately, be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly (lactide-co-glycolide) (PLAGA). Laurencin and co-workers has demonstrated the exploitation of the synthetic flexibility of Polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues. LAY SUMMARY Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of Polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering and as well as other biomedical applications.
Collapse
Affiliation(s)
- Kenneth S Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jorge L Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Lakshmi S Nair
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cato T Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
21
|
Ullah RS, Wang L, Yu H, Abbasi NM, Akram M, -ul-Abdin Z, Saleem M, Haroon M, Khan RU. Synthesis of polyphosphazenes with different side groups and various tactics for drug delivery. RSC Adv 2017. [DOI: 10.1039/c6ra27103k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyphosphazenes (PPZs) are hybrid polymers comprising a main chain containing nitrogen and phosphorous linked through interchanging single and double bonds, and side chains.
Collapse
Affiliation(s)
- Raja Summe Ullah
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Li Wang
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Nasir M. Abbasi
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Akram
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zain -ul-Abdin
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Saleem
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Rizwan Ullah Khan
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
22
|
The Preparation of Phosphazene Crosslinked Cyclen Microspheres as Host for Cu2+ Ions and Their Utilization as a Support Material for the Preparation of a Copper Nanocatalyst. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0453-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Phosphine functionalized polyphosphazenes: soluble and re-usable polymeric reagents for highly efficient halogenations under Appel conditions. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1791-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici A, Şimşek H, Açık L, Türk M, Güzel R, Kılıç Z, Hökelek T. Phosphorus–nitrogen compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, and antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes. NEW J CHEM 2016. [DOI: 10.1039/c6nj00204h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The syntheses, in vitro antituberculosis and cytotoxic activities of cyclotetraphosphazenes were investigated.
Collapse
Affiliation(s)
- Aytuğ Okumuş
- Department of Chemistry
- Ankara University
- 06100 Ankara
- Turkey
| | - Gamze Elmas
- Department of Chemistry
- Ankara University
- 06100 Ankara
- Turkey
| | | | - Betül Aydın
- Department of Biology
- Gazi University
- 06500 Ankara
- Turkey
| | - Arzu Binici
- Public Health Institution of Turkey
- 06100 Ankara
- Turkey
| | - Hülya Şimşek
- Public Health Institution of Turkey
- 06100 Ankara
- Turkey
| | - Leyla Açık
- Department of Biology
- Gazi University
- 06500 Ankara
- Turkey
| | - Mustafa Türk
- Department of Bioengineering
- Kırıkkale University
- 71450 Kırıkkale
- Turkey
| | - Remziye Güzel
- Department of Chemistry
- Dicle University
- Diyarbakır
- Turkey
| | - Zeynel Kılıç
- Department of Chemistry
- Ankara University
- 06100 Ankara
- Turkey
| | - Tuncer Hökelek
- Department of Physics
- Hacettepe University
- 06800 Ankara
- Turkey
| |
Collapse
|
25
|
Zhou L, Zhang G, Li J, Zhao L, Zhang X, Wei X. Synthesis and characterization of polyphenylaminophosphazene and fluorinated polyarylaminophosphazene. J Appl Polym Sci 2015. [DOI: 10.1002/app.42542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lisheng Zhou
- Key Laboratory of Applied Physics and Chemistry in Space (Ministry of Education); Department of Applied Chemistry; College of Science, Northwestern Polytechnical University; Xi'an 710129 China
| | - Guangcheng Zhang
- Key Laboratory of Applied Physics and Chemistry in Space (Ministry of Education); Department of Applied Chemistry; College of Science, Northwestern Polytechnical University; Xi'an 710129 China
| | - Jianwei Li
- Key Laboratory of Applied Physics and Chemistry in Space (Ministry of Education); Department of Applied Chemistry; College of Science, Northwestern Polytechnical University; Xi'an 710129 China
| | - Long Zhao
- Key Laboratory of Applied Physics and Chemistry in Space (Ministry of Education); Department of Applied Chemistry; College of Science, Northwestern Polytechnical University; Xi'an 710129 China
| | - Xinyu Zhang
- Key Laboratory of Applied Physics and Chemistry in Space (Ministry of Education); Department of Applied Chemistry; College of Science, Northwestern Polytechnical University; Xi'an 710129 China
| | - Xuan Wei
- Key Laboratory of Applied Physics and Chemistry in Space (Ministry of Education); Department of Applied Chemistry; College of Science, Northwestern Polytechnical University; Xi'an 710129 China
| |
Collapse
|
26
|
Huang Z, Chen S, Lu X, Lu Q. Water-triggered self-assembly polycondensation for the one-pot synthesis of cyclomatrix polyphosphazene nanoparticles from amino acid ester. Chem Commun (Camb) 2015; 51:8373-6. [DOI: 10.1039/c5cc00735f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Water-triggered self-assembly polycondensation was proposed for preparation of cyclomatrix polyphosphazene nanoparticles from amino acid ester, and a critical solubility parameter was found to determine whether the nanoparticles were formed.
Collapse
Affiliation(s)
- Zhangjun Huang
- School of Chemistry and Chemical Engineering
- the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| | - Shuangshuang Chen
- School of Chemistry and Chemical Engineering
- the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering
- the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering
- the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
27
|
Akram M, Wang L, Yu H, Amer WA, Khalid H, Abbasi NM, Chen Y, Zain-ul-Abdin, Saleem M, Tong R. Polyphophazenes as anti-cancer drug carriers: From synthesis to application. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Rothemund S, Aigner TB, Iturmendi A, Rigau M, Husár B, Hildner F, Oberbauer E, Prambauer M, Olawale G, Forstner R, Liska R, Schröder KR, Brüggemann O, Teasdale I. Degradable Glycine-Based Photo-Polymerizable Polyphosphazenes for Use as Scaffolds for Tissue Regeneration. Macromol Biosci 2014; 15:351-63. [DOI: 10.1002/mabi.201400390] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Sandra Rothemund
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| | - Tamara B. Aigner
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Maria Rigau
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Branislav Husár
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163 A-1060 Vienna Austria
| | - Florian Hildner
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Eleni Oberbauer
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Martina Prambauer
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Gbenga Olawale
- BioMed-zet Life Science GmbH; Industriezeile 36 A-4020 Linz Austria
| | - Reinhard Forstner
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163 A-1060 Vienna Austria
| | | | - Oliver Brüggemann
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| |
Collapse
|
29
|
Responsive and “smart” antibacterial surfaces: Common approaches and new developments (Review). Biointerphases 2014; 9:029005. [DOI: 10.1116/1.4866697] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Tian Z, Chen C, Allcock HR. Synthesis and Assembly of Novel Poly(organophosphazene) Structures Based on Noncovalent “Host–Guest” Inclusion Complexation. Macromolecules 2014. [DOI: 10.1021/ma500020p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhicheng Tian
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
31
|
Wilfert S, Iturmendi A, Schoefberger W, Kryeziu K, Heffeter P, Berger W, Brüggemann O, Teasdale I. Water-Soluble, Biocompatible Polyphosphazenes with Controllable and pH-Promoted Degradation Behavior. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2014; 52:287-294. [PMID: 24729657 PMCID: PMC3980369 DOI: 10.1002/pola.27002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/30/2013] [Indexed: 11/15/2022]
Abstract
The synthesis of a series of novel, water-soluble poly(organophosphazenes) prepared via living cationic polymerization is presented. The degradation profiles of the polyphosphazenes prepared are analyzed by GPC, 31P NMR spectroscopy, and UV-Vis spectroscopy in aqueous media and show tunable degradation rates ranging from days to months, adjusted by subtle changes to the chemical structure of the polyphosphazene. Furthermore, it is observed that these polymers demonstrate a pH-promoted hydrolytic degradation behavior, with a remarkably faster rate of degradation at lower pH values. These degradable, water soluble polymers with controlled molecular weights and structures could be of significant interest for use in aqueous biomedical applications, such as polymer therapeutics, in which biological clearance is a requirement and in this context cell viability tests are described which show the non-toxic nature of the polymers as well as their degradation intermediates and products.
Collapse
Affiliation(s)
- Sandra Wilfert
- Institute of Polymer Chemistry, Johannes Kepler University LinzWelser Street 42, 4060, Leonding, Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes Kepler University LinzWelser Street 42, 4060, Leonding, Austria
| | - Wolfgang Schoefberger
- Institute of Organic Chemistry, Johannes Kepler University LinzAltenberger Street 69, 4040, Linz, Austria
- Faculty of Science, University of South BohemiaBranišovská 31, 370 05, České Budějovice, Czech Republic
| | - Kushtrim Kryeziu
- Institute of Cancer Research and Comprehensive Cancer Center of the Medical University of Vienna, Medical University of ViennaBorschkegasse 8a, 1090, Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center of the Medical University of Vienna, Medical University of ViennaBorschkegasse 8a, 1090, Vienna, Austria
- Research and Platform “Translational Cancer Therapy Research,”Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center of the Medical University of Vienna, Medical University of ViennaBorschkegasse 8a, 1090, Vienna, Austria
- Research and Platform “Translational Cancer Therapy Research,”Vienna, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University LinzWelser Street 42, 4060, Leonding, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University LinzWelser Street 42, 4060, Leonding, Austria
| |
Collapse
|
32
|
Yang H, Gao PF, Wu WB, Yang XX, Zeng QL, Li C, Huang CZ. Antibacterials loaded electrospun composite nanofibers: release profile and sustained antibacterial efficacy. Polym Chem 2014. [DOI: 10.1039/c3py01335a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Affiliation(s)
- Harry R. Allcock
- Department of Chemistry; The Pennsylvania State University; University Park PA 16802 USA
| |
Collapse
|