1
|
Sah SK, Ajay SA, Donadkar AD, Kamath AJ, Devan AR, Soman R, Kumar AR, Unni AR, Sithara MS, Sudheesh MS, Nath LR. Ternary complex of Kaempferol-Hydroxypropyl-β-Cyclodextrin-Liposomes against hepatocellular carcinoma: Preparation, validation, pharmacokinetics and efficacy studies. Int J Pharm 2025; 671:125261. [PMID: 39855283 DOI: 10.1016/j.ijpharm.2025.125261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Kaempferol (KP), a GRAS-certified phytomolecule enrolled in Phase I trials, is reported with various biological effects including anticancer activity. However, its poor pharmacokinetic profile limits the translational utility. Studies indicate that liposomes incorporating cyclodextrin inclusion complexes improves the bioavailability of hydrophobic drugs. The present study focuses on preparing and validating a novel ternary complex of Kaempferol-Hydroxypropyl-β-Cyclodextrin-Liposomes (KP-HP-β-CD-Liposomes) that shows a particle size of 131.70 ± 0.10 nm, a zeta potential of -26.59 ± 0.42 mV, and a drug entrapment efficiency of 90.14 ± 0.25 %. The KP-HP-β-CD-Liposomes demonstrate stability under refrigerated conditions (2-8 °C) over a three-month period. Also, it doesn't exhibit any cytotoxicity in normal fibroblast cells even up to 48 mg/ml while it produces a dose dependent cytotoxicity in HepG2 cells. It shows a better cellular uptake in HepG2 cells in comparison with pure Kaempferol as evidenced by HPLC analysis. KP-HP-β-CD-Liposomes induce apoptosis in HepG2 cells as assessed by Acridine orange ethidium bromide staining. Pharmacokinetic studies on Sprague Dawley rats indicate a significant improvement in Cmax and AUC(0-∞) of Kaempferol. The tissue distribution studies show that KP-HP-β-CD-Liposomes are highly accumulated in liver. The KP-HP-β- CD-Liposomes inhibits the development of hepatic tumors in Syngeneic N1S1 animal models.
Collapse
Affiliation(s)
- Sunil Kumar Sah
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - S A Ajay
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Asawari Dilip Donadkar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Rahul Soman
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Ashok R Unni
- Central Lab Animal Facility, Department of Veterinary Medicine, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - M S Sithara
- Central Lab Animal Facility, Department of Veterinary Medicine, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India.
| |
Collapse
|
2
|
Li X, Xie E, Sun S, Shen J, Ding Y, Wang J, Peng X, Zheng R, Farag MA, Xiao J. Flavonoids for gastrointestinal tract local and associated systemic effects: A review of clinical trials and future perspectives. J Adv Res 2025:S2090-1232(25)00033-5. [PMID: 39798849 DOI: 10.1016/j.jare.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Flavonoids are naturally occurring dietary phytochemicals with significant antioxidant effects aside from several health benefits. People often consume them in combination with other food components. Compiling data establishes a link between bioactive flavonoids and prevention of several diseases in animal models, including cardiovascular diseases, diabetes, gut dysbiosis, and metabolic dysfunction-associated steatotic liver disease (MASLD). However, numerous clinical studies have demonstrated the ineffectiveness of flavonoids contradicting rodent models, thereby challenging the validity of using flavonoids as dietary supplements. AIM OF REVIEW This review provides a clinical perspective to emphasize the effective roles of dietary flavonoids as well as to summarize their specific mechanisms in animals briefly. KEY SCIENTIFIC CONCEPTS OF REVIEW First, this review offers an in-depth elucidation of the metabolic processes of flavonoids within human, encompassing the small, large intestine, and the liver. Furthermore, the review provides a comprehensive overview of the various functions of flavonoids in the gastrointestinal tract, including hindering the breakdown and assimilation of macronutrients, such as polysaccharides and lipids, regulating gut hormone secretion as well as inhibition of mineral iron absorption. In the large intestine, an unabsorbed major portion of flavonoids interact with the gut flora leading to their biotransformation. Once absorbed and circulated in the bloodstream, bioactive flavonoids or their metabolites exert numerous beneficial systemic effects. Lastly, we examine the protective effects of flavonoids in several metabolic disorders, including endothelial dysfunction, MASLD, cardiovascular disease, obesity, hyperlipidemia, and insulin resistance. In conclusion, this review outlines the safety and future prospects of flavonoids in the field of health, especially in the prevention of metabolic syndrome (MetS).
Collapse
Affiliation(s)
- Xiaopeng Li
- Center of Nutrition and Food Sciences Hunan Agricultural Products Processing Institute Hunan Academy of Agricultural Sciences Changsha China.
| | - Enjun Xie
- School of Public Health Zhejiang University School of Medicine Hangzhou China
| | - Shumin Sun
- School of Public Health Zhejiang University School of Medicine Hangzhou China
| | - Jie Shen
- School of Public Health Zhejiang University School of Medicine Hangzhou China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases Metabolic Syndrome Research Center Department of Metabolism and Endocrinology The Second Xiangya Hospital of Central South University Changsha China
| | - Jiaqi Wang
- Ausnutria Dairy Co., Ltd., Changsha 410200 China
| | - Xiaoyu Peng
- Ausnutria Dairy Co., Ltd., Changsha 410200 China
| | - Ruting Zheng
- Ausnutria Dairy Co., Ltd., Changsha 410200 China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562 Egypt
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI 36310 Vigo, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21 39011 Santander, Spain.
| |
Collapse
|
3
|
Li S, Liu Y. Intestinal absorption mechanism and nutritional synergy promotion strategy of dietary flavonoids: transintestinal epithelial pathway mediated by intestinal transport proteins. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39086266 DOI: 10.1080/10408398.2024.2387320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Dietary flavonoids exhibit a variety of physiological functions in regulating glucose and lipid metabolism, improving cardiovascular function, and enhancing stress resistance. However, poor intestinal absorption limits their health benefits. Previous studies on improving the absorption efficiency of flavonoids have focused on targeted release, enhanced gastrointestinal stability and prolonged retention time in digestive tract. But less attention has been paid to promoting the uptake and transport of flavonoids by intestinal epithelial cells through modulation of transporter protein-mediated pathways. Interestingly, some dietary nutrients have been found to modulate the expression or function of transporter proteins, thereby synergistically or antagonistically affecting flavonoid absorption. Therefore, this paper proposed an innovative regulatory strategy known as the "intestinal transport protein-mediated pathway" to promote intestinal absorption of dietary flavonoids. The flavonoid absorption mechanism in the intestinal epithelium, mediated by intestinal transport proteins, was summarized. The functional differences between the uptake transporter and efflux transporters during flavonoid trans-intestinal cellular transport were discussed. Finally, from the perspective of nutritional synergy promotion of absorption, the feasibility of promoting flavonoid intestinal absorption by regulating the expression/function of transport proteins through dietary nutrients was emphasized. This review provides a new perspective and developing precise dietary nutrient combinations for efficient dietary flavonoid absorption.
Collapse
Affiliation(s)
- Shuqiong Li
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
4
|
Guan H, Wang Q, Mei Y, Ran J, Zeng F, Cai H, Wang D, Yang S, Zhang M, Shi Y, Liao S, Li P. A multistep approach for exploring quality markers of Shengjiang Xiexin decoction by integrating plasma pharmacochemistry-pharmacokinetics-pharmacology. J Pharm Biomed Anal 2024; 241:115999. [PMID: 38306867 DOI: 10.1016/j.jpba.2024.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Shengjiang Xiexin decoction (SXD), a well-known traditional Chinese medicine (TCM), was used to alleviate delayed-onset diarrhea induced by the chemotherapeutic agent irinotecan (CPT-11). Our previous study showed that SXD regulated multidrug resistance-associated protein 2 (Mrp-2) to alter the pharmacokinetics of CPT-11 and its metabolites. However, the pharmacodynamic constituents and the related quality markers of SXD are unclear. In this study, ultra-high performance liquid chromatography coupled with quadrupole orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was utilized to identify the prototypes and metabolites in rat plasma after oral administration of SXD. The pharmacokinetic markers (PK markers) were screened through quantification and semiquantification of SXD-related xenobiotics in plasma using liquid chromatography-mass spectrometry (LC-MS) combined with statistical analysis. Computational molecular docking was performed to assess the potential binding ability of the PK markers with the target Mrp-2. The results were verified by evaluating the impact on Mrp-2 function using Caco-2 cells. The quality markers were chosen from these PK markers based on the binding affinities with Mrp-2, the specificity and the traceability. As a result, a total of 142 SXD-related exogenous components, including 77 prototypes and 65 metabolites, were detected in rat plasma. Among these, 83 xenobiotics were selected as PK markers due to their satisfactory pharmacokinetic behaviors. Based on the characteristics of quality markers, the prototype-based PK markers were considered the indices of quality control for SXD, including baicalin, baicalein, wogonoside, wogonin, liquiritigenin, isoliquiritigenin, norwogonin, oroxylin A, dihydrobaicalin, chrysin, glycyrrhizic acid, glycyrrhetinic acid, oroxylin A 7-O-glucuronide, liquiritin and isoliquiritin. This study provided an interesting strategy for screening the quality markers involved in the pharmacokinetics of SXD and its action target, which offered important information for the modernization of SXD and other TCM formulae.
Collapse
Affiliation(s)
- Huanyu Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Qian Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yao Mei
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Junyan Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Fanli Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Haimin Cai
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Daoping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Shenggang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Shanggao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Pengfei Li
- National Institute of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China.
| |
Collapse
|
5
|
Zamanian MY, Golmohammadi M, Abdullaev B, García MO, Alazbjee AAA, Kumar A, Mohaamed SS, Hussien BM, Khalaj F, Hodaei SM, Shirsalimi N, Moriasi G. A narrative review on therapeutic potential of naringenin in colorectal cancer: Focusing on molecular and biochemical processes. Cell Biochem Funct 2024; 42:e4011. [PMID: 38583080 DOI: 10.1002/cbf.4011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- School of Medicine, Central Asian University, Tashkent, Uzbekistan
- Department of Medical Oncology and Radiology, Samarkand State Medical University
| | - María Olalla García
- Universidad Estatal de Bolívar, Facultad de Ciencias de la Salud y del Ser Humano, Carrera de Enfermería, CP, Guaranda, Ecuador
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Sameer S Mohaamed
- Department of Pharmacy, Al Rafidain University College, Bagdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
6
|
Kim M, Jee SC, Sung JS. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants (Basel) 2024; 13:180. [PMID: 38397778 PMCID: PMC10886006 DOI: 10.3390/antiox13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.); (S.-C.J.)
| |
Collapse
|
7
|
Diao Z, Yu H, Wu Y, Sun Y, Tang H, Wang M, Li N, Ge H, Sun J, Gu HF. Identification of the main flavonoids of Abelmoschus manihot (L.) medik and their metabolites in the treatment of diabetic nephropathy. Front Pharmacol 2024; 14:1290868. [PMID: 38313075 PMCID: PMC10836608 DOI: 10.3389/fphar.2023.1290868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction: Huangkui capsule (HKC) is made from the ethanol extract of Abelmoschus manihot (L.) Medik [Malvaceae; abelmoschi corolla] and received approval from the China Food and Drug Administration (Z19990040) in 1999. Currently, HKC is used for treatment of the patients with diabetic nephropathy (DN) in China. The bioactive chemical constituents in HKC are total flavonoids of A. manihot (L.) Medik (TFA). The present study aims to identify the primary flavonoid metabolites in HKC and TFA and their metabolism fates in db/db mice, the animal model for the study of type 2 diabetes and DN. Methods: HKC (0.84 g/kg/d) and TFA (0.076 g/kg/d) or vehicle were respectively administered daily via oral gavage in db/db mice for 4 weeks. The metabolism fate of the main metabolites of HKC in serum, liver, kidney, heart, jejunum, colon, jejunal contents, colonic contents, and urine of db/db mice were analyzed with a comprehensive metabolite identification strategy. Results and Discussion: In db/db mice administered with HKC and TFA, 7 flavonoid prototypes and 38 metabolites were identified. The related metabolic pathways at Phases I and II reactions included dehydroxylation, deglycosylation, hydrogenation, methylation, glucuronidation, sulphation, and corresponding recombined reactions. Quercetin, isorhamnetin, quercetin sulphate, quercetin monoglucuronide, and isorhamnetin monoglucuronide presented a high exposure in the serum and kidney of db/db mice. Thereby, the present study provides a pharmacodynamic substance basis for better understanding the mechanism of A. manihot (L.) Medik for medication of DN.
Collapse
Affiliation(s)
- Zhipeng Diao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Hongmei Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yapeng Wu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yuanbo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Mei Wang
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Jianguo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Ysrafil Y, Sapiun Z, Slamet NS, Mohamad F, Hartati H, Damiti SA, Alexandra FD, Rahman S, Masyeni S, Harapan H, Mamada SS, Bin Emran T, Nainu F. Anti-inflammatory activities of flavonoid derivates. ADMET AND DMPK 2023; 11:331-359. [PMID: 37829324 PMCID: PMC10567070 DOI: 10.5599/admet.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Indexed: 09/01/2023] Open
Abstract
Background and purpose Flavonoids are a group of phytochemicals found abundantly in various plants. Scientific evidence has revealed that flavonoids display potential biological activities, including their ability to alleviate inflammation. This activity is closely related to their action in blocking the inflammatory cascade and inhibiting the production of pro-inflammatory factors. However, as flavonoids typically have poor bioavailability and pharmacokinetic profile, it is quite challenging to establish these compounds as a drug. Nevertheless, progressive advancements in drug delivery systems, particularly in nanotechnology, have shown promising approaches to overcome such challenges. Review approach This narrative review provides an overview of scientific knowledge about the mechanism of action of flavonoids in the mitigation of inflammatory reaction prior to delivering a comprehensive discussion about the opportunity of the nanotechnology-based delivery system in the preparation of the flavonoid-based drug. Key results Various studies conducted in silico, in vitro, in vivo, and clinical trials have deciphered that the anti-inflammatory activities of flavonoids are closely linked to their ability to modulate various biochemical mediators, enzymes, and signalling pathways involved in the inflammatory processes. This compound could be encapsulated in nanotechnology platforms to increase the solubility, bioavailability, and pharmacological activity of flavonoids as well as reduce the toxic effects of these compounds. Conclusion In Summary, we conclude that flavonoids and their derivates have given promising results in their development as new anti-inflammatory drug candidates, especially if they formulate in nanoparticles.
Collapse
Affiliation(s)
- Ysrafil Ysrafil
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Zulfiayu Sapiun
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Nangsih Sulastri Slamet
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Fihrina Mohamad
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Hartati Hartati
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Sukmawati A Damiti
- Department of Midwivery, Politeknik Kesehatan Kementerian Kesehatan Palangka Raya 73111, Palangka Raya, Indonesia
| | - Francisca Diana Alexandra
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sudarman Rahman
- Faculty of mathematics and natural sciences, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali 80235, Indonesia
- Department of Internal Medicine, Sanjiwani Hospital, Denpasar, Bali 80235, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
9
|
The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. SEPARATIONS 2023. [DOI: 10.3390/separations10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Among the many types of breast cancer (BC), Triple-Negative Breast Cancer (TNBC) is the most alarming. It lacks receptors for the three main biomarkers: estrogen, progesterone, and human epidermal growth factor, hence the name TNBC. This makes its treatment a challenge. Surgical procedures and chemotherapy, performed either alone or in combination, seem to be the primary therapeutic possibilities; however, they are accompanied by severe complications. Currently, the formulation of drugs using natural products has been playing an important role in the pharmaceutical industries, owing to the drugs’ increased efficacies and significantly lessened side effects. Hence, treating TNBC with chemotherapeutic drugs developed using natural products such as flavonoids in the near future is much warranted. Flavonoids are metabolic compounds largely present in all plants, vegetables, and fruits, such as blueberries, onions, (which are widely used to make red wine,) chocolates, etc. Flavonoids are known to have enormous health benefits, such as anticancer, antiviral, anti-inflammatory, and antiallergic properties. They are known to arrest the cell cycle of the tumor cells and induces apoptosis by modulating Bcl-2, Bax, and Caspase activity. They show a considerable effect on cell proliferation and viability and angiogenesis. Various studies were performed at both the biochemical and molecular levels. The importance of flavonoids in cancer treatment and its methods of extraction and purification to date have been reported as individual publications. However, this review article explains the potentiality of flavonoids against TNBC in the preclinical levels and also emphasizes their molecular mechanism of action, along with a brief introduction to its methods of extraction, isolation, and purification in general, emphasizing the fact that its quantum of yield if enhanced and its possible synergistic effects with existing chemotherapeutics may pave the way for better anticancer agents of natural origin and significantly lessened side-effects.
Collapse
|
10
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Vachetta VS, Marder M, Troncoso MF, Elola MT. Opportunities, obstacles and current challenges of flavonoids for luminal and triple-negative breast cancer therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 6:100077. [DOI: 10.1016/j.ejmcr.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
12
|
Napoli E, Ruberto G, Carrubba A, Sarno M, Muscarà C, Speciale A, Cristani M, Cimino F, Saija A. Phenolic Profiles, Antioxidant and Anti-Inflammatory Activities of Hydrodistillation Wastewaters from Five Lamiaceae Species. Molecules 2022; 27:molecules27217427. [PMID: 36364258 PMCID: PMC9656622 DOI: 10.3390/molecules27217427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Distillation is the most widely used method to obtain an essential oil from plant material. The biomass used in the process is returned as a solid residue together with variable amounts of water rich in water-soluble compounds, which currently are not addressed to any further application. The scope of this work was to evaluate the phytochemical composition of wastewaters coming from hydrodistillation (DWWs) of five aromatic plants belonging to the Lamiaceae family, and to assess their in vitro antioxidant and anti-inflammatory activities. The phenolic profiles of the DWWs were determined by HPLC-DAD and HPLC-ESI/MS. Free radical scavenging ability, oxygen radical antioxidant capacity and superoxide dismutase mimetic activity of the samples under study were measured. Moreover, to investigate the anti-inflammatory activity of the DWWs, an in vitro experimental model of intestinal inflammation was used. The DWW samples’ phytochemical analysis allowed the identification of 37 phenolic compounds, all exhibiting good antioxidant and anti-inflammatory activity. Our study contributes to the knowledge on the polyphenolic composition of the DWWs of five aromatic plants of the Lamiaceae family. The results highlight the presence of compounds with proven biological activity, and therefore of great interest in the pharmaceutical and nutraceutical fields.
Collapse
Affiliation(s)
- Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
- Correspondence: (E.N.); (F.C.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Alessandra Carrubba
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Build 4, Entr. L, 90128 Palermo, Italy
| | - Mauro Sarno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Build 4, Entr. L, 90128 Palermo, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.N.); (F.C.)
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
13
|
Pei S, Dou Y, Zhang W, Qi D, Li Y, Wang M, Li W, Shi H, Gao Z, Yao C, Fang D, Sun H, Xie S. O-Sulfation disposition of curcumin and quercetin in SULT1A3 overexpressing HEK293 cells: the role of arylsulfatase B in cellular O-sulfation regulated by transporters. Food Funct 2022; 13:10558-10573. [PMID: 36156668 DOI: 10.1039/d2fo01436j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive phase II metabolic reactions (i.e., glucuronidation and sulfation) have resulted in low bioavailability and decreased biological effects of curcumin and quercetin. Compared to glucuronidation, information on the sulfation disposition of curcumin and quercetin is limited. In this study, we identified that BCRP and MRP4 played a critical role in the cellular excretion of curcumin-O-sulfate (C-O-S) and quercetin-O-sulfate (Q-O-S) by integrating chemical inhibition with transporter knock-down experiments. Inhibited excretion of sulfate (C-O-S and Q-O-S) caused significant reductions in cellular O-sulfation of curcumin (a maximal 74.4% reduction) and quercetin (a maximal 76.9% reduction), revealing a strong interplay of sulfation with efflux transport. It was further identified that arylsulfatase B (ARSB) played a crucial role in the regulation of cellular O-sulfation by transporters. ARSB overexpression significantly enhanced the reduction effect of MK-571 on the cellular O-sulfation (fmet) of the model compound (38.8% reduction for curcumin and 44.2% reduction for quercetin). On the contrary, ARSB knockdown could reverse the effect of MK-571 on the O-sulfation disposition of the model compound (29.7% increase for curcumin and 47.3% increase for quercetin). Taken together, ARSB has been proven to be involved in cellular O-sulfation, accounting for transporter-dependent O-sulfation of curcumin and quercetin. A better understanding of the interplay beneath metabolism and transport will contribute to the exact prediction of in vivo drug disposition and drug-drug interactions.
Collapse
Affiliation(s)
- Shuhua Pei
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Yuanyuan Dou
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Wenke Zhang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Defei Qi
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Yingying Li
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Mengqing Wang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Wenqi Li
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Hongxiang Shi
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Zixuan Gao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Chaoyan Yao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Dong Fang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Hua Sun
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Songqiang Xie
- Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| |
Collapse
|
14
|
Yu Z, Hu X, Zhou L, Chen H, Xing Y, Han C, Ding H, Han L, Pan G, Fu Z. Studies on Chemical Characterization of Ginkgo Amillaria Oral Solution and Its Drug–Drug Interaction With Piceatannol 3′-O-β-D-Glucopyranoside for Injection. Front Pharmacol 2022; 13:932646. [PMID: 35928280 PMCID: PMC9344054 DOI: 10.3389/fphar.2022.932646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ginkgo Amillaria oral solution (GAO) is commonly used for the treatment of cardiovascular and cerebrovascular diseases in China. Piceatannol-3′-O-β-D-glucopyranoside for injection (PGI) is mainly used for the prevention and treatment of ischemic cerebrovascular diseases. With the spread of cerebrovascular disease, the possibility of combining the two drugs has increased; however, there is no research on the drug–drug interaction (DDI) between these two medicines. In this paper, an ultrahigh-performance liquid chromatography/quadrupole–orbitrap mass spectrometry (UHPLC/Q-Orbitrap MS) method was established to characterize the chemical constituents of GAO first; 62 compounds were identified or tentatively identified based on their retention time (RT), MS, and MS/MS data. Nine main compounds were determined by ultrahigh-performance liquid chromatography/triple quadrupole mass spectrometry (UPLC-QQQ-MS). Furthermore, incubation with liver microsomes in vitro was fulfilled; the results showed that GAO had a significant inhibitory effect on UGT1A9 and UGT2B7 (p < 0.05), and PGI was mainly metabolized by UGT1A9. The identification results of in vivo metabolites of PGI showed that PGI mainly undergoes a phase II binding reaction mediated by UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) in vivo. Therefore, pharmacokinetic studies were performed to investigate the DDI between GAO and PGI. The results showed that the AUC (p < 0.05) and T1/2 (p < 0.05) of PGI in vivo were significantly increased when administered together with GAO, whereas the CL was significantly decreased (p < 0.05). The exploration of in vitro and in vivo experiments showed that there was a DDI between GAO and PGI.
Collapse
Affiliation(s)
- Zhenyan Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohan Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huliang Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanchao Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunyue Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Ding
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Guixiang Pan, ; Zhifei Fu,
| | - Zhifei Fu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Guixiang Pan, ; Zhifei Fu,
| |
Collapse
|
15
|
Guan H, Li P, Wang Q, Zeng F, Wu J, Zhang F, Liao S, Shi Y. Deciphering the chemical constituents of Shengjiang Xiexin decoction by ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry and the impact of 20 characteristic components on multidrug resistance-associated protein 2 in the vesicular transport assay. J Sep Sci 2022; 45:3459-3479. [PMID: 35838583 DOI: 10.1002/jssc.202200370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Shengjiang Xiexin decoction, a traditional Chinese medical formula, has been utilized to alleviate the delayed-onset diarrhea induced by irinotecan. However, the chemical constituents of this formula and the activities of its constituents remain unclear. In this study, an ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry was employed to comprehensively analyze the chemical constituents of Shengjiang Xiexin decoction. A total of 270 components including flavonoids, coumarins, triterpenoids, alkaloids, diarylheptanoids and others were identified or characterized. The multidrug resistance-associated protein 2 is an efflux transporter responsible for regulating drug absorption. A total of 20 characteristic components from the formula were selected to evaluate their effects on the function of multidrug resistance-associated protein 2 using the vesicular transport assay. Glycyrrhizic acid and glycyrrhetinic acid were identified as potential multidrug resistance-associated protein 2 inhibitors, while 9 flavonoid aglycones increased the uptake of the substrate [3 H]-estradiol 17-β-glucuronide in the vesicles. This was the first systematical investigation on the chemical constituents from Shengjiang Xiexin decoction and the effect of its characteristic components on the transporter. The results offered a basis for further exploring the detoxification mechanisms of this formula and its interactions with other drugs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huanyu Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Pengfei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,National Institute of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Qian Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Fanli Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fangqing Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shanggao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
16
|
Wang Y, Jin X, Fan Q, Li C, Zhang M, Wang Y, Wu Q, Li J, Liu X, Wang S, Wang Y, Li L, Ling J, Li C, Wang Q, Liu Y. Deciphering the Active Compounds and Mechanisms of HSBDF for Treating ALI via Integrating Chemical Bioinformatics Analysis. Front Pharmacol 2022; 13:879268. [PMID: 35721141 PMCID: PMC9201258 DOI: 10.3389/fphar.2022.879268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 01/08/2023] Open
Abstract
The Huashi Baidu Formula (HSBDF), a key Chinese medical drug, has a remarkable clinical efficacy in treating acute lung injury (ALI), and it has been officially approved by the National Medical Products Administration of China for drug clinical trials. Nevertheless, the regulated mechanisms of HSBDF and its active compounds in plasma against ALI were rarely studied. Based on these considerations, the key anti-inflammatory compounds of HSBDF were screened by molecular docking and binding free energy. The key compounds were further identified in plasma by LC/MS. Network pharmacology was employed to identify the potential regulatory mechanism of the key compounds in plasma. Next, the network pharmacological prediction was validated by a series of experimental assays, including CCK-8, EdU staining, test of TNF-α, IL-6, MDA, and T-SOD, and flow cytometry, to identify active compounds. Molecular dynamic simulation and binding interaction patterns were used to evaluate the stability and affinity between active compounds and target. Finally, the active compounds were subjected to predict pharmacokinetic properties. Molecular docking revealed that HSBDF had potential effects of inhibiting inflammation by acting on IL-6R and TNF-α. Piceatannol, emodin, aloe-emodin, rhein, physcion, luteolin, and quercetin were key compounds that may ameliorate ALI, and among which, there were five compounds (emodin, aloe-emodin, rhein, luteolin, and quercetin) in plasma. Network pharmacology results suggested that five key compounds in plasma likely inhibited ALI by regulating inflammation and oxidative damage. Test performed in vitro suggested that HSBDF (0.03125 mg/ml), quercetin (1.5625 μM), emodin (3.125 μM), and rhein (1.5625 μM) have anti-inflammatory function against oxidative damage and decrease apoptosis in an inflammatory environment by LPS-stimulation. In addition, active compounds (quercetin, emodin, and rhein) had good development prospects, fine affinity, and stable conformations with the target protein. In summary, this study suggested that HSBDF and its key active components in plasma (quercetin, emodin, and rhein) can decrease levels of pro-inflammatory factors (IL-6 and TNF-α), decrease expression of MDA, increase expression of T-SOD, and decrease cell apoptosis in an inflammatory environment. These data suggest that HSBDF has significant effect on anti-inflammation and anti-oxidative stress and also can decrease cell apoptosis in treating ALI. These findings provided an important strategy for developing new agents and facilitated clinical use of HSBDF against ALI.
Collapse
Affiliation(s)
- Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qin Fan
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghao Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongfeng Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Siyu Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yu Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ling Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jia Ling
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chaoxin Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Lanzhou, China
| |
Collapse
|
17
|
Guo X, Cao X, Fang X, Guo A, Li E. Involvement of phase II enzymes and efflux transporters in the metabolism and absorption of naringin, hesperidin and their aglycones in rats. Int J Food Sci Nutr 2022; 73:480-490. [PMID: 34974785 DOI: 10.1080/09637486.2021.2012562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
This study examined the effects of phase II metabolism and efflux transportation on the bioavailability of naringin, hesperidin, and their aglycones (naringenin and hesperetin) in rats. Results indicated naringin and hesperidin have a lower oral bioavailability than their aglycones. Of all the phase II enzymes tested, UDP-glucuronosyltransferase (UGT) 1A1, UGT1A2, UGT1A3, UGT1A7 and SULT sulfotransferase (SULT) 1B1 were of minor importance regarding the phase II metabolism of naringenin and hesperetin in the small intestine. Naringin, hesperidin, and their aglycones were all extensively metabolised in the liver. Naringin and hesperidin were more extensively transported by efflux transporters compared to their aglycones. Significant correlations between phase II enzymes and efflux transporters were detected. In conclusion, more extensive metabolism of naringin and hesperidin than their aglycones in the small intestine, and the interplay of phase II enzymes and efflux transporters in the small intestine explain the lower relative oral bioavailability of naringin and hesperidin than their aglycones.
Collapse
Affiliation(s)
- Xiao Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuedan Cao
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Xiugui Fang
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Erhu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Kim MS, Jung YS, Jang D, Cho CH, Lee SH, Han NS, Kim DO. Antioxidant capacity of 12 major soybean isoflavones and their bioavailability under simulated digestion and in human intestinal Caco-2 cells. Food Chem 2022; 374:131493. [PMID: 34802809 DOI: 10.1016/j.foodchem.2021.131493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Soy isoflavones (SIs) show various health benefits, such as antioxidant and estrogenic effects. It is important to understand the bioaccessibility and bioavailability of SIs due to the close relation to their bioactivities. In this study, the antioxidant capacity, bioaccessibility, and bioavailability of 12 SIs were evaluated using radical-scavenging methods, simulations of human digestion, and Caco-2 cells in Transwell, respectively. All SIs were stable (91.1-99.2%) under gastric digestion conditions compared with the control (100%), whereas acetyl and malonyl conjugates were unstable (38.5% and 65.5%, respectively) under small intestinal digestion conditions. SI aglycones showed higher permeability (7-15 times) and cellular accumulation (8.8 times) than their glucosides. A small amount of SI conjugates was intact in the cell and in the basolateral side of each Transwell. These results suggest that SI conjugates, especially malonyl and acetyl forms, have incidental bioactivity after being metabolized to aglycones inside the cell.
Collapse
Affiliation(s)
- Mi-Seon Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Davin Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chi Heung Cho
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Sang-Hoon Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
19
|
Müller L, Keuter L, Bücksteeg D, Uebel T, Wilken M, Schürmann L, Behrens M, Humpf HU, Esselen M. Metabolic conjugation reduces in vitro toxicity of the flavonoid nevadensin. Food Chem Toxicol 2022; 164:113006. [PMID: 35436549 DOI: 10.1016/j.fct.2022.113006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
The present study focuses on the association between metabolic capacity and toxicity of the natural occurring flavonoid nevadensin in vitro. Human colon (HT29), liver (HepG2) and bone marrow (KG1) carcinoma cells were used and strong cell line dependent differences in toxic effect strength were found. HepG2 and KG1 cells were more sensitive against nevadensin treatment in comparison to HT29 cells. High resolution mass spectrometry experiments showed that nevadensin is rapidly glucuronidated in HT29 cells, whereas KG1 cells do not metabolize nevadensin, thus glucuronidation was supposed to be a crucial metabolic pathway in vitro. To proof this suggestion, nevadensin glucuronides were isolated from pig liver microsomes und structurally elucidated via NMR spectroscopy. In HepG2 cells a cellular enrichment of nevadensin itself as well as nevadensin-7-O-glucuronide was determined by tandem mass spectrometry. A proteomic screening of uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) in HT29 and HepG2 cells provided first hints that the isoforms UGT1A6 and UGT1A1 are responsible for nevadensin glucuronidation. Additionally, nevadensin was found to be a potent SULT inhibitor in HepG2 cells. In sum, the present study clearly illustrates the importance of obtaining detailed information about metabolic competence of cell lines which should be considered in the evaluation of toxic endpoints.
Collapse
Affiliation(s)
- Lena Müller
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Lucas Keuter
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - David Bücksteeg
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Thomas Uebel
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Markus Wilken
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Lina Schürmann
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Matthias Behrens
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Melanie Esselen
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany.
| |
Collapse
|
20
|
Cui J, Duan X, Ke L, Pan X, Liu J, Song X, Ma W, Zhang W, Liu Y, Fan Y. Extraction, purification, structural character and biological properties of propolis flavonoids: A review. Fitoterapia 2021; 157:105106. [PMID: 34958852 DOI: 10.1016/j.fitote.2021.105106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022]
Abstract
Propolis is an aromatic substance which is collected by bees and mixed with bee saliva. The plant sources of propolis are mainly consisted with plant exudates from bark, buds and etc. Flavonoids are secondary metabolites widely found in natural plants, which have a variety of health care functions and are the main active ingredients of propolis. This article summarized the types, active ingredients, pharmacological effects, extraction methods and applications of propolis flavonoids, the aim was to provide the theoretical basis for further research and development of propolis flavonoids.
Collapse
Affiliation(s)
- Jing Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liting Ke
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xingxue Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
21
|
Boronat A, Rodriguez-Morató J, Serreli G, Fitó M, Tyndale RF, Deiana M, de la Torre R. Contribution of Biotransformations Carried Out by the Microbiota, Drug-Metabolizing Enzymes, and Transport Proteins to the Biological Activities of Phytochemicals Found in the Diet. Adv Nutr 2021; 12:2172-2189. [PMID: 34388248 PMCID: PMC8634308 DOI: 10.1093/advances/nmab085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
The consumption of dietary phytochemicals has been associated with several health benefits and relevant biological activities. It is postulated that biotransformations of these compounds regulated by the microbiota, Phase I/II reactions, transport proteins, and deconjugating enzymes contribute not only to their metabolic clearance but also, in some cases, to their bioactivation. A number of factors (age, genetics, sex, physiopathological conditions, and the interplay with other dietary phytochemicals) modulating metabolic activities are important sources and contributors to the interindividual variability observed in clinical studies evaluating the biological activities of phytochemicals. In this review, we discuss all the processes that can affect the bioaccessibility and beneficial effects of these bioactive compounds. Herein, we argue that the role of these factors must be further studied to correctly understand and predict the effects observed following the intake of phytochemicals. This is, in particular, with regard to in vitro investigations, which have shown great inconsistency with preclinical and clinical studies. The complexity of in vivo metabolic activity and biotransformation should therefore be considered in the interpretation of results in vitro and their translation to human physiopathology.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jose Rodriguez-Morató
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain,Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain,Department of Experimental and Health Sciences (UPF-CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriele Serreli
- Department of Biomedical Science, Pathology Section, Experimental Pathology Unit, University of Cagliari, Montserrato, Italy
| | - Montserrat Fitó
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain,Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute (CAMH), Toronto, Canada,Department of Pharmacology, Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Monica Deiana
- Department of Biomedical Science, Pathology Section, Experimental Pathology Unit, University of Cagliari, Montserrato, Italy
| | | |
Collapse
|
22
|
Halder S, Kar R, Chakraborty S, Banerjee BD. Chromium Exposure in Late Gestation Period Caused Increased Levels of Cr in Brain Tissue: Association with Alteration of Activity and Gene Expression of Antioxidant Enzymes of F1 and F2 Generation Mice. Biol Trace Elem Res 2021; 199:2635-2643. [PMID: 32892319 DOI: 10.1007/s12011-020-02367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/01/2020] [Indexed: 11/28/2022]
Abstract
Chromium is a micronutrient which has found frequent use as supplements during pregnancy and could have a role in altering the antioxidant status in the brain. The present study was undertaken to estimate chromium levels in the brain, antioxidant enzyme activity with their gene expression, and learning and memory parameters on F1 and F2 generation mice when the F0 was exposed to chromium. The chromium levels in the brain were estimated using atomic absorption spectrophotometer. The enzyme activity of glutathione-s-transferase (GST) and catalase (CAT) was estimated and their gene expression was evaluated using RT-PCR. The spatial memory was tested using Morris water maze. The learning and recall memory was tested using the step down latency paradigm. The chromium levels were significantly raised in animals treated with Cr per se in F1 generation and quercetin cotreatment reduced the Cr levels in brain significantly. The enzyme activity of GST was significantly less in Cr-treated animals of both generations and this effect was significantly reversed on cotreatment with quercetin. The gene expression of GST matched the enzyme activity. However, catalase activity did not show significant decrease with Cr but cotreatment with quercetin resulted in significant decrease compared with control and this effect was not matched by its gene expression. We observed no significant change in learning and memory parameters in both generations following Cr exposure. Thus, this study demonstrates that chromium exposure in gestation causes changes in enzyme activity especially GST and this change was matched by change in gene expression in GST but not CAT. There was no effect on memory at the given dose.
Collapse
Affiliation(s)
- Sumita Halder
- Department of Pharmacology, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India.
| | - Rajarshi Kar
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| | - Sucharita Chakraborty
- Geological Oceanographic Division, National Institute of Oceanograhy, Panaji, Goa, India
- Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, India
| | - Basu D Banerjee
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| |
Collapse
|
23
|
Chen M, Ren X, Sun S, Wang X, Xu X, Li X, Wang X, Li X, Yan X, Li R, Wang Y, Liu X, Dong Y, Fu X, She G. Structure, Biological Activities and Metabolism of Flavonoid Glucuronides. Mini Rev Med Chem 2021; 22:322-354. [PMID: 34036917 DOI: 10.2174/1389557521666210521221352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoid glucuronides are a kind of natural products which present a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and anti-bacteria activities. In particular, the compound breviscapine has a notable effect on cardio-cerebrovascular diseases. Several other compounds even have antitumor activity. METHODS Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides. RESULTS We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc.. CONCLUSION Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. And they are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides' biological activities and mechanisms.
Collapse
Affiliation(s)
- Min Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Siqi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Gaimei She
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia 750004, China
| |
Collapse
|
24
|
Hussain Y, Luqman S, Meena A. Research Progress in Flavonoids as Potential Anticancer Drug Including Synergy with Other Approaches. Curr Top Med Chem 2021; 20:1791-1809. [PMID: 32357817 DOI: 10.2174/1568026620666200502005411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In chemotherapy for cancer, conventional drugs aim to target the rapidly growing and dividing cells at the early stages. However, at an advanced stage, cancer cells become less susceptible because of the multidrug resistance and the recruitment of alternative salvage pathways for their survival. Besides, owing to target non-selectivity, healthy proliferating cells also become vulnerable to the damage. The combination therapies offered using flavonoids to cure cancer not only exert an additive effect against cancer cells by targetting supplementary cell carnage pathways but also hampers the drug resistance mechanisms. Thus, the review aims to discuss the potential and pharmacokinetic limitations of flavonoids in cancer treatment. Further successful synergistic studies reported using flavonoids to treat cancer has been described along with potential drug delivery systems. METHODS A literature search was done by exploring various online databases like Pubmed, Scopus, and Google Scholar with the specific keywords like "Anticancer drugs", "flavonoids", "oncology research", and "pharmacokinetics". RESULTS Dietary phytochemicals, mainly flavonoids, hinder cell signalling responsible for multidrug resistance and cancer progression, primarily targeting cancer cells sparing normal cells. Such properties establish flavonoids as a potential candidate for synergistic therapy. However, due to low absorption and high metabolism rates, the bioavailability of flavonoids becomes a challenge. Such challenges may be overcome using novel approaches like derivatization, and single or co-delivery nano-complexes of flavonoids with conventional drugs. These new approaches may improve the pharmacokinetic and pharmacodynamic of flavonoids. CONCLUSION This review highlights the application of flavonoids as a potential anticancer phytochemical class in combination with known anti-cancer drugs/nanoparticles. It also discusses flavonoid's pharmacokinetics and pharmacodynamics issues and ways to overcome such issues. Moreover, it covers successful methodologies employed to establish flavonoids as a safe and effective phytochemical class for cancer treatment.
Collapse
Affiliation(s)
- Yusuf Hussain
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Abha Meena
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| |
Collapse
|
25
|
Jia JY, Zang EH, Lv LJ, Li QY, Zhang CH, Xia Y, Zhang L, Dang LS, Li MH. Flavonoids in myocardial ischemia-reperfusion injury: Therapeutic effects and mechanisms. CHINESE HERBAL MEDICINES 2021; 13:49-63. [PMID: 36117755 PMCID: PMC9476686 DOI: 10.1016/j.chmed.2020.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/05/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Ischemic heart diseases are one of the major causes of death worldwide. Effective restoration of blood flow can significantly improve patients' quality of life and reduce mortality. However, reperfusion injury cannot be ignored. Flavonoids possess well-established antioxidant properties; They also have other benefits that may be relevant for ameliorating myocardial ischemia-reperfusion injury (MIRI). In this review, we focus on flavonoids with cardiovascular-protection function and emphasize their pharmacological effects. The main mechanisms of flavonoid pharmacological activities against MIRI involve the following aspects: a) antioxidant, b) anti-inflammatory, c) anti-platelet aggregation, d) anti-apoptosis, and e) myocardial-function regulation activities. We also summarized the effectiveness of flavonoids for MIRI.
Collapse
Affiliation(s)
- Jun-ying Jia
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | | | - Li-juan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Qin-yu Li
- Baotou Medical College, Baotou 014040, China
| | | | - Ying Xia
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
| | - Lei Zhang
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Lian-sheng Dang
- Department of Geriatrics, The First Affiliated Hospital of Baotou Medical College, Baotou 014000, China
| | - Min-hui Li
- Baotou Medical College, Baotou 014040, China
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Medical University, Hohhot 010110, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources and Utilization, Baotou Medical College, Baotou 014040, China
| |
Collapse
|
26
|
Hai Y, Zhang Y, Liang Y, Ma X, Qi X, Xiao J, Xue W, Luo Y, Yue T. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yu Hai
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Yuanxiao Zhang
- School of Chemical Engineering Northwest University Xi'an Shaanxi P. R. China
| | - Yingzhi Liang
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Xiaoyu Ma
- College of Life Science Northwest University Xi'an Shaanxi P. R. China
| | - Xiao Qi
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense E‐32004 Spain
| | - Weiming Xue
- School of Chemical Engineering Northwest University Xi'an Shaanxi P. R. China
| | - Yane Luo
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Beijing P. R. China
| |
Collapse
|
27
|
Gour A, Dogra A, Wazir P, Singh G, Nandi U. A highly sensitive UPLC-MS/MS method for hydroxyurea to assess pharmacokinetic intervention by phytotherapeutics in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1154:122283. [PMID: 32862024 DOI: 10.1016/j.jchromb.2020.122283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 02/02/2023]
Abstract
Hydroxyurea (HU) is the first-ever approved drug by the United States Food and Drug Administration (USFDA) for the management of sickle cell anemia (SCA). However, its treatment is associated with severe liabilities like myelosuppression. Therefore, the aim of the present investigation was to identify phytotherapeutics through assessment of the pharmacokinetic interaction of HU with dietary bioflavonoids followed by elucidation of the same phytoconstituents for their ability to protect HU-induced toxicity in hematological profile. In this direction, we developed a sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to estimate HU in rat plasma at first and then validated as per USFDA guidelines as there is no such precedent in the literature. A simple plasma protein precipitation method was employed for plasma sample processing. The separation was achieved in gradient mode using Syncronis HILIC column (100 × 4.6 mm, 3 μm) with a mobile phase composition of water containing 0.1% (v/v) formic acid and acetonitrile. Ionization was carried out in positive heated-electrospray ionization (H-ESI) mode. Detection was done in selected reaction monitoring (SRM) mode with m/z 77.1 > 44.4 and m/z 75.1 > 58.2 for HU and methylurea (internal standard), respectively. All the validation parameters were within the acceptable criteria. This bioanalytical method was found to be useful in assessing the preclinical pharmacokinetic interaction of HU. Concomitant administration of chrysin or quercetin with HU in rats significantly enhanced the oral exposure of HU. Lowering of total red blood cells (RBC) and hemoglobin (Hb) level by HU in rats was significantly improved in the presence of chrysin, quercetin, and naringenin. Overall, both chrysin and quercetin showed potential to be a promising phytotherapeutics for concomitant therapy with HU to combat its dose-dependent side effects.
Collapse
Affiliation(s)
- Abhishek Gour
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashish Dogra
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Priya Wazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gurdarshan Singh
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Utpal Nandi
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
28
|
Hong J, Lee JM, Yoon D, Jung UJ, Kim SR. No Synergistic Effect of Silibinin and Morin in a Kainic Acid-Induced Epileptic Mouse Model. J Med Food 2020; 23:198-202. [PMID: 31913760 DOI: 10.1089/jmf.2019.4522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of localization-related epilepsy, with the highest prevalence rate in adulthood. Recently, we reported the beneficial effects of the individual treatment with flavonoids such as silibinin and morin in kainic acid (KA)-treated mouse model for TLE. In this study, we investigated whether there is a synergistic effect of co-treatment with silibinin and morin on the susceptibility to seizure, the frequency of spontaneous recurrent seizures (SRSs), and granule cell dispersion in the dentate gyrus, which could be partially controlled by treatment with each flavonoid in the animal model for TLE. Unfortunately, we did not observe any synergistic effect against the susceptibility of seizure and SRS induced by KA treatment. However, the combination of these flavonoids showed similar antiepileptic effects compared with treatment with each one individually. Therefore, although silibinin and morin are not suitable for combination therapy, our results still suggest that these flavonoids can be used as potent therapeutic compounds for preventing epileptic seizures.
Collapse
Affiliation(s)
- Jungwan Hong
- Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ji Min Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dongyeong Yoon
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
29
|
Halake K, Lee J. Outstanding Degradation Resistance of Hyaluronic Acid Achieved by Flavonoid Conjugations: Rheological Behavior. Macromol Res 2019. [DOI: 10.1007/s13233-020-8068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Srinivas NR. Combination of flavonoids with azole drugs for fungal infections: key pharmacokinetic challenges. Future Microbiol 2019; 14:733-738. [PMID: 31271062 DOI: 10.2217/fmb-2019-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Nuggehally R Srinivas
- Department of Innovation & Technology, Jubilant Life Sciences, D-12, Sector 59, Noida, 201301, Uttar Pradesh, India
| |
Collapse
|
31
|
Extraction of Flavonoids from the Saccharification of Rice Straw Is an Integrated Process for Straw Utilization. Appl Biochem Biotechnol 2019; 189:249-261. [DOI: 10.1007/s12010-019-03002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
32
|
Yuan M, Liu Y, Xiao A, Leng J, Liao L, Ma L, Liu L. The interaction of dietary flavonoids with xanthine oxidase in vitro: molecular property-binding affinity relationship aspects. RSC Adv 2019; 9:10781-10788. [PMID: 35515322 PMCID: PMC9062502 DOI: 10.1039/c8ra09926j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/25/2019] [Indexed: 11/21/2022] Open
Abstract
The molecular property-affinity relationships of dietary flavonoids binding to xanthine oxidase were investigated in vitro by comparing the binding constants obtained from a fluorescence-quenching method. The inhibitions of dietary flavonoids on xanthine oxidase were also investigated and analyzed, revealing that the binding process was influenced by the structural differences of the flavonoids under investigation. For example, methylation and hydroxylation at the 7- and 5-positions weakened the binding affinities, while hydroxylation at the 3- and 3'-positions mostly improved binding affinities. Glycosylation and hydrogenation of the C2[double bond, length as m-dash]C3 double bond also increased affinities for xanthine oxidase. In addition, galloylated catechins showed higher binding affinities than non-galloylated catechins. Trends in the binding affinities and inhibition of flavonoids during structure modifications were summarized. Affinities for xanthine oxidase and inhibition on xanthine oxidase changed in the opposite direction during the methylation and hydroxylation of flavonoids in the A ring, and the glycosylation and hydrogenation of C2[double bond, length as m-dash]C3. However, affinities and inhibition for xanthine oxidase changed in the same direction during the methylation and hydroxylation of flavonoids in the B ring.
Collapse
Affiliation(s)
- Mengmeng Yuan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Yi Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Juan Leng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Liping Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Lei Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| |
Collapse
|
33
|
Halder S, Kar R, Chakraborty S, Bhattacharya SK, Mediratta PK, Banerjee BD. Cadmium level in brain correlates with memory impairment in F1 and F2 generation mice: improvement with quercetin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9632-9639. [PMID: 30734250 DOI: 10.1007/s11356-019-04283-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The increased exposure to cadmium (Cd) through environmental pollutants, food and cigarette smoke is a concern worldwide. The association of Cd with impaired learning disabilities led us to hypothesise that cadmium levels in brain tissue could be dose-dependently related to the extent of memory impairment and oxidative stress. In this study, we proposed to study whether cadmium exposure to dams could alter the brain Cd levels, memory parameters, antioxidant enzymes in brain and their gene expression in the F1-F2 generation mice and whether quercetin could modulate this effect. Animals were administered Cd alone and in combination with quercetin for 7 days during their gestation period. Their newborn pups (F1 and F2 mice) were reared until adulthood and were tested for memory using Morris water maze and step-down latency test. The brain tissue of F1 mice was collected. Cd levels were estimated using the atomic absorption spectrophotometer. G-S-transferase (GST) and catalase (CAT) activity were measured and fold increase in their respective gene expression was observed using the RT-PCR method. Cd levels were significantly increased in the brain tissue of animals exposed to Cd but cotreatment with quercetin showed decreased levels in both generations. Memory impairment was observed in animals of F1 generation exposed to Cd and cotreatment with quercetin (100 mg/kg) reversed this effect. Cd exposure significantly enhanced both activity and expression of GST and CAT in the brain tissue of F1 generation mice and quercetin attenuated this effect. In F2 generation, results were variable. GST activity and expression increased with Cd and decreased with quercetin cotreatment. However, CAT activity showed no significant change despite a decrease in gene expression. Quercetin cotreatment enhanced activity as well gene expression in F2 generation. Our study insinuates that Cd levels could act as a predictor of memory impairment and altered enzyme activity and gene expression in brain tissue. Quercetin helped to reduce Cd levels in brain tissue of F1 and F2 generation and modulated the antioxidant system of the cell by affecting expression of antioxidant enzymes at the transcription level.
Collapse
Affiliation(s)
- Sumita Halder
- Department of Pharmacology, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India.
| | - Rajarshi Kar
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| | | | - Swapan K Bhattacharya
- Department of Pharmacology, North Delhi Municipal Corporation Medical College and Hindu Rao Hospital, New Delhi, 110095, India
| | - Pramod K Mediratta
- Department of Pharmacology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201306, India
| | - Basu D Banerjee
- Department of Biochemistry, University College of Medical Sciences and G. T. B. Hospital, New Delhi, 110095, India
| |
Collapse
|
34
|
Combined cereal and pulse flavonoids show enhanced bioavailability by downregulating phase II metabolism and ABC membrane transporter function in Caco-2 model. Food Chem 2018; 279:88-97. [PMID: 30611516 DOI: 10.1016/j.foodchem.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
Predominant flavonoids in cereals and pulses are structurally different and may positively interact to enhance bioactivity in combined diet. This work investigated the effects of combined cereal 3-deoxyflavonoids (apigenin, naringenin) and pulse flavonols (quercetin), along with natural extracts, on their bioavailability and underlying mechanisms using Caco-2 monolayer model. Membrane permeability, phase II metabolism, and ATP binding cassette (ABC) membrane transporter expression and function were measured. Apparent absorption of quercetin and apigenin increased (p < 0.05) 3.3× and 1.5×, respectively, while both compounds were significantly less metabolized in combined treatments. Combinations with naringenin had insignificant effect, suggesting a role for flavonoid C2C3 conjugation. Both natural extracts and apigenin-quercetin combinations synergistically (3-40 fold) downregulated ABC transporter expression, and inhibited P-glycoprotein activity, suggesting direct binding and inhibition of ATPase. Combination of conjugated cereal and pulse flavonoids enhances their potential bioavailability through synergistic inhibition of membrane transporter and phase II enzyme function.
Collapse
|
35
|
Chalet C, Hollebrands B, Duchateau GS, Augustijns P. Intestinal phase-II metabolism of quercetin in HT29 cells, 3D human intestinal tissues and in healthy volunteers: a qualitative comparison using LC-IMS-MS and LC-HRMS. Xenobiotica 2018; 49:945-952. [PMID: 30085847 DOI: 10.1080/00498254.2018.1509246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flavonoids are a large class of dietary molecules, among which quercetin is the most ubiquitous, which undergo an extensive intestinal phase-II metabolism. We compared the in vivo metabolism of quercetin in healthy volunteers with two in vitro models, HT29 cells and 3 D human intestinal tissues. Supernatants of the in vitro experiments and the human intestinal fluids (HIF) were analyzed by LC-IMS-MS and LC-HRMS in a qualitative way. Quercetin glucuronides, sulfates and their methyl conjugates were detected in all three systems. The metabolic profiles were found to be different, both in terms of the metabolites produced and their relative proportions. In particular, quercetin sulfates were almost absent in supernatants from HT29 cells incubations while they were a major metabolite in HIF and also found in 3 D intestinal tissues incubations. IMS provided structural information as well as a third dimension of characterization, while HRMS brought increased sensitivity and MS/MS confirmation. HT29 cells are a useful tool to generate phase-II metabolites but do not represent the in vivo situation. 3 D intestinal tissues appear as a more relevant tool to study the intestinal phase-II metabolism of flavonoids.
Collapse
Affiliation(s)
- Clément Chalet
- a Unilever R&D , Vlaardingen , The Netherlands.,b Drug Delivery and Disposition , KU Leuven , Leuven , Belgium
| | | | | | | |
Collapse
|
36
|
Wu L, Han W, Chen Y, Zhang T, Liu J, Zhong S, Liu H, Han C, Zhang Z, Liu S, Tang L. Gender Differences in the Hepatotoxicity and Toxicokinetics of Emodin: The Potential Mechanisms Mediated by UGT2B7 and MRP2. Mol Pharm 2018; 15:3931-3945. [PMID: 30011215 DOI: 10.1021/acs.molpharmaceut.8b00387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Emodin is a main anthraquinone compound which exists in Chinese traditional medicines including Polygonum multiflorum and Rhubarb. It is documented to have obvious liver and kidney toxicity. This study aims to (a) estimate gender differences of the hepatotoxicity and toxicokinetics in rats after oral administration of emodin (60 and 150 mg/kg/d) for a consecutive 28 days and (b) clarify relative mechanisms caused by glucuronidation and disposition. Hepatotoxicity was significantly higher in female rats than that in male rats, as evidenced by histopathological and biochemical tests. Similarly, the toxicokinetic profiles of emodin have time and gender differences, which could cause time and gender differences in hepatotoxicity. The metabolic and transcriptomics data of 55 human liver and 36 human kidney samples demonstrated that UDP-glucuronosyltransferase 2B7 (UGT2B7) was the predominant enzyme for emodin glucuronidation. A genome-wide association study (GWAS) identified that rs11726899 located within ∼50 kb of the transcript of UGT2B could significantly affect emodin metabolism. Knockdown of UGT2B7 in HepG2 cells significantly decreased emodin glucuronidation and increased cytotoxicity of emodin. The gene expression and protein levels of UGT2B7 were decreased, but those of the multidrug-resistant-protein 2 (MRP2) were increased in HepG2 cells after being treated with 50 μM emodin for 48 h. Long-term use of emodin could decrease the intrinsic clearance (CLint, decreased by 18.5%-35.4%) values of zidovidue (UGT2B7 substrate) glucuronide in both male and female liver microsomes from rats administrated with emodin for 28 days, thus causing the accumulation of emodin. However, higher self-induced MRP2 expression and lower hepatotoxicity were observed in emodin-treated male rats compared to that in female rats. Therefore, gender differences in the hepatotoxicity and toxicokinetics of emodin are potentially mediated by the coupling of UGT2B7 and MRP2 in vivo.
Collapse
Affiliation(s)
- Lili Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology , Southern Medical University , Guangzhou 510515 , China.,Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Weichao Han
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Yulian Chen
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Tao Zhang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Junjin Liu
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Shilong Zhong
- Medical Research Center of Guangdong General Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510515 , China
| | - Han Liu
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Congcong Han
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Zhongyi Zhang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology , Southern Medical University , Guangzhou 510515 , China.,Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Lan Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology , Southern Medical University , Guangzhou 510515 , China.,Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| |
Collapse
|
37
|
Yang T, Liu Y, Huang X, Zhang R, Yang C, Zhou J, Zhang Y, Wan J, Shi S. Quercetin‑3‑O‑β‑D‑glucoside decreases the bioavailability of cyclosporin A through regulation of drug metabolizing enzymes, transporters and nuclear receptors in rats. Mol Med Rep 2018; 18:2599-2612. [PMID: 30015887 PMCID: PMC6102747 DOI: 10.3892/mmr.2018.9249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/19/2018] [Indexed: 12/16/2022] Open
Abstract
Quercetin is a flavonoid compound that is widely present in food and drink. Quercetin-3-O-β-D-glucoside (Q3GA) is a major metabolite of quercetin. The aim of the present study was to investigate the effect of Q3GA on the pharmacokinetics of orally and intravenously administered cyclosporin A (CsA) in rats, and to assess the effect of Q3GA on drug-metabolizing enzymes (DMEs), drug transporters (DTs) and nuclear receptors (NRs). The pharmacokinetic parameters of CsA were measured following oral (10 mg/kg) and intravenous (2.5 mg/kg) administration of CsA in the presence or absence of Q3GA. The mRNA and protein expression levels of DMEs, DTs and NRs in the liver and small intestine were detected by quantitative polymerase chain reaction and western blot analysis. The results indicated that the intravenous administration of Q3GA (2.5, 5 or 10 mg/kg) for 7 consecutive days reduced the bioavailability of oral CsA. By contrast, the pharmacokinetics of the intravenous administration of CsA were not affected by Q3GA. However, the mRNA and protein expression levels of DMEs and DTs were inhibited by Q3GA. The activation of DMEs and DTs by NRs, and the interplay between DMEs and DTs, may explain these results. The present study identified a novel flavonoid-drug interaction, which may have implications for patients taking CsA and quercetin supplements or on a quercetin-containing diet.
Collapse
Affiliation(s)
- Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xixi Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Wan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
38
|
Elhennawy MG, Lin HS. Dose- and time-dependent pharmacokinetics of apigenin trimethyl ether. Eur J Pharm Sci 2018; 118:96-102. [PMID: 29574080 DOI: 10.1016/j.ejps.2018.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
Apigenin trimethyl ether (5,7,4'-trimethoxyflavone, ATE), one of the key polymethoxyflavones present in black ginger (rhizome of Kaempferia parviflora) possesses various health-promoting activities. To optimize its medicinal application, the pharmacokinetics of ATE was assessed in Sprague-Dawley rats with emphases to identify the impacts from dose and repeated dosing on its major pharmacokinetic parameters. Plasma ATE levels were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Upon single intravenous administration (2 mg/kg), plasma levels of ATE declined through an apparent first-order process while dose-escalation to 4 and 8 mg/kg led to its non-linear disposition, which could be described by the Michaelis-Menten model. Similarly, dose-dependent oral pharmacokinetics was confirmed and when the dose was escalated from 5 to 15 and 45 mg/kg, much longer mean residence time (MRT0→last), higher dose-normalized maximal plasma concentration (Cmax/Dose) and exposure (AUC/Dose) were observed at 15 and/or 45 mg/kg. One-week daily oral administration of ATE at 15 mg/kg caused its accelerated elimination and the plasma exposure (AUC) after intravenous (2 mg/kg) and oral administration (15 mg/kg) dropped ~40 and 60%, respectively. As ATE displayed both dose- and time-dependent pharmacokinetics, caution is needed in the medicinal applications of ATE and/or black ginger.
Collapse
Affiliation(s)
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore.
| |
Collapse
|
39
|
Qi C, Fu J, Zhao H, Xing H, Dong D, Wu B. Identification of UGTs and BCRP as potential pharmacokinetic determinants of the natural flavonoid alpinetin. Xenobiotica 2018; 49:276-283. [DOI: 10.1080/00498254.2018.1440657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chunli Qi
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Jiangnan Fu
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Huinan Zhao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Huijie Xing
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Dong Dong
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Chalet C, Hollebrands B, Janssen HG, Augustijns P, Duchateau G. Identification of phase-II metabolites of flavonoids by liquid chromatography–ion-mobility spectrometry–mass spectrometry. Anal Bioanal Chem 2017; 410:471-482. [DOI: 10.1007/s00216-017-0737-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/18/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
41
|
Jiang H, Yu J, Zheng H, Chen J, Wu J, Qi X, Wang Y, Wang X, Hu M, Zhu L, Liu Z. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Regulate the Disposition of Acacetin Glucuronides. Pharm Res 2017; 34:1402-1415. [PMID: 28421306 DOI: 10.1007/s11095-017-2157-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/31/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the mechanism responsible for acacetin glucuronide transport and the bioavailability of acacetin. METHODS Area under the curve (AUC), clearance (CL), half-life (T1/2) and other pharmacokinetic parameters were determined by the pharmacokinetic model. The excretion of acacetin glucuronides was evaluated by the mouse intestinal perfusion model and the Caco-2 cell model. RESULTS In pharmacokinetic studies, the bioavailability of acacetin in FVB mice was 1.3%. Acacetin was mostly exposed as acacetin glucuronides in plasma. AUC of acacetin-7-glucuronide (Aca-7-Glu) was 2-fold and 6-fold higher in Bcrp1 (-/-) mice and Mrp2 (-/-) mice, respectively. AUC of acacetin-5-glucuronide (Aca-5-Glu) was 2-fold higher in Bcrp1 (-/-) mice. In mouse intestinal perfusion, the excretion of Aca-7-Glu was decreased by 1-fold and 2-fold in Bcrp1 (-/-) and Mrp2 (-/-) mice, respectively. In Caco-2 cells, the efflux rates of Aca-7-Glu and Aca-5-Glu were significantly decreased by breast cancer resistance protein (BCRP) inhibitor Ko143 and multidrug resistance protein 2 (MRP2) inhibitor LTC4. The use of these inhibitors markedly increased the intracellular acacetin glucuronide content. CONCLUSIONS BCRP and MRP2 regulated the in vivo disposition of acacetin glucuronides. The coupling of glucuronidation and efflux transport was probably the primary reason for the low bioavailability of acacetin.
Collapse
Affiliation(s)
- Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haihui Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiamei Chen
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xinchun Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, 832008, China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Department of Pharmacological and Pharmaceutical Sciences College of Pharmacy, University of Houston, Houston, Texas, 77030, USA
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
42
|
Zhang Q, Zhu L, Gong X, Ruan Y, Yu J, Jiang H, Wang Y, Qi X, Lu L, Liu Z. Sulfonation Disposition of Acacetin: In Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4921-4931. [PMID: 28540728 DOI: 10.1021/acs.jafc.7b00854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acacetin, an important component of acacia honey, exerts extensive therapeutic effects on many cancers. However, the sulfonation disposition of acacetin has rarely been reported. Therefore, this study aimed to investigate the sulfonation disposition of acacetin systematically. The results showed that acacetin-7-sulfate was the main metabolite mediated primarily by sulfotransferases (SULT) 1A1. Dog liver S9 presented the highest formation rate of acacetin-7-sulfate. Compared with that in wild-type Friend Virus B (FVB) mice, plasma exposure of acacetin-7-sulfate decreased significantly in multidrug resistance protein 1 knockout (Mrp1-/-) mice vut increased clearly in breast cancer resistance protein knockout (Bcrp-/-) mice. In Caco-2 monolayers, the efflux and clearance of acacetin-7-sulfate was reduced distinctly by the BCRP inhibitor Ko143 on the apical side and by the MRP1 inhibitor MK571 on the basolateral side. In conclusion, acacetin sulfonation was mediated mostly by SULT1A1. Acacetin-7-sulfate was found to be transported mainly by BCRP and MRP1. Hence, SULT1A1, BCRP, and MRP1 are responsible for acacetin-7-sulfate exposure in vivo.
Collapse
Affiliation(s)
- Qisong Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - XiaoXiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| |
Collapse
|
43
|
Amawi H, Ashby CR, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what's limiting? CHINESE JOURNAL OF CANCER 2017. [PMID: 28629389 PMCID: PMC5477375 DOI: 10.1186/s40880-017-0217-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavonoids are polyphenols that are found in numerous edible plant species. Data obtained from preclinical and clinical studies suggest that specific flavonoids are chemo-preventive and cytotoxic against various cancers via a multitude of mechanisms. However, the clinical use of flavonoids is limited due to challenges associated with their effective use, including (1) the isolation and purification of flavonoids from their natural resources; (2) demonstration of the effects of flavonoids in reducing the risk of certain cancer, in tandem with the cost and time needed for epidemiological studies, and (3) numerous pharmacokinetic challenges (e.g., bioavailability, drug–drug interactions, and metabolic instability). Currently, numerous approaches are being used to surmount some of these challenges, thereby increasing the likelihood of flavonoids being used as chemo-preventive drugs in the clinic. In this review, we summarize the most important challenges and efforts that are being made to surmount these challenges.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43560, USA
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY, 11432, USA
| | - Amit K Tiwari
- Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43560, USA. .,Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
44
|
Jones RS, Parker MD, Morris ME. Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6. Mol Pharm 2017; 14:2930-2936. [PMID: 28513167 DOI: 10.1021/acs.molpharmaceut.7b00264] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monocarboxylate transporter 6 (MCT6; SLC16A5) has been recognized for its role as a xenobiotic transporter, with characterized substrates probenecid, bumetanide, and nateglinide. To date, the impact of commonly ingested dietary compounds on MCT6 function has not been investigated, and therefore, the objective of this study was to evaluate a variety of flavonoids for their potential MCT6-specific interactions. Flavonoids are a large group of polyphenolic phytochemicals found in commonly consumed plant-based products that have been recognized for their dietary health benefits. The uptake of bumetanide in human MCT6 gene-transfected Xenopus laevis oocytes was significantly decreased in the presence of a variety of flavonoids (e.g., quercetin, luteolin, phloretin, and morin), but was not significantly affected by flavonoid glycosides (e.g., naringin, rutin, phlorizin). The IC50 values of quercetin, phloretin, and morin were determined to be 25.3 ± 3.36, 17.3 ± 2.37, and 33.1 ± 3.29 μM, respectively. The mechanism of inhibition of phloretin was reversible and competitive, with a Ki value of 22.8 μM. Furthermore, typical MCT substrates were also investigated for their potential interactions with MCT6. Substrates of MCTs 1, 2, 4, 8, and 10 did not cause any significant decrease in MCT6-mediated bumetanide uptake, suggesting that MCT6 has distinct compound selectivity. In summary, these results suggest that dietary aglycon flavonoids may significantly alter the pharmacokinetics and pharmacodynamics of bumetanide and other MCT6-specific substrates, and may represent potential substrates for MCT6.
Collapse
Affiliation(s)
- Robert S Jones
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, and ‡Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, New York 14214, United States
| | - Mark D Parker
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, and ‡Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, New York 14214, United States
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, and ‡Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, New York 14214, United States
| |
Collapse
|
45
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
46
|
Yao Z, Li S, Qin Z, Hong X, Dai Y, Wu B, Ye W, Gonzalez FJ, Yao X. Characterization of human UDP-glucuronosyltransferases responsible for glucuronidation and inhibition of norbakuchinic acid, a primary metabolite of hepatotoxicity and nephrotoxicity component bakuchiol inPsoralea corylifolia L. RSC Adv 2017. [DOI: 10.1039/c7ra10376j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Norbakuchinic acid (NBKA) is the most abundant metabolite of bakuchiol (a hepatotoxicity and nephrotoxicity component inPsoralea corylifoliaL.) in plasma and urine.
Collapse
Affiliation(s)
- Zhihong Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Shishi Li
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Zifei Qin
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xiaodan Hong
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangzhou Research and Creativity Biotechnology Co. Ltd
| | - Yi Dai
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Baojian Wu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Wencai Ye
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Frank J. Gonzalez
- Laboratory of Metabolism
- Center for Cancer Research
- National Cancer Institute
- National Institutes of Health
- Bethesda
| | - Xinsheng Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| |
Collapse
|
47
|
Fusi F, Spiga O, Trezza A, Sgaragli G, Saponara S. The surge of flavonoids as novel, fine regulators of cardiovascular Ca v channels. Eur J Pharmacol 2016; 796:158-174. [PMID: 28012974 DOI: 10.1016/j.ejphar.2016.12.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/28/2023]
Abstract
Ion channels underlie a wide variety of physiological processes that involve rapid changes in cell dynamics, such as cardiac and vascular smooth muscle contraction. Overexpression or dysfunction of these membrane proteins are the basis of many cardiovascular diseases that represent the leading cause of morbidity and mortality for human beings. In the last few years, flavonoids, widely distributed in the plant kingdom, have attracted the interest of many laboratories as an emerging class of fine ion, in particular Cav, channels modulators. Pieces of in vitro evidence for direct as well as indirect effects exerted by various flavonoids on ion channel currents are now accumulating in the scientific literature. This activity may be responsible, at least in part, for the beneficial and protective effects of dietary flavonoids toward cardiovascular diseases highlighted in several epidemiological studies. Here we examine numerous studies aimed at analysing this feature of flavonoids, focusing on the mechanisms that promote their sometimes controversial activities at cardiovascular Cav channels. New methodological approaches, such as molecular modelling and docking to Cav1.2 channel α1c subunit, used to elucidate flavonoids intrinsic mechanism of action, are introduced. Moreover, flavonoid-membrane interaction, bioavailability, and antioxidant activity are taken into account and discussed.
Collapse
Affiliation(s)
- Fabio Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Giampietro Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
48
|
Liu Y, Luo X, Yang C, Yang T, Zhou J, Shi S. Impact of quercetin‑induced changes in drug‑metabolizing enzyme and transporter expression on the pharmacokinetics of cyclosporine in rats. Mol Med Rep 2016; 14:3073-85. [PMID: 27510982 PMCID: PMC5042751 DOI: 10.3892/mmr.2016.5616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to evaluate whether quercetin (Que) modulates the mRNA and protein expression levels of drug-metabolizing enzymes (DMEs) and drug transporters (DTs) in the small intestine and liver, and thus modifies the pharmacokinetic profile of cyclosporine (CsA) in rats. This two-part study evaluated the pharmacokinetic profiles of CsA in the presence or absence of Que (experiment I) and the involvement of DMEs and DTs (experiment II). In experiment I, 24 rats received single-dose CsA (10 mg/kg) on day 1, single-dose Que (25, 50 and 100 mg/kg/day; eight rats in each group) on days 3–8, and concomitant CsA/Que on day 9. In experiment II, the mRNA and protein expression levels of cytochrome P (CYP)3A1, CYP3A2, UDP glucuronosyltransferase family 1 member A complex locus, organic anion-transporting polypeptide (OATP)2B1, OATP1B2, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the small intestine and liver of rats were analyzed following oral administration of Que at 25, 50 and 100 mg/kg in the presence or absence of CsA (10 mg/kg) for seven consecutive days. Co-administration of Que (25,50 and 100 mg/kg) decreased the maximum serum concentration of CsA by 46, 50 and 47% in a dose-independent manner. In addition, the area under the curve to the last measurable concentration and area under the curve to infinite time were decreased, by 21 and 16%, 30 and 33%, and 33 and 34% (P<0.01), respectively. However, the mRNA and protein expression levels of the above-mentioned DMEs and DTs were inhibited by Que in a dose-dependent manner (P<0.01) to a similar extent in the small intestine and liver. It was demonstrated that Que was able to reduce the bioavailability of CsA following multiple concomitant doses in rats. Overlapping modulation of intestinal and hepatic DMEs and DTs, as well as the DME-DT interplay are potential explanations for these observations.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaomei Luo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
49
|
Yue S, Wu L, Wang J, Tang Y, Qu C, Shi X, Zhang P, Ge Y, Cao Y, Pang H, Shan C, Cui X, Qian L, Duan JA. Metabolic profile of anhydrosafflor yellow B in rats by ultra-fast liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1014:37-44. [DOI: 10.1016/j.jchromb.2016.01.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/09/2016] [Accepted: 01/30/2016] [Indexed: 12/26/2022]
|
50
|
Hashimoto N, Blumberg JB, Chen CYO. Hyperglycemia and Anthocyanin Inhibit Quercetin Metabolism in HepG2 Cells. J Med Food 2016; 19:141-7. [DOI: 10.1089/jmf.2015.0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Naoto Hashimoto
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
- Koshi Headquarters, National Agricultural Research Center for Kyushu Okinawa Region, Koshi, Kumamoto, Japan
- Memuro Research Station, National Agriculture Research Center for Hokkaido Region, Kasai, Hokkaido, Japan
| | - Jeffrey B. Blumberg
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - C.-Y. Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|