1
|
Lee H, Dhamija A, Gunnam A, Hwang I, Kim K. Enhancing the Chemical Stability of P 12L 24 Cage: Transformation of the Chemically Labile Imine Cage into a Robust Carbamate Cage. Chemistry 2024:e202403936. [PMID: 39530447 DOI: 10.1002/chem.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Herein, we report enhancement in chemical stability of the imine-based porphyrinic cage P12L24 by converting it into a robust carbamate porphyrinic cage, c-P12L24, through a two-step post-synthetic modification process. First, the imine bonds in P12L24 were reduced to form an amine-based cage, r-P12L24, followed by carbamation using N,N'-carbonyldiimidazole (CDI) to yield c-P12L24. The resulting carbamate cage exhibits high stability under acidic and basic conditions (pH 1-13) and in the presence of moisture. 1H NMR, DOSY NMR, and DFT calculations revealed that reducing the imine bonds to amine increases the framework's flexibility, causing partial structural collapse, whereas the carbamate formation restores structural rigidity. The insertion of a 4.0 nm molecular ruler into the cavity of zinc-metallated c-P12L24 via metal-ligand coordination further confirmed restoration of the cavity size and geometry of the original cage. This enhancement of chemical stability through carbamate formation can pave the way to a wide range of potential applications for the gigantic porphyrinic cage.
Collapse
Affiliation(s)
- Hochan Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Avinash Dhamija
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Anilkumar Gunnam
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ilha Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
2
|
Bokotial D, Acharyya K, Chowdhury A, Mukherjee PS. Pt(II)/Pd(II)-Based Metallosupramolecular Architectures as Light Harvesting Systems and their Applications. Angew Chem Int Ed Engl 2024; 63:e202401136. [PMID: 38379203 DOI: 10.1002/anie.202401136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
The development of artificial light-harvesting systems mimicking the natural photosynthesis method is an ever-growing field of research. Numerous systems such as polymers, metal complexes, POFs, COFs, supramolecular frameworks etc. have been fabricated to accomplish more efficient energy transfer and storage. Among them, the supramolecular coordination complexes (SCCs) formed by non-covalent metal-ligand interaction, have shown the capacity to not only undergo single and multistep energy migration but also to utilize the harvested energy for a wide variety of applications such as photocatalysis, tunable emissive systems, encrypted anti-counterfeiting materials, white light emitters etc. This review sheds light on the light-harvesting behavior of both the 2D metallacycles and 3D metallacages where design ingenuity has been executed to afford energy harvesting by both donor ligands as well as metal acceptors.
Collapse
Affiliation(s)
- Dikshit Bokotial
- Department of Industrial Chemistry, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Koushik Acharyya
- Department of Inorganic and Physical Chemistry, Indian Institution of Science, Bangalore, 560012, Karnataka
| | - Aniket Chowdhury
- Department of Industrial Chemistry, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institution of Science, Bangalore, 560012, Karnataka
| |
Collapse
|
3
|
Mohan M, Pham DJ, Fluck A, Chapuis S, Chaumont A, Kauffmann B, Barloy L, Mobian P. A Chiral [2+3] Covalent Organic Cage Based on 1,1'-Bi-2-naphthol (BINOL) Units. Chemistry 2024; 30:e202400458. [PMID: 38427204 DOI: 10.1002/chem.202400458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
A [2+3] chiral covalent organic cage is produced through a dynamic covalent chemistry approach by mixing two readily available building units, viz. an enantiopure 3,3'-diformyl 2,2'-BINOL compound (A) with a triamino spacer (B). The two enantiomeric (R,R,R) and (S,S,S) forms of the cage C are formed nearly quantitatively thanks to the reversibility of the imine linkage. The X-ray diffraction analysis of cage (S,S,S)-C highlights that the six OH functions of the BINOL fragments are positioned inside the cage cavity. Upon reduction of the imine bonds of cage C, the amine cage D is obtained. The ability of the cage D to host the 1-phenylethylammonium cation (EH+) as a guest is evaluated through UV, CD and DOSY NMR studies. A higher binding constant for (R)-EH+ cation (Ka=1.7 106±10 % M-1) related to (S)-EH+ (Ka=0.9 106±10 % M-1) is determined in the presence of the (R,R,R)-D cage. This enantiopreference is in close agreement with molecular dynamics simulation.
Collapse
Affiliation(s)
- Midhun Mohan
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - David-Jérôme Pham
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Audrey Fluck
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Simon Chapuis
- Laboratoire de Modélisation et Simulations Moléculaires, UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Alain Chaumont
- Laboratoire de Modélisation et Simulations Moléculaires, UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600, Pessac, France
| | - Laurent Barloy
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Pierre Mobian
- Laboratoire de Synthèse et Fonctions des Architectures Moléculaire (SFAM), UMR 7140 (CMC), Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| |
Collapse
|
4
|
Holsten M, Elbert SM, Rominger F, Zhang WS, Schröder RR, Mastalerz M. Single Crystals of Insoluble Porous Salicylimine Cages. Chemistry 2023; 29:e202302116. [PMID: 37577877 DOI: 10.1002/chem.202302116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Porous organic cages (POCs) are meanwhile an established class of porous materials. Most of them are soluble to a certain extend and thus processable in or from solution. However, a few of larger salicylimine cages were reported to be insoluble in any organic solvents and thus characterized as amorphous materials. These cages were now synthesized as single-crystalline materials to get insight into packing motifs and preferred intermolecular interactions. Furthermore, the pairs of crystalline and amorphous materials for each cage allowed to compare their gas-sorption properties in both morphological states.
Collapse
Affiliation(s)
- Mattes Holsten
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Wen-Shan Zhang
- Bioquant, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Rasmus R Schröder
- Bioquant, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages. Chem Sci 2023; 14:6631-6642. [PMID: 37350816 PMCID: PMC10284075 DOI: 10.1039/d3sc01174g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components via multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages. The progressive assembly of the final structures involves intermediates which undergo component selection and self-correction to generate the final thermodynamic constituents. The homo-self-sorting observed seems to involve entropic factors, as the homoleptic species present a higher symmetry than the competing heteroleptic ones. This study not only emphasizes the importance of an adequate design of the components of complex self-sorting systems, but also verifies the conjecture that systems of higher complexity may generate simpler outputs through the operation of competitive self-sorting.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
6
|
Abstract
Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.
Collapse
Affiliation(s)
- Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
7
|
Lauer JC, Bhat AS, Barwig C, Fritz N, Kirschbaum T, Rominger F, Mastalerz M. [2+3] Amide Cages by Oxidation of [2+3] Imine Cages – Revisiting Molecular Hosts for Highly Efficient Nitrate Binding. Chemistry 2022; 28:e202201527. [PMID: 35699158 PMCID: PMC9544679 DOI: 10.1002/chem.202201527] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/16/2022]
Abstract
The pollution of groundwater with nitrate is a serious issue because nitrate can cause several diseases such as methemoglobinemia or cancer. Therefore, selective removal of nitrate by efficient binding to supramolecular hosts is highly desired. Here we describe how to make [2+3] amide cages in very high to quantitative yields by applying an optimized Pinnick oxidation protocol for the conversion of corresponding imine cages. By NMR titration experiments of the eight different [2+3] amide cages with nitrate, chloride and hydrogen sulfate we identified one cage with an unprecedented high selectivity towards nitrate binding vs. chloride (S=705) or hydrogensulfate (S>13500) in CD2Cl2/CD3CN (1 : 3). NMR experiments as well as single‐crystal structure comparison of host‐guest complexes give insight into structure‐property‐relationships.
Collapse
Affiliation(s)
- Jochen C. Lauer
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Avinash S. Bhat
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Chantal Barwig
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Nathalie Fritz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
8
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
9
|
Fateh ST, Salehi-Najafabadi A. Repurposing of substances with lactone moiety for the treatment of γ-Hydroxybutyric acid and γ-Butyrolactone intoxication through modulating paraoxonase and PPARγ. Front Pharmacol 2022; 13:909460. [PMID: 35935832 PMCID: PMC9354891 DOI: 10.3389/fphar.2022.909460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
GHB and GBL are highly accessible recreational drugs of abuse with a high risk of adverse effects and mortality while no specific antidotes exist. These components can also be found in the clinical setting, beverages, and cosmetic products, leading to unwanted exposures and further intoxications. As the structural analogue of GABA, GHB is suggested as the primary mediator of GHB/GBL effects. We further suggest that GBL might be as critical as GHB in this process, acting through PPARγ as its receptor. Moreover, PPARγ and PON (i.e., the GHB-GBL converting enzyme) can be targeted for GHB/GBL addiction and intoxication, leading to modulation of the GHB-GBL balance and blockage of their effects. We suggest that repurposing substances with lactone moiety such as bacterial lactones, sesquiterpene lactones, and statins might lead to potential therapeutic options as they occupy the active sites of PPARγ and PON and interfere with the GHB-GBL balance. In conclusion, this hypothesis improves the GHB/GBL mechanism of action, suggests potential therapeutic options, and highlights the necessity of classifying GBL as a controlled substance.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
- *Correspondence: Amir Salehi-Najafabadi,
| |
Collapse
|
10
|
Uhrmacher F, Elbert SM, Rominger F, Mastalerz M. Synthesis of Large [2+3] Salicylimine Cages with Embedded Metal‐Salphen Units. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Uhrmacher
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
11
|
Woźny M, Mames A, Ratajczyk T. Triptycene Derivatives: From Their Synthesis to Their Unique Properties. Molecules 2021; 27:250. [PMID: 35011478 PMCID: PMC8746337 DOI: 10.3390/molecules27010250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Since the first preparation of triptycene, great progress has been made with respect to its synthesis and the understanding of its properties. Interest in triptycene-based systems is intense; in recent years, advances in the synthetic methodology and properties of new triptycenes have been reported by researchers from various fields of science. Here, an account of these new developments is given and placed in reference to earlier pivotal works that underpin the field. First, we discuss new approaches to the synthesis of new triptycenes. Progress in the regioselective synthesis of sterically demanding systems is discussed. The application of triptycenes in catalysis is also presented. Next, progress in the understanding of the relations between triptycene structures and their properties is discussed. The unique properties of triptycenes in the liquid and solid states are elaborated. Unique interactions, which involve triptycene molecular scaffolds, are presented. Molecular interactions within a triptycene unit, as well as between triptycenes or triptycenes and other molecules, are also evaluated. In particular, the summary of the synthesis and useful features will be helpful to researchers who are using triptycenes as building blocks in the chemical and materials sciences.
Collapse
Affiliation(s)
- Mateusz Woźny
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Gu MJ, Wang YF, Han Y, Chen CF. Recent advances on triptycene derivatives in supramolecular and materials chemistry. Org Biomol Chem 2021; 19:10047-10067. [PMID: 34751696 DOI: 10.1039/d1ob01818c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triptycene derivatives, a type of specific aromatic compound, have been attracting much attention in many research areas. Over the past several years, triptycene and its derivatives have been described to be useful and efficient building blocks for the design and synthesis of novel supramolecular acceptors, porous materials and luminescent materials with specific structures and properties. In this review, recent researches on triptycene derivatives in supramolecular and materials chemistry are summarized. Especially, the construction of a new type of macrocyclic arenes and organic cages with triptycene and its derivatives as building blocks are focused on, and their applications in molecular recognition, self-assembly and gas selective sorption are highlighted. Moreover, the applications of triptycene and its derivatives in porous organic materials and thermally activated delayed fluorescence (TADF) materials are also discussed.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds*. Angew Chem Int Ed Engl 2021; 60:17455-17463. [PMID: 33905140 PMCID: PMC8362030 DOI: 10.1002/anie.202102982] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Modular frameworks featuring well-defined pore structures in microscale domains establish tailor-made porous materials. For open molecular solids however, maintaining long-range order after desolvation is inherently challenging, since packing is usually governed by only a few supramolecular interactions. Here we report on two series of nanocubes obtained by co-condensation of two different hexahydroxy tribenzotriquinacenes (TBTQs) and benzene-1,4-diboronic acids (BDBAs) with varying linear alkyl chains in 2,5-position. n-Butyl groups at the apical position of the TBTQ vertices yielded soluble model compounds, which were analyzed by mass spectrometry and NMR spectroscopy. In contrast, methyl-substituted cages spontaneously crystallized as isostructural and highly porous solids with BET surface areas and pore volumes of up to 3426 m2 g-1 and 1.84 cm3 g-1 . Single crystal X-ray diffraction and sorption measurements revealed an intricate cubic arrangement of alternating micro- and mesopores in the range of 0.97-2.2 nm that are fine-tuned by the alkyl substituents at the BDBA linker.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Eva Köster
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Julian J. Holstein
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Niklas Keller
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Guido H. Clever
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Thomas Bein
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Florian Beuerle
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
14
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoretikuläre Kristallisation von hochporösen kubischen kovalentorganischen Käfigverbindungen**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Julian J. Holstein
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Niklas Keller
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Thomas Bein
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| |
Collapse
|
15
|
Wang W, Li C, Zhang H, Zhang J, Lu L, Jiang Z, Cui L, Liu H, Yan L, Ding Y. Enhancing the activity, selectivity, and recyclability of Rh/PPh3 system-catalyzed hydroformylation reactions through the development of a PPh3-derived quasi-porous organic cage as a ligand. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63746-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Holsten M, Feierabend S, Elbert SM, Rominger F, Oeser T, Mastalerz M. Soluble Congeners of Prior Insoluble Shape-Persistent Imine Cages. Chemistry 2021; 27:9383-9390. [PMID: 33848032 PMCID: PMC8362185 DOI: 10.1002/chem.202100666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/12/2022]
Abstract
One of the most applied reaction types to synthesize shape‐persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n‐hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.
Collapse
Affiliation(s)
- Mattes Holsten
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sarah Feierabend
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Oeser
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Schäfer N, Bühler M, Heyer L, Röhr MIS, Beuerle F. Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound*. Chemistry 2021; 27:6077-6085. [PMID: 33528845 PMCID: PMC8048910 DOI: 10.1002/chem.202005276] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/31/2021] [Indexed: 02/06/2023]
Abstract
A highly strained covalent organic cage compound was synthesized from hexahydroxy tribenzotriquinacene (TBTQ) and a meta-terphenyl-based diboronic acid with an additional benzoic acid substituent in 2'-position. Usually, a 120° bite angle in the unsubstituted ditopic linker favors the formation of a [4+6] cage assembly. Here, the introduction of the benzoic acid group is shown to lead to a perfectly preorganized circular hydrogen-bonding array in the cavity of a trigonal-bipyramidal [2+3] cage, which energetically overcompensates the additional strain energy caused by the larger mismatch in bite angles for the smaller assembly. The strained cage compound was analyzed by mass spectrometry and 1 H, 13 C and DOSY NMR spectroscopy. DFT calculations revealed the energetic contribution of the hydrogen-bonding template to the cage stability. Furthermore, molecular dynamics simulations on early intermediates indicate an additional kinetic effect, as hydrogen bonding also preorganizes and rigidifies small oligomers to facilitate the exclusive formation of smaller and more strained macrocycles and cages.
Collapse
Affiliation(s)
- Natalie Schäfer
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Michael Bühler
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Lisa Heyer
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Merle I. S. Röhr
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Florian Beuerle
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
18
|
The Ionic Organic Cage: An Effective and Recyclable Testbed for Catalytic CO2 Transformation. Catalysts 2021. [DOI: 10.3390/catal11030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porous organic cages (POC) are a class of relatively new molecular porous materials, whose concept was raised in 2009 by Cooper’s group and has rarely been directly used in the area of organic catalysis. In this contribution, a novel ionic quasi-porous organic cage (denoted as Iq-POC), a quaternary phosphonium salt, was easily synthesized through dynamic covalent chemistry and a subsequent nucleophilic addition reaction. Iq-POC was applied as an effective nucleophilic catalyst for the cycloaddition reaction of CO2 and epoxides. Owing to the combined effect of the relatively large molecular weight (compared with PPh3+I−) and the strong polarity of Iq-POC, the molecular catalyst Iq-POC displayed favorable heterogeneous nature (i.e., insolubility) in this catalytic system. Therefore, the Iq-POC catalyst could be easily separated and recycled by simple centrifugation method, and the catalyst could be reused five times without obvious loss of activity. The molecular weight augmentation route in this study (from PPh3+I− to Iq-POC) provided us a “cage strategy” of designing separable and recyclable molecular catalysts.
Collapse
|
19
|
Alexandre P, Zhang W, Rominger F, Elbert SM, Schröder RR, Mastalerz M. A Robust Porous Quinoline Cage: Transformation of a [4+6] Salicylimine Cage by Povarov Cyclization. Angew Chem Int Ed Engl 2020; 59:19675-19679. [PMID: 32521080 PMCID: PMC7689861 DOI: 10.1002/anie.202007048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Porous shape-persistent organic cages have become the object of interest in recent years because they are soluble and thus processable from solution. A variety of cages can be achieved by applying dynamic covalent chemistry (DCC), but they are less chemically stable. Here the transformation of a salicylimine cage into a quinoline cage by a twelve-fold Povarov reaction as the key step is described. Besides the chemical stability of the cage over a broad pH regime, it shows a unique absorption and emission depending on acid concentration. Furthermore, thin films for the vapor detection of acids were investigated, showing color switches from pale-yellow to red, and characteristic emission profiles.
Collapse
Affiliation(s)
- Pierre‐Emmanuel Alexandre
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Wen‐Shan Zhang
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Rasmus R. Schröder
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
20
|
Alexandre P, Zhang W, Rominger F, Elbert SM, Schröder RR, Mastalerz M. A Robust Porous Quinoline Cage: Transformation of a [4+6] Salicylimine Cage by Povarov Cyclization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pierre‐Emmanuel Alexandre
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Wen‐Shan Zhang
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Rasmus R. Schröder
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
21
|
Schaub TA, Prantl EA, Kohn J, Bursch M, Marshall CR, Leonhardt EJ, Lovell TC, Zakharov LN, Brozek CK, Waldvogel SR, Grimme S, Jasti R. Exploration of the Solid-State Sorption Properties of Shape-Persistent Macrocyclic Nanocarbons as Bulk Materials and Small Aggregates. J Am Chem Soc 2020; 142:8763-8775. [DOI: 10.1021/jacs.0c01117] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tobias A. Schaub
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Organic Chemistry, Ruprecht-Karls University of Heidelberg, Heidelberg 69120, Germany
| | - Ephraim A. Prantl
- Department of Organic Chemistry, Johannes Gutenberg-University Mainz, Mainz 55128, Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry, University Bonn, Bonn 53115, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, University Bonn, Bonn 53115, Germany
| | - Checkers R. Marshall
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Erik J. Leonhardt
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Terri C. Lovell
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Carl K. Brozek
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Siegfried R. Waldvogel
- Department of Organic Chemistry, Johannes Gutenberg-University Mainz, Mainz 55128, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University Bonn, Bonn 53115, Germany
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry and Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
22
|
Smith PT, Kim Y, Benke BP, Kim K, Chang CJ. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020; 59:4902-4907. [DOI: 10.1002/anie.201916131] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley CA 94720-1460 USA
| |
Collapse
|
23
|
Smith PT, Kim Y, Benke BP, Kim K, Chang CJ. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley CA 94720-1460 USA
| |
Collapse
|
24
|
Prantl E, Kohl B, Ryvlin D, Biegger P, Wadepohl H, Rominger F, Bunz UHF, Mastalerz M, Waldvogel SR. Microporous Triptycene-Based Affinity Materials on Quartz Crystal Microbalances for Tracing of Illicit Compounds. Chempluschem 2020; 84:1239-1244. [PMID: 31944043 DOI: 10.1002/cplu.201900189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/09/2019] [Indexed: 12/20/2022]
Abstract
Triptycene-based organic molecules of intrinsic microporosity (OMIMs) with extended functionalized π-surfaces are excellent materials for gas sorption and separation. In this study, the affinities of triptycene-based OMIM affinity materials on 195 MHz high-fundamental-frequency quartz crystal microbalances (HFF-QCMs) for hazardous and illicit compounds such as piperonal and (-)-norephedrine were determined. Both new and existing porous triptycene-based affinity materials were investigated, resulting in very high sensitivities and selectivities that could be applied for sensing purposes. Remarkable results were found for safrole - a starting material for illicit compounds such as ecstasy. A systematic approach highlights the effects of different size of π-surfaces of these affinity materials, allowing a classification of the properties that might be optimal for the design of future OMIM-based affinity materials.
Collapse
Affiliation(s)
- Ephraim Prantl
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bernd Kohl
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Dimitrij Ryvlin
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Philipp Biegger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 271, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Siegfried R Waldvogel
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
25
|
Sharma V, Chatterjee N, Srivastava P, De D, Bharadwaj PK. Peripheral Fluorophore Functionalized Shape‐Persistent [2+3] Organic Cage for Highly Selective Detection of Picric Acid. ChemistrySelect 2019. [DOI: 10.1002/slct.201901778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vivekanand Sharma
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Nabanita Chatterjee
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Payal Srivastava
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Dinesh De
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Parimal K. Bharadwaj
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
26
|
Acharyya K, Mukherjee PS. Organic Imine Cages: Molecular Marriage and Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900163] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Koushik Acharyya
- Department of Inorganic & Physical ChemistryIndian Institute of Science Bangalore 560 012 India
| | | |
Collapse
|
27
|
Acharyya K, Mukherjee PS. Organic Imine Cages: Molecular Marriage and Applications. Angew Chem Int Ed Engl 2019; 58:8640-8653. [PMID: 30725512 DOI: 10.1002/anie.201900163] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 12/25/2022]
Abstract
Imine condensation has been known to chemists for more than a century and is used extensively to synthesize large organic cages of defined shapes and sizes. Surprisingly, in the context of the synthetic methods for organic imine cages (OICs), a self-sorting/self-selection (molecular marriage) process has been overlooked over the years. Such processes are omnipresent in nature, from the creation of galaxies to the formation of the smallest building blocks of life (the cell). Such processes have the incredible ability to guide a system toward the formation of a specific product or products out of a collection of equally probable multiple possibilities. This Minireview sheds light on new opportunities in cage design offered by the self-sorting/self-selection protocol in OICs. Recent efforts to explore organic cages for various exciting new applications are discussed; for example, for detection of harmful small organic molecules, as templates for nucleation of metal nanoparticles (MNPs), and as proton-conducting materials.
Collapse
Affiliation(s)
- Koushik Acharyya
- Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
28
|
Wang F, Sikma E, Duan Z, Sarma T, Lei C, Zhang Z, Humphrey SM, Sessler JL. Shape-persistent pyrrole-based covalent organic cages: synthesis, structure and selective gas adsorption properties. Chem Commun (Camb) 2019; 55:6185-6188. [PMID: 31080980 DOI: 10.1039/c9cc02490e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two cryptand-like, shape persistent [2+3] imine cages (1 and 2) derived from oligopyrrolic precursors (diformyl dipyrrylpyridine 3 and diformyl bipyrrole 4) were prepared. These cages contain open cavities as inferred from solid state structural analyses and act as selective CO2 gas adsorbing materials in the solid state.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sturluson A, Huynh MT, York AHP, Simon CM. Eigencages: Learning a Latent Space of Porous Cage Molecules. ACS CENTRAL SCIENCE 2018; 4:1663-1676. [PMID: 30648150 PMCID: PMC6311689 DOI: 10.1021/acscentsci.8b00638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 05/22/2023]
Abstract
Porous organic cage molecules harbor nanosized cavities that can selectively adsorb gas molecules, lending them applications in separations and sensing. The geometry of the cavity strongly influences their adsorptive selectivity. For comparing cages and predicting their adsorption properties, we embed/encode a set of 74 porous organic cage molecules into a low-dimensional, latent "cage space" on the basis of their intrinsic porosity. We first computationally scan each cage to generate a three-dimensional (3D) image of its porosity. Leveraging the singular value decomposition, in an unsupervised manner, we then learn across all cages an approximate, lower-dimensional subspace in which the 3D porosity images congregate. The "eigencages" are the set of orthogonal, characteristic 3D porosity images that span this lower-dimensional subspace, ordered in terms of importance. A latent representation/encoding of each cage follows by approximately expressing it as a combination of the eigencages. We show that the learned encoding captures salient features of the cavities of porous cages and is predictive of properties of the cages that arise from cavity shape. Our methods could be applied to learn latent representations of cavities within other classes of porous materials and of shapes of molecules in general.
Collapse
|
30
|
Berardo E, Greenaway RL, Turcani L, Alston BM, Bennison MJ, Miklitz M, Clowes R, Briggs ME, Cooper AI, Jelfs KE. Computationally-inspired discovery of an unsymmetrical porous organic cage. NANOSCALE 2018; 10:22381-22388. [PMID: 30474677 DOI: 10.1039/c8nr06868b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A completely unsymmetrical porous organic cage was synthesised from a C2v symmetrical building block that was identified by a computational screen. The cage was formed through a 12-fold imine condensation of a tritopic C2v symmetric trialdehyde with a ditopic C2 symmetric diamine in a [4 + 6] reaction. The cage was rigid and microporous, as predicted by the simulations, with an apparent Brunauer-Emmett-Teller surface area of 578 m2 g-1. The reduced symmetry of the tritopic building block relative to its topicity meant there were 36 possible structural isomers of the cage. Experimental characterisation suggests a single isomer with 12 unique imine environments, but techniques such as NMR could not conclusively identify the isomer. Computational structural and electronic analysis of the possible isomers was used to identify the most likely candidates, and hence to construct a 3-dimensional model of the amorphous solid. The rational design of unsymmetrical cages using building blocks with reduced symmetry offers new possibilities in controlling the degree of crystallinity, porosity, and solubility, of self-assembled materials.
Collapse
Affiliation(s)
- Enrico Berardo
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mastalerz M. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function. Acc Chem Res 2018; 51:2411-2422. [PMID: 30203648 DOI: 10.1021/acs.accounts.8b00298] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The interest in shape-persistent organic cages is nearly as old as the interest in supramolecular chemistry. In the beginning, organic cages have often been synthesized in a stepwise manner, which is not only laborious but very often also accompanied by low overall yields. In 1988, MacDowell published the one pot high-yielding synthesis of [2 + 3] imine cages based on TREN and aromatic dialdehydes, exploiting the reversible condensation of amines and aldehydes to imines, which was later used by others to make even larger cages on the basis of resorcinarenes. In 2008, the synthesis and characterization of an adamantoid [4 + 6] imine cage by condensation of a C3 v-symmetric triaminotriptycene and commercially available 4- tert-butyl salicyldialdehyde was introduced by the author, which was the ignition of our group activities in this research area. In 2011, we published the first gas-sorption data for this [4 + 6] imine cage: with a measured specific surface area of SABET = 1377 m2/g according to the model of Brunauer-Emmett-Teller (BET) this was twice as high as for the reported smaller cages of Cooper. For a second desolvated polymorph of the same cage, an even higher SABET = 2071 m2/g was determined; still one of the highest surface areas until date for porous organic molecular materials. Subsequently, the influence of the substituent in 4-position of the salicyldialdehyde for the reaction to [4 + 6] imine cages was investigated as well as the role of the phenolic hydroxyl group. It turned out that the phenolic hydroxyl group is crucial as directing group to increase the formation of the cage as well as stabilize the structure by cyclic six-membered intramolecular hydrogen bonds. The concept was extended to other imine-based cages of different geometry and size. For instance, a [4 + 4] cubic structure from triptycene trissalicylaldehyde and triptycene triamine was accessible as an amorphous insoluble solid, able to adsorb 18.2 wt % CO2 at ambient conditions. To gain further insight into the structural needs of the molecular precursors, rigidity and preorientation of reacting sites were investigated on prismatic [2 + 3] and truncated tetrahedral [4 + 4] imine cages, showing that rigidity and preorientation is beneficial or even crucial for cage formation. Furthermore, chiral self-sorting was studied on the basic of racemic triamines. Besides imine condensation, we explored the reversible formation of boronic esters from boronic acids and diols. Triptycene tetraol with its 120° angle between the aromatic units has been used in the condensation with benzene triboronic acid to achieve a large cuboctahedral [12 + 8] cage with pore dimensions of 2 nm, which are by IUPAC definition mesoporous. After activation the measured specific surface area was SABET = 3758 m2/g, a number rarely achieved even for other porous compounds such as threedimensional framework materials. Smaller tetrahedral [4 + 6] boronic ester cages were synthesized too. These cages show a selective gas sorption with preference of saturated hydrocarbon ethane over ethylene and acetylene. What distinguishes porous materials derived from molecular cages from three-dimensional frameworks or networks the most is their solubility; thus, the cages are soluble porous units (SPUs) in a broader sense. Taking advantage of this, [4 + 6] imine cages were postfunctionalized in solution to change the gas sorption properties in the crystalline state. Furthermore, cage solutions were spray-coated onto quartz crystal microbalances to enhance affinity and selectivity for sensing of airborne analytes. In this Account, the contributions from our lab on porous organic cages are presented.
Collapse
Affiliation(s)
- Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Turcani L, Berardo E, Jelfs KE. stk: A python toolkit for supramolecular assembly. J Comput Chem 2018; 39:1931-1942. [PMID: 30247770 PMCID: PMC6585955 DOI: 10.1002/jcc.25377] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 01/08/2023]
Abstract
A tool for the automated assembly, molecular optimization and property calculation of supramolecular materials is presented. stk is a modular, extensible and open-source Python library that provides a simple Python API and integration with third party computational codes. stk currently supports the construction of linear polymers, small linear oligomers, organic cages in multiple topologies and covalent organic frameworks (COFs) in multiple framework topologies, but is designed to be easy to extend to new, unrelated, supramolecules or new topologies. Extension to metal-organic frameworks (MOFs), metallocycles or supramolecules, such as catenanes, would be straightforward. Through integration with third party codes, stk offers the user the opportunity to explore the potential energy landscape of the assembled supramolecule and then calculate the supramolecule's structural features and properties. stk provides support for high-throughput screening of large batches of supramolecules at a time. The source code of the program can be found at https://github.com/supramolecular-toolkit/stk. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lukas Turcani
- Department of ChemistryImperial College LondonSouth KensingtonSW7 2AZLondon
| | - Enrico Berardo
- Department of ChemistryImperial College LondonSouth KensingtonSW7 2AZLondon
| | - Kim E. Jelfs
- Department of ChemistryImperial College LondonSouth KensingtonSW7 2AZLondon
| |
Collapse
|
33
|
Greenaway RL, Santolini V, Bennison MJ, Alston BM, Pugh CJ, Little MA, Miklitz M, Eden-Rump EGB, Clowes R, Shakil A, Cuthbertson HJ, Armstrong H, Briggs ME, Jelfs KE, Cooper AI. High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nat Commun 2018; 9:2849. [PMID: 30030426 PMCID: PMC6054661 DOI: 10.1038/s41467-018-05271-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/21/2018] [Indexed: 02/05/2023] Open
Abstract
Supramolecular synthesis is a powerful strategy for assembling complex molecules, but to do this by targeted design is challenging. This is because multicomponent assembly reactions have the potential to form a wide variety of products. High-throughput screening can explore a broad synthetic space, but this is inefficient and inelegant when applied blindly. Here we fuse computation with robotic synthesis to create a hybrid discovery workflow for discovering new organic cage molecules, and by extension, other supramolecular systems. A total of 78 precursor combinations were investigated by computation and experiment, leading to 33 cages that were formed cleanly in one-pot syntheses. Comparison of calculations with experimental outcomes across this broad library shows that computation has the power to focus experiments, for example by identifying linkers that are less likely to be reliable for cage formation. Screening also led to the unplanned discovery of a new cage topology-doubly bridged, triply interlocked cage catenanes.
Collapse
Affiliation(s)
- R L Greenaway
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - V Santolini
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - M J Bennison
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - B M Alston
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - C J Pugh
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - M A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - M Miklitz
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - E G B Eden-Rump
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - R Clowes
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - A Shakil
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - H J Cuthbertson
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - H Armstrong
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - M E Briggs
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - K E Jelfs
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - A I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| |
Collapse
|
34
|
Shape-Persistent Tetrahedral [4+6] Boronic Ester Cages with Different Degrees of Fluoride Substitution. Chemistry 2018; 24:11438-11443. [DOI: 10.1002/chem.201802123] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Indexed: 12/18/2022]
|
35
|
Hashim MI, Le HTM, Chen TH, Chen YS, Daugulis O, Hsu CW, Jacobson AJ, Kaveevivitchai W, Liang X, Makarenko T, Miljanić OŠ, Popovs I, Tran HV, Wang X, Wu CH, Wu JI. Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics. J Am Chem Soc 2018; 140:6014-6026. [PMID: 29656637 DOI: 10.1021/jacs.8b02869] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous molecular crystals are an emerging class of porous materials that is unique in being built from discrete molecules rather than being polymeric in nature. In this study, we examined the effects of molecular structure of the precursors on the formation of porous solid-state structures with a series of 16 rigid aromatics. The majority of these precursors possess pyrazole groups capable of hydrogen bonding, as well as electron-rich aromatics and electron-poor tetrafluorobenzene rings. These precursors were prepared using a combination of Pd- and Cu-catalyzed cross-couplings, careful manipulations of protecting groups on the nitrogen atoms, and solvothermal syntheses. Our study varied the geometry and dimensions of precursors, as well as the presence of groups capable of hydrogen bonding and [π···π] stacking. Thirteen derivatives were crystallographically characterized, and four of them were found to be porous with surface areas between 283 and 1821 m2 g-1. Common to these four porous structures were (a) rigid trigonal geometry, (b) [π···π] stacking of electron-poor tetrafluorobenzenes with electron-rich pyrazoles or tetrazoles, and
Collapse
Affiliation(s)
- Mohamed I Hashim
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ha T M Le
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Teng-Hao Chen
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Yu-Sheng Chen
- Center for Advanced Radiation Source (ChemMatCARS) , The University of Chicago , c/o APS/ANL, 9700 South Cass Drive , Argonne , Illinois 60439 , United States
| | - Olafs Daugulis
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Chia-Wei Hsu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Allan J Jacobson
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States.,Texas Center for Superconductivity , 202 UH Science Center , Houston , Texas 77204-5002 , United States
| | - Watchareeya Kaveevivitchai
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Xiao Liang
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Tatyana Makarenko
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ognjen Š Miljanić
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ilja Popovs
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Hung Vu Tran
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Xiqu Wang
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Chia-Hua Wu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Judy I Wu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| |
Collapse
|
36
|
Beuerle F, Gole B. Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angew Chem Int Ed Engl 2018; 57:4850-4878. [DOI: 10.1002/anie.201710190] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Florian Beuerle
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) &; Bavarian Polymer Institute (BPI); Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Bappaditya Gole
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) &; Bavarian Polymer Institute (BPI); Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
37
|
Beuerle F, Gole B. Kovalente organische Netzwerke und Käfigverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerüsten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710190] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Florian Beuerle
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Deutschland
- Zentrum für Nanosystemchemie (CNC) &; Bayerisches Polymerinstitut (BPI); Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Bappaditya Gole
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Deutschland
- Zentrum für Nanosystemchemie (CNC) &; Bayerisches Polymerinstitut (BPI); Theodor-Boveri-Weg 97074 Würzburg Deutschland
| |
Collapse
|
38
|
Lauer JC, Zhang WS, Rominger F, Schröder RR, Mastalerz M. Shape-Persistent [4+4] Imine Cages with a Truncated Tetrahedral Geometry. Chemistry 2018; 24:1816-1820. [PMID: 29272048 PMCID: PMC5838406 DOI: 10.1002/chem.201705713] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 12/29/2022]
Abstract
The synthesis of shape-persistent organic cage compounds is often based on the usage of multiple dynamic covalent bond formation (such as imines) of readily available precursors. By careful choice of the precursors geometry, the geometry and size of the resulting cage can be accurately designed and indeed a number of different geometries and sizes have been realized to date. Despite of this fact, little is known about the precursors conformational rigidity and steric preorganization of reacting functional groups on the outcome of the reaction. Herein, the influence of conformational rigidity in the precursors on the formation of a [4+4] imine cage with truncated tetrahedral geometry is discussed.
Collapse
Affiliation(s)
- Jochen C Lauer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Wen-Shan Zhang
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Rasmus R Schröder
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
39
|
Zhang Y, Xiong Y, Ge J, Lin R, Chen C, Peng Q, Wang D, Li Y. Porous organic cage stabilised palladium nanoparticles: efficient heterogeneous catalysts for carbonylation reaction of aryl halides. Chem Commun (Camb) 2018; 54:2796-2799. [DOI: 10.1039/c7cc09918e] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Porous organic cage stabilised palladium nanoparticles were prepared using methanol as a mild reductant and displayed high catalytic activity for the carbonylation reaction of aryl halides under mild conditions.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
- Key Laboratory of Organo-pharmaceutical Chemistry
| | - Yu Xiong
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jin Ge
- Key Laboratory of Organo-pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Rui Lin
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chen Chen
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Qing Peng
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Dingsheng Wang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yadong Li
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
40
|
Zhang JH, Zhu PJ, Xie SM, Zi M, Yuan LM. Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography. Anal Chim Acta 2018; 999:169-175. [DOI: 10.1016/j.aca.2017.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/28/2022]
|
41
|
Stahlhofen JM, Schollmeyer D, Waldvogel SR. One-Pot Synthesis to Quinone-Based Diaza[3.3]cyclophanes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Marie Stahlhofen
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
42
|
Emandi G, Shaker YM, Flanagan KJ, O'Brien JM, Senge MO. Merging Triptycene, BODIPY and Porphyrin Chemistry: Synthesis and Properties of Mono- and Trisubstituted Triptycene Dye Arrays. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ganapathi Emandi
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
| | - Yasser M. Shaker
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
- Division of Pharmaceutical and Drug Industries; Department of Chemistry of Natural and Microbial Products; National Research Centre; Dokki Cairo Egypt
| | - Keith J. Flanagan
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
| | - Jessica M. O'Brien
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
| | - Mathias O. Senge
- SFI Tetrapyrrole Laboratory; School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; The University of Dublin; 152-160 Pearse Street 2 Dublin Ireland
| |
Collapse
|
43
|
Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications. SENSORS 2017; 17:s17092057. [PMID: 28885551 PMCID: PMC5621382 DOI: 10.3390/s17092057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023]
Abstract
Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor’s fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications.
Collapse
|
44
|
Pyka I, Nikl J, Schollmeyer D, Waldvogel SR. The Role of Side-Arms for Supramolecular Affinity Materials Based on 9,9′-Spirobifluorenes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Isabella Pyka
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Joachim Nikl
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
45
|
Cooper AI. Porous Molecular Solids and Liquids. ACS CENTRAL SCIENCE 2017; 3:544-553. [PMID: 28691065 PMCID: PMC5492258 DOI: 10.1021/acscentsci.7b00146] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 05/23/2023]
Abstract
Until recently, porous molecular solids were isolated curiosities with properties that were eclipsed by porous frameworks, such as metal-organic frameworks. Now molecules have emerged as a functional materials platform that can have high levels of porosity, good chemical stability, and, uniquely, solution processability. The lack of intermolecular bonding in these materials has also led to new, counterintuitive states of matter, such as porous liquids. Our ability to design these materials has improved significantly due to advances in computational prediction methods.
Collapse
|
46
|
Stobe C, Pyka I, Linke A, Müller S, Schnakenburg G, Waldvogel SR, Lützen A. Synthesis of 9,9'-Spirobifluorenes and 4,5-Diaza-9,9'-spirobifluorenes and Their Application as Affinity Materials for Quartz Crystal Microbalances. Chempluschem 2017; 82:758-769. [PMID: 31961518 DOI: 10.1002/cplu.201700105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/23/2022]
Abstract
Two different classes of aza analogues of 9,9'-spirobifluorenes have been synthesized. These were obtained by either furnishing the spirobifluorene with additional pyridyl moieties or by installing the aza function directly into the spirobifluorene core. These structurally rigid compounds were then evaluated as affinity materials for quartz crystal microbalances and proved to be highly potent for the detection of volatile organic compounds.
Collapse
Affiliation(s)
- Caroline Stobe
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Isabella Pyka
- Johannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Alexander Linke
- Johannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Sarah Müller
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Anorganische Chemie, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Siegfried R Waldvogel
- Johannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
47
|
Ryvlin D, Dumele O, Linke A, Fankhauser D, Schweizer WB, Diederich F, Waldvogel SR. Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances. Chempluschem 2017; 82:493-497. [DOI: 10.1002/cplu.201700077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/04/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Dimitrij Ryvlin
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Oliver Dumele
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Z urich Switzerland
| | - Alexander Linke
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Daniel Fankhauser
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Z urich Switzerland
| | - W. Bernd Schweizer
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Z urich Switzerland
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Z urich Switzerland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
48
|
Pyka I, Lubczyk D, Saiju MDS, Salbeck J, Waldvogel SR. Solvent-Adaptive Behavior of Oligospirobifluorenes at the Surface of Quartz Crystal Microbalances-A Conformational Process. Chempluschem 2017; 82:1116-1120. [DOI: 10.1002/cplu.201600583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Isabella Pyka
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Daniel Lubczyk
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Mandira D. S. Saiju
- Institute of Chemistry; University Kassel; Heinrich-Plett-Strasse 40 34132 Kassel Germany
| | - Josef Salbeck
- Institute of Chemistry; University Kassel; Heinrich-Plett-Strasse 40 34132 Kassel Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
49
|
Briggs ME, Cooper AI. A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:149-157. [PMID: 28111496 PMCID: PMC5241154 DOI: 10.1021/acs.chemmater.6b02903] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/01/2016] [Indexed: 06/01/2023]
Abstract
Porous organic cages present many opportunities in functional materials chemistry, but the synthetic challenges for these molecular solids are somewhat different from those faced in the areas of metal-organic frameworks, covalent-organic frameworks, or porous polymer networks. Here, we highlight the practical methods that we have developed for the design, synthesis, and characterization of imine porous organic cages using CC1 and CC3 as examples. The key points are transferable to other cages, and this perspective should serve as a practical guide to researchers who are new to this field.
Collapse
|
50
|
Hu XY, Zhang WS, Rominger F, Wacker I, Schröder RR, Mastalerz M. Transforming a chemically labile [2+3] imine cage into a robust carbamate cage. Chem Commun (Camb) 2017; 53:8616-8619. [DOI: 10.1039/c7cc03677a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Turning a pH labile porous cage into a highly pH stable porous organic cage by fixation with carbamate units.
Collapse
Affiliation(s)
- Xin-Yue Hu
- Organisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Wen-Shan Zhang
- Center for Advanced Materials
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Frank Rominger
- Organisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Irene Wacker
- Center for Advanced Materials
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Rasmus R. Schröder
- Center for Advanced Materials
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
- Cell Networks
| | - Michael Mastalerz
- Organisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg
- 69120 Heidelberg
- Germany
- Center for Advanced Materials
| |
Collapse
|