1
|
Kaur L, Mandal D. A density functional theory analysis of the C-H activation reactivity of iron(IV)-oxo complexes with an 'O' substituted tetramethylcyclam macrocycle. Dalton Trans 2024; 53:7527-7535. [PMID: 38597582 DOI: 10.1039/d4dt00063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this article, we present a meticulous computational study to foresee the effect of an oxygen-rich macrocycle on the reactivity for C-H activation. For this study, a widely studied nonheme Fe(IV)O molecule with a TMC (1,4,8,11-tetramethyl 1,4,8,11-tetraazacyclotetradecane) macrocycle that is equatorially attached to four nitrogen atoms (designated as N4) and acetonitrile as an axial ligand has been taken into account. For the goal of hetero-substitution, step-by-step replacement of the N4 framework with O atoms, i.e., N4, N3O1, N2O2, N1O3, and O4 systems, has been considered, and dihydroanthracene (DHA) has been used as the substrate. In order to neutralise the system and prevent the self-interaction error in DFT, triflate counterions have also been included in the calculations. The study of the energetics of these C-H bond activation reactions and the potential energy surfaces mapped therefore reveal that the initial hydrogen abstraction, which is the rate-determining step, follows the two-state reactivity (TSR) pattern, which means that the originally excited quintet state falls lower in the transition state and the product. The reaction follows the hydrogen atom transfer (HAT) mechanism, as indicated by the spin density studies. The results revealed a fascinating reactivity order, in which the reactivity increases with the enrichment of the oxygen atom in the equatorial position, namely the order follows N4 < N3O1 < N2O2 < N1O3 < O4. The impacts of oxygen substitution on quantum mechanical tunneling and the H/D kinetic isotope effect have also been investigated. When analysing the causes of this reactivity pattern, a number of variables have been identified, including the reactant-like transition structure, spin density distribution, distortion energy, and energies of the electron acceptor orbital, i.e., the energy of the LUMO (σ*z2), which validate the obtained outcome. Our results also show very good agreement with earlier combined experimental and theoretical studies considering TMC and TMCO-type complexes. The DFT predictions reported here will undoubtedly encourage experimental research in this biomimetic field, as they provide an alternative with higher reactivity in which heteroatoms can be substituted for the traditional nitrogen atom.
Collapse
Affiliation(s)
- Lovleen Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| |
Collapse
|
2
|
Nizou G, Garda Z, Molnár E, Esteban-Gómez D, Le Fur M, Fougère O, Rousseaux O, Platas-Iglesias C, Tripier R, Tircsó G, Beyler M. Exploring the Limits of Ligand Rigidification in Transition Metal Complexes with Mono- N-Functionalized Pyclen Derivatives. Inorg Chem 2024; 63:3931-3947. [PMID: 38348851 DOI: 10.1021/acs.inorgchem.3c04451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We report the synthesis of a new family of side-bridged pyclen ligands. The incorporation of an ethylene bridge between two adjacent nitrogen atoms was reached from the pyclen-oxalate precursor described previously. Three new side-bridged pyclen macrocycles, Hsb-3-pc1a, sb-3-pc1py, and Hsb-3-pc1pa, were obtained with the aim to assess their coordination properties toward Cu2+ and Zn2+ ions. We also prepared their nonreinforced analogues H3-pc1a, 3-pc1py, and H3-pc1pa as comparative benchmarks. The two series of ligands were characterized and their coordination properties were investigated in detail. The Zn2+ and Cu2+ complexes with the nonside-bridged series H3-pc1a, 3-pc1py, and H3-pc1pa were successfully isolated and their structures were assessed by X-ray diffraction studies. In the case of the side-bridged family, the synthesis of the complexes was far more difficult and, in some cases, unsuccessful. The results of our studies demonstrate that this difficulty is related to the extreme stiffening and basicity of such side-bridged pyclens.
Collapse
Affiliation(s)
- Gwladys Nizou
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Zoltán Garda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Enikő Molnár
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - David Esteban-Gómez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Mariane Le Fur
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Olivier Fougère
- Groupe Guerbet, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Olivier Rousseaux
- Groupe Guerbet, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| |
Collapse
|
3
|
Yamaguchi K, Isobe H, Shoji M, Kawakami T, Miyagawa K. The Nature of the Chemical Bonds of High-Valent Transition-Metal Oxo (M=O) and Peroxo (MOO) Compounds: A Historical Perspective of the Metal Oxyl-Radical Character by the Classical to Quantum Computations. Molecules 2023; 28:7119. [PMID: 37894598 PMCID: PMC10609222 DOI: 10.3390/molecules28207119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This review article describes a historical perspective of elucidation of the nature of the chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (M-O-O) compounds in chemistry and biology. The basic concepts and theoretical backgrounds of the broken-symmetry (BS) method are revisited to explain orbital symmetry conservation and orbital symmetry breaking for the theoretical characterization of four different mechanisms of chemical reactions. Beyond BS methods using the natural orbitals (UNO) of the BS solutions, such as UNO CI (CC), are also revisited for the elucidation of the scope and applicability of the BS methods. Several chemical indices have been derived as the conceptual bridges between the BS and beyond BS methods. The BS molecular orbital models have been employed to explain the metal oxyl-radical character of the M=O and M-O-O bonds, which respond to their radical reactivity. The isolobal and isospin analogy between carbonyl oxide R2C-O-O and metal peroxide LFe-O-O has been applied to understand and explain the chameleonic chemical reactivity of these compounds. The isolobal and isospin analogy among Fe=O, O=O, and O have also provided the triplet atomic oxygen (3O) model for non-heme Fe(IV)=O species with strong radical reactivity. The chameleonic reactivity of the compounds I (Cpd I) and II (Cpd II) is also explained by this analogy. The early proposals obtained by these theoretical models have been examined based on recent computational results by hybrid DFT (UHDFT), DLPNO CCSD(T0), CASPT2, and UNO CI (CC) methods and quantum computing (QC).
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- SANKEN, Osaka University, Ibaraki 567-0047, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Okayama, Japan;
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (M.S.); (K.M.)
| | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan;
| | - Koichi Miyagawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (M.S.); (K.M.)
| |
Collapse
|
4
|
Hagemann MM, Hedegård ED. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Chemistry 2023; 29:e202202379. [PMID: 36207279 PMCID: PMC10107554 DOI: 10.1002/chem.202202379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.
Collapse
Affiliation(s)
- Marlisa M. Hagemann
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| | - Erik D. Hedegård
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| |
Collapse
|
5
|
Kaur L, Mandal D. Role of "S" Substitution on C-H Activation Reactivity of Iron(IV)-Oxo Cyclam Complexes: a Computational Investigation. Inorg Chem 2022; 61:14582-14590. [PMID: 36069431 DOI: 10.1021/acs.inorgchem.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A comprehensive density functional theory (DFT) investigation has been presented in this article to address the role of equatorial sulfur ligation in C-H activation. A non-heme iron-oxo compound with four nitrogen atoms constituting the equatorially connected macrocyclic framework (represented as N4) [Fe(IV)═O(THC)(CH3CN)]2+(THC = 1,4,8,11-tetrahydro1,4,8,11-tetraazacyclotetradecane) has been considered as the base compound. Other complexes have been anticipated by the sequential replacement of this nitrogen by sulfur, that is, N4, N3S1, N2S2, N1S3, and S4. Counterions, as always, have been considered to avoid the self-interaction error in DFT. Generally, the anti-conformers (with respect to equatorial N-H and Fe═O) turned out to be the most stable. It was found that with the enrichment of the equatorial sulfur atom, reactivity increases successively, that is, we get the trend N4 < N3S1 < N2S2 < N1S3 < S4. Our investigations have also verified the available experimental results where it has been reported that N2S2 is more reactive than N4 in their mixed conformation. In search of insights into this typical pattern of reactivity, the interplay of several factors has been recognized, such as the distortion energy which decreases for the transition states with the addition of sulfur; the spin density on the oxygen atom which increases implying that the radical character of abstractor increases on sulfur ligation; the energy of the electron acceptor orbital (the lowest unoccupied molecular orbital (σz2*)) which decreases continuously with the sulfur substitution; and the triplet-quintet oxidant energy gap which decreases consistently with S enrichment in the equatorial position. The computational predictions reported here, if further validated by experiments, will definitely encourage the synthesis of sulfur-ligated bio-inspired complexes instead of the ones constituting nitrogen exclusively.
Collapse
Affiliation(s)
- Lovleen Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
6
|
Barona M, Johnson SI, Mbea M, Bullock RM, Raugei S. Computational Investigations of the Reactivity of Metalloporphyrins for Ammonia Oxidation. Top Catal 2022. [DOI: 10.1007/s11244-021-01511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Bleher K, Comba P, Faltermeier D, Gupta A, Kerscher M, Krieg S, Martin B, Velmurugan G, Yang S. Non-Heme-Iron-Mediated Selective Halogenation of Unactivated Carbon-Hydrogen Bonds. Chemistry 2022; 28:e202103452. [PMID: 34792224 PMCID: PMC9300152 DOI: 10.1002/chem.202103452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Oxidation of the iron(II) precursor [(L1 )FeII Cl2 ], where L1 is a tetradentate bispidine, with soluble iodosylbenzene (s PhIO) leads to the extremely reactive ferryl oxidant [(L1 )(Cl)FeIV =O]+ with a cis disposition of the chlorido and oxido coligands, as observed in non-heme halogenase enzymes. Experimental data indicate that, with cyclohexane as substrate, there is selective formation of chlorocyclohexane, the halogenation being initiated by C-H abstraction and the result of a rebound of the ensuing radical to an iron-bound Cl- . The time-resolved formation of the halogenation product indicates that this primarily results from s PhIO oxidation of an initially formed oxido-bridged diiron(III) resting state. The high yield of up to >70 % (stoichiometric reaction) as well as the differing reactivities of free Fe2+ and Fe3+ in comparison with [(L1 )FeII Cl2 ] indicate a high complex stability of the bispidine-iron complexes. DFT analysis shows that, due to a large driving force and small triplet-quintet gap, [(L1 )(Cl)FeIV =O]+ is the most reactive small-molecule halogenase model, that the FeIII /radical rebound intermediate has a relatively long lifetime (as supported by experimentally observed cage escape), and that this intermediate has, as observed experimentally, a lower energy barrier to the halogenation than the hydroxylation product; this is shown to primarily be due to steric effects.
Collapse
Affiliation(s)
- Katharina Bleher
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Peter Comba
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Dieter Faltermeier
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Ashutosh Gupta
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Marion Kerscher
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Saskia Krieg
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Bodo Martin
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Gunasekaran Velmurugan
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| | - Shuyi Yang
- Universität HeidelbergAnorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 27069120HeidelbergGermany
| |
Collapse
|
8
|
AlHaddad N, Lelong E, Suh JM, Cordier M, Lim MH, Royal G, Platas-Iglesias C, Bernard H, Tripier R. Copper(II) and Zinc(II) Complexation with N Ethylene hydroxycyclams and Consequences on the Macrocyclic Backbone Configuration. Dalton Trans 2022; 51:8640-8656. [DOI: 10.1039/d2dt00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a series of four cyclams and cross-bridged cyclams, N-functionalized by one hydroxyethyl arm, which may incorporate additional methyl(s) group(s). The Cu(II) and Zn(II) complexes of these ligands were...
Collapse
|
9
|
Lin YT, Ali HS, de Visser S. Biodegradation of herbicides by a plant nonheme iron dioxygenase: mechanism and selectivity of substrate analogues. Chemistry 2021; 28:e202103982. [PMID: 34911156 DOI: 10.1002/chem.202103982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Aryloxyalkanoate dioxygenases are unique herbicide biodegrading nonheme iron enzymes found in plants and hence, from environmental and agricultural point of view they are important and valuable. However, they often are substrate specific and little is known on the details of the mechanism and the substrate scope. To this end, we created enzyme models and calculate the mechanism for 2,4-dichlorophenoxyacetic acid biodegradation and 2-methyl substituted analogs by density functional theory. The work shows that the substrate binding is tight and positions the aliphatic group close to the metal center to enable a chemoselective reaction mechanism to form the C 2 -hydroxy products, whereas the aromatic hydroxylation barriers are well higher in energy. Subsequently, we investigated the metabolism of R - and S -methyl substituted inhibitors and show that these do not react as efficiently as 2,4-dichlorophenoxyacetic acid substrate due to stereochemical clashes in the active site and particularly for the R -isomer give high rebound barriers.
Collapse
Affiliation(s)
- Yen-Ting Lin
- UoM: The University of Manchester, Chemical Engineering and Analytical Science, UNITED KINGDOM
| | - Hafiz S Ali
- UoM: The University of Manchester, Chemistry, UNITED KINGDOM
| | - Samuel de Visser
- The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
10
|
Latifi R, Palluccio TD, Ye W, Minnick JL, Glinton KS, Rybak-Akimova EV, de Visser SP, Tahsini L. pH Changes That Induce an Axial Ligand Effect on Nonheme Iron(IV) Oxo Complexes with an Appended Aminopropyl Functionality. Inorg Chem 2021; 60:13821-13832. [PMID: 34291939 DOI: 10.1021/acs.inorgchem.1c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Taryn D Palluccio
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Wanhua Ye
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Kwame S Glinton
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Elena V Rybak-Akimova
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
11
|
Ramek M, Pejić J, Sabolović J. Structure prediction of neutral physiological copper(II) compounds with l-cysteine and l-histidine. J Inorg Biochem 2021; 223:111536. [PMID: 34274876 DOI: 10.1016/j.jinorgbio.2021.111536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/19/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Bis(aminoacidato)copper(II) [CuII(aa)2] coordination compounds are the physiological species of copper(II) amino acid compounds in blood plasma. Since there are no experimental data in the literature about the geometries that physiological CuII(aa)2 could form with l-cysteine (Cys), that is, for bis(l-cysteinato)copper(II) [Cu(Cys)2] and the ternary (l-histidinato)(l-cysteinato)copper(II) [Cu(His)(Cys)], this paper computationally examines the possible conformations that the two compounds could form with the Cys ligand having a protonated sulfur, as in the conventional zwitterion, which was determined to be prevailing in aqueous solution. These two amino acids can bind metals in a tridentate fashion and thus form many possible coordination patterns. Density functional calculations were performed for the conformational analyses in the gas phase and in implicitly modeled aqueous solution using a polarizable continuum model. Additionally, we examine which coordination mode, with thiol or thiolate group, is more stable. The Cys coordination via the amino N and carboxylato O atoms (a glycinato mode) is obtained as the most stable one in aqueous Cu(Cys)2, and also in Cu(His)(Cys) when the His glycinato or histaminato mode combines with the intact thiol group. Whereas the conformers with N and thiol S as the copper(II) donor atoms are predicted to be the least stable, those with the Cu-N and Cu-S(thiolate) bonding (and protonated carboxylato group) are the most stable. The differences are explained by different covalent and ionic contributions of Cu-S(thiol) vs. Cu-S(thiolate). The study can contribute to the insight into formation and reactivity of the copper(II) cysteinato complexes in solution.
Collapse
Affiliation(s)
- Michael Ramek
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Jelena Pejić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Jasmina Sabolović
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Lin YT, Ali HS, de Visser SP. Electrostatic Perturbations from the Protein Affect C-H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme. Chemistry 2021; 27:8851-8864. [PMID: 33978257 DOI: 10.1002/chem.202100791] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/08/2022]
Abstract
The nonheme iron dioxygenase 2-(trimethylammonio)-ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio- and chemoselective hydroxylation at the C1 -position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2 -H bond in favor of C1 -hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)-oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1 -hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1 -H and C2 -H bonds of the substrate, and strongly strengthens the C2 -H bond in the substrate-bound orientation.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hafiz Saqib Ali
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
13
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
14
|
Bagha UK, Satpathy JK, Mukherjee G, Sastri CV, de Visser SP. A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry. Org Biomol Chem 2021; 19:1879-1899. [PMID: 33406196 DOI: 10.1039/d0ob02204g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldehyde deformylation is an important reaction in biology, organic chemistry and inorganic chemistry and the process has been widely applied and utilized. For instance, in biology, the aldehyde deformylation reaction has wide differences in biological function, whereby cyanobacteria convert aldehydes into alkanes or alkenes, which are used as natural products for, e.g., defense mechanisms. By contrast, the cytochromes P450 catalyse the biosynthesis of hormones, such as estrogen, through an aldehyde deformylation reaction step. In organic chemistry, the aldehyde deformylation reaction is a common process for replacing functional groups on a molecule, and as such, many different synthetic methods and procedures have been reported that involve an aldehyde deformylation step. In bioinorganic chemistry, a variety of metal(iii)-peroxo complexes have been synthesized as biomimetic models and shown to react efficiently with aldehydes through deformylation reactions. This review paper provides an overview of the various aldehyde deformylation reactions in organic chemistry, biology and biomimetic model systems, and shows a broad range of different chemical reaction mechanisms for this process. Although a nucleophilic attack at the carbonyl centre is the consensus reaction mechanism, several examples of an alternative electrophilic reaction mechanism starting with hydrogen atom abstraction have been reported as well. There is still much to learn and to discover on aldehyde deformylation reactions, as deciphered in this review paper.
Collapse
Affiliation(s)
- Umesh Kumar Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Sam P de Visser
- Manchester Institute of Biotechnology and the Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
15
|
Yamamoto M, Takahashi K, Ohwada M, Wu Y, Iwase K, Hayasaka Y, Konaka H, Cove H, Di Tommaso D, Kamiya K, Maruyama J, Tani F, Nishihara H. Iron porphyrin-derived ordered carbonaceous frameworks. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Ali HS, Henchman RH, Warwicker J, de Visser SP. How Do Electrostatic Perturbations of the Protein Affect the Bifurcation Pathways of Substrate Hydroxylation versus Desaturation in the Nonheme Iron-Dependent Viomycin Biosynthesis Enzyme? J Phys Chem A 2021; 125:1720-1737. [DOI: 10.1021/acs.jpca.1c00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Richard H. Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
17
|
Ali HS, Henchman RH, de Visser SP. What Determines the Selectivity of Arginine Dihydroxylation by the Nonheme Iron Enzyme OrfP? Chemistry 2020; 27:1795-1809. [PMID: 32965733 DOI: 10.1002/chem.202004019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The nonheme iron enzyme OrfP reacts with l-Arg selectively to form the 3R,4R-dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. To understand the mechanisms of dioxygen activation of l-Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we performed a density functional theory study on a large active site cluster model. We show that substrate binding and positioning in the active site guides a highly selective reaction through C3 -H hydrogen atom abstraction. This happens despite the fact that the C3 -H and C4 -H bond strengths of l-Arg are very similar. Electronic differences in the two hydrogen atom abstraction pathways drive the reaction with an initial C3 -H activation to a low-energy 5 σ-pathway, while substrate positioning destabilizes the C4 -H abstraction and sends it over the higher-lying 5 π-pathway. We show that substrate and monohydroxylated products are strongly bound in the substrate binding pocket and hence product release is difficult and consequently its lifetime will be long enough to trigger a second oxygenation cycle.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
18
|
Ekanayake DM, Fischer AA, Elwood ME, Guzek AM, Lindeman SV, Popescu CV, Fiedler AT. Nonheme iron-thiolate complexes as structural models of sulfoxide synthase active sites. Dalton Trans 2020; 49:17745-17757. [PMID: 33241840 PMCID: PMC7781232 DOI: 10.1039/d0dt03403g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two mononuclear iron(ii)-thiolate complexes have been prepared that represent structural models of the nonheme iron enzymes EgtB and OvoA, which catalyze the O2-dependent formation of carbon-sulfur bonds in the biosynthesis of thiohistidine compounds. The series of Fe(ii) complexes reported here feature tripodal N4 chelates (LA and LB) that contain both pyridyl and imidazolyl donors (LA = (1H-imidazol-4-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine; LB = N,N-bis((1-methylimidazol-2-yl)methyl)-2-pyridylmethylamine). Further coordination with monodentate aromatic or aliphatic thiolate ligands yielded the five-coordinate, high-spin Fe(ii) complexes [FeII(LA)(SMes)]BPh4 (1) and [FeII(LB)(SCy)]BPh4 (2), where SMes = 2,4,6-trimethylthiophenolate and SCy = cyclohexanethiolate. X-ray crystal structures revealed that 1 and 2 possess trigonal bipyramidal geometries formed by the N4S ligand set. In each case, the thiolate ligand is positioned cis to an imidazole donor, replicating the arrangement of Cys- and His-based substrates in the active site of EgtB. The geometric and electronic structures of 1 and 2 were analyzed with UV-vis absorption and Mössbauer spectroscopies in tandem with density functional theory (DFT) calculations. Exposure of 1 and 2 to nitric oxide (NO) yielded six-coordinate FeNO adducts that were characterized with infrared and electron paramagnetic resonance (EPR) spectroscopies, confirming that these complexes are capable of binding diatomic molecules. Reaction of 1 and 2 with O2 causes oxidation of the thiolate ligands to disulfide products. The implications of these results for the development of functional models of EgtB and OvoA are discussed.
Collapse
|
19
|
Cove H, Toroz D, Di Tommaso D. The effect of the oxidation state of the metal center in metalloporphyrins on the electrocatalytic CO2-to-CO conversion: A density functional theory study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Nasibipour M, Safaei E, Wojtczak A, Jagličić Z, Galindo A, Masoumpour MS. A biradical oxo-molybdenum complex containing semiquinone and o-aminophenol benzoxazole-based ligands. RSC Adv 2020; 10:40853-40866. [PMID: 35519205 PMCID: PMC9059147 DOI: 10.1039/d0ra06351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
We report a new mononuclear molybdenum(iv) complex, MoOLBISLSQ, in which LSQ (2,4-di-tert-butyl o-semibenzoquinone ligand) has been prepared from the reaction of the o-iminosemibenzoquinone form of a tridentate non-innocent benzoxazole ligand, LBIS, and MoO2(acac)2. The complex was characterized by X-ray crystallography, elemental analysis, IR and UV-vis spectroscopy and magnetic susceptibility measurements. The crystal structure of MoOLBISLSQ revealed a distorted octahedral geometry around the metal centre, surrounded by one O and two N atoms of LBIS and two O atoms of LSQ. The effective magnetic moment (μ eff) of MoOLBISLSQ decreased from 2.36 to 0.2 μB in the temperature range of 290 to 2 K, indicating a singlet ground state caused by antiferromagnetic coupling between the metal and ligand centred unpaired electrons. Also, the latter led to the EPR silence of the complex. Cyclic voltammetry (CV) studies indicate both ligand and metal-centered redox processes. MoOLBISLSQ was applied as a catalyst for the oxidative cleavage of cyclohexene to adipic acid and selective oxidation of sulfides to sulfones with aqueous hydrogen peroxide.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana Jadranska 19 Ljubljana Slovenia
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla Aptdo. 1203 41071 Sevilla Spain
| | | |
Collapse
|
21
|
Sen A, Vyas N, Pandey B, Rajaraman G. Deciphering the mechanism of oxygen atom transfer by non-heme Mn IV-oxo species: an ab initio and DFT exploration. Dalton Trans 2020; 49:10380-10393. [PMID: 32613212 DOI: 10.1039/d0dt01785j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxygen atom transfer (OAT) reactions employing transition metal-oxo species have tremendous significance in homogeneous catalysis for industrial use. Understanding the structural and mechanistic aspects of OAT reactions using high-valent metal-oxo species is of great importance to fine-tune their reactivity. Herein we examine the reactivity of a non-heme high-valent oxo-manganese(iv) complex, [MnIVH3buea(O)]- towards a variety of substrates such as PPh2Me, PPhMe2, PCy3, PPh3, and PMe3 using density functional theory as well as ab initio CASSCF/NEVPT2 methods. We have initially explored the structure and bonding of [MnIVH3buea(O)]- and its congener [MnIVH3buea(S)]-. Our calculations affirm an S = 3/2 ground state of the catalyst with the S = 5/2 and S = 1/2 excited states predicted to be too high lying in energy to participate in the reaction mechanism. Our ab initio CASSCF/NEVPT2 calculations, however, reveal a strong multi-reference character for the ground S = 3/2 state with many low-lying quartets mixing significantly with the ground state. This opens up various reaction channels, and the admixed wave-function evolves during the reaction with the excited triplet dominating the ground state wave-function at the reactant complex. Our calculations predict the following pattern of reactivity, PCy3 < PMe3 < PPh3 < PPhMe2 < PPh2Me for the OAT reaction with the MnIV[double bond, length as m-dash]O species which correlates well with the experimental observations. Detailed electronic structure analysis of the transitions states reveal that these substrates react via an unusual low-energy δ-type pathway where a spin-up electron from the substrate is transferred to the δ*x2-y2 orbital of the MnIV[double bond, length as m-dash]O facilitated by its multi-reference character. The unusual reactivity observed here has implications in understanding the reactivity of [Mn4Ca] species in photosystem II.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | | | | | | |
Collapse
|
22
|
Sen A, Vyas N, Pandey B, Jaccob M, Rajaraman G. Mechanistic Insights on the Formation of High‐Valent Mn
III/IV
=O Species Using Oxygen as Oxidant: A Theoretical Perspective. Isr J Chem 2020. [DOI: 10.1002/ijch.201900142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Asmita Sen
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Nidhi Vyas
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| | - Bhawana Pandey
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Madhavan Jaccob
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
- Department of chemistry Loyola College Chennai 600 034
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
23
|
Properties and reactivity of μ-nitrido-bridged dimetal porphyrinoid complexes: how does ruthenium compare to iron? J Biol Inorg Chem 2019; 24:1127-1134. [PMID: 31560098 DOI: 10.1007/s00775-019-01725-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022]
Abstract
Methane hydroxylation by metal-oxo oxidants is one of the Holy Grails in biomimetic and biotechnological chemistry. The only enzymes known to perform this reaction in Nature are iron-containing soluble methane monooxygenase and copper-containing particulate methane monooxygenase. Furthermore, few biomimetic iron-containing oxidants have been designed that can hydroxylate methane efficiently. Recent studies reported that μ-nitrido-bridged diiron(IV)-oxo porphyrin and phthalocyanine complexes hydroxylate methane to methanol efficiently. To find out whether the reaction rates are enhanced by replacing iron by ruthenium, we performed a detailed computational study. Our work shows that the μ-nitrido-bridged diruthenium(IV)-oxo reacts with methane via hydrogen atom abstraction barriers that are considerably lower in energy (by about 5 kcal mol‒1) as compared to the analogous diiron(IV)-oxo complex. An analysis of the electronic structure implicates similar spin and charge distributions for the diiron(IV)-oxo and diruthenium(IV)-oxo complexes, but the strength of the O‒H bond formed during the reaction is much stronger for the latter. As such a larger hydrogen atom abstraction driving force for the Ru complex than for the Fe complex is found, which should result in higher reactivity in the oxidation of methane.
Collapse
|
24
|
Quesne MG, Silveri F, de Leeuw NH, Catlow CRA. Advances in Sustainable Catalysis: A Computational Perspective. Front Chem 2019; 7:182. [PMID: 31032245 PMCID: PMC6473102 DOI: 10.3389/fchem.2019.00182] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Abstract
The enormous challenge of moving our societies to a more sustainable future offers several exciting opportunities for computational chemists. The first principles approach to "catalysis by design" will enable new and much greener chemical routes to produce vital fuels and fine chemicals. This prospective outlines a wide variety of case studies to underscore how the use of theoretical techniques, from QM/MM to unrestricted DFT and periodic boundary conditions, can be applied to biocatalysis and to both homogeneous and heterogenous catalysts of all sizes and morphologies to provide invaluable insights into the reaction mechanisms they catalyze.
Collapse
|
25
|
Rajput A, Saha A, Barman SK, Lloret F, Mukherjee R. [Cu II{(L ISQ)˙ -} 2] (H 2L: thioether-appended o-aminophenol ligand) monocation triggers change in donor site from N 2O 2 to N 2O (2)S and valence-tautomerism. Dalton Trans 2019; 48:1795-1813. [PMID: 30644480 DOI: 10.1039/c8dt03778g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using a potentially tridentate o-aminophenol-based redox-active ligand H2L1 (2-[2-(benzylthio)phenylamino]-4,6-di-tert-butylphenol) in its deprotonated form, [Cu(L1)2] has been synthesized and crystallized as [CuII(L1)2]·CH2Cl2 (1·CH2Cl2). A cyclic voltammetry experiment (in CH2Cl2; V vs. SCE (saturated calomel electrode)) on 1·CH2Cl2 exhibits two oxidative (E = 0.20 V (peak-to-peak separation, ΔEp = 100 mV) and E = 0.90 V (ΔEp = 140 mV)) and two reductive (E = -0.52 V (ΔEp = 110 mV) and E = -0.92 V (ΔEp = 120 mV)) responses. Upon oxidation using a stoichiometric amount of [FeIII(η5-C5H5)2](PF6), 1·CH2Cl2 yielded [Cu(L1)2](PF6) (2). Structural analysis (100 K) reveals that 1·CH2Cl2 is a four-coordinate bis(iminosemiquinonato)copper(ii) complex (CuN2O2 coordination), and that the thioethers remain uncoordinated. The twisted geometry of 1 (distorted tetrahedral) results in considerable changes in the electronic structure, compared to well-known square-planar analogues. Crystallographic analysis of 2 both at 100 K and at 293 K reveals that it is effectively a four-coordinate complex with a CuN2OS coordination; however, a substantial interaction with the other phenolate O is observed. The metal-ligand bond distances and metric parameters associated with the o-aminophenolate rings indicate a valence-tautomeric (VT) equilibrium involving monocationic (iminosemiquinonato)(iminoquinone)copper(ii) and bis(iminoquinone)copper(i). Complex 1·CH2Cl2 is a three-spin system and a magnetic study (4-300 K) established that it has a S = 1/2 ground-state, owing to the strong antiferromagnetic coupling between the unpaired spin of the copper(ii) and the iminosemiquinonate(1-) π-radical anion. Electron paramagnetic resonance (EPR) spectral studies corroborate this result. Complex 2 is diamagnetic and the existence of VT in 2 was probed using variable-temperature (248-328 K) 1H NMR and EPR (100-298 K) spectral measurements and X-ray photoelectron spectroscopic studies at 298 K. Remarkably, modification of the well-studied 2-anilino-4,6-di-tert-butylphenol by incorporation of a benzylthioether arm leads to the occurrence of VT in 2. The electronic structure of 1·CH2Cl2 and 2 has been assigned using density functional theory (DFT) calculations at the B3LYP-D3 level of theory. Time-dependent (TD)-DFT calculations have been performed to elucidate the origin of the observed UV-VIS-NIR absorptions.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Basic and Applied Sciences, School of Engineering, G. D. Goenka University, Sohna Road, Gurugram 122 103, Haryana, India
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia, Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | | |
Collapse
|
26
|
Pickl M, Kurakin S, Cantú Reinhard FG, Schmid P, Pöcheim A, Winkler CK, Kroutil W, de Visser SP, Faber K. Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity. ACS Catal 2019; 9:565-577. [PMID: 30637174 PMCID: PMC6323616 DOI: 10.1021/acscatal.8b03733] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/04/2018] [Indexed: 02/05/2023]
Abstract
![]()
The
majority of cytochrome P450 enzymes (CYPs) predominantly operate
as monooxygenases, but recently a class of P450 enzymes was discovered,
that can act as peroxygenases (CYP152). These enzymes convert fatty
acids through oxidative decarboxylation, yielding terminal alkenes,
and through α- and β-hydroxylation to yield hydroxy-fatty
acids. Bioderived olefins may serve as biofuels, and hence understanding
the mechanism and substrate scope of this class of enzymes is important.
In this work, we report on the substrate scope and catalytic promiscuity
of CYP OleTJE and two of its orthologues from the CYP152
family, utilizing α-monosubstituted branched carboxylic acids.
We identify α,β-desaturation as an unexpected dominant
pathway for CYP OleTJE with 2-methylbutyric acid. To rationalize
product distributions arising from α/β-hydroxylation,
oxidative decarboxylation, and desaturation depending on the substrate’s
structure and binding pattern, a computational study was performed
based on an active site complex of CYP OleTJE containing
the heme cofactor in the substrate binding pocket and 2-methylbutyric
acid as substrate. It is shown that substrate positioning determines
the accessibility of the oxidizing species (Compound I) to the substrate
and hence the regio- and chemoselectivity of the reaction. Furthermore,
the results show that, for 2-methylbutyric acid, α,β-desaturation
is favorable because of a rate-determining α-hydrogen atom abstraction,
which cannot proceed to decarboxylation. Moreover, substrate hydroxylation
is energetically impeded due to the tight shape and size of the substrate
binding pocket.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Sara Kurakin
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Philipp Schmid
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Alexander Pöcheim
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Christoph K. Winkler
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, A-8010 Graz, Austria
| | - Wolfgang Kroutil
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
27
|
Timmins A, Fowler NJ, Warwicker J, Straganz GD, de Visser SP. Does Substrate Positioning Affect the Selectivity and Reactivity in the Hectochlorin Biosynthesis Halogenase? Front Chem 2018; 6:513. [PMID: 30425979 PMCID: PMC6218459 DOI: 10.3389/fchem.2018.00513] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
In this work we present the first computational study on the hectochlorin biosynthesis enzyme HctB, which is a unique three-domain halogenase that activates non-amino acid moieties tethered to an acyl-carrier, and as such may have biotechnological relevance beyond other halogenases. We use a combination of small cluster models and full enzyme structures calculated with quantum mechanics/molecular mechanics methods. Our work reveals that the reaction is initiated with a rate-determining hydrogen atom abstraction from substrate by an iron (IV)-oxo species, which creates an iron (III)-hydroxo intermediate. In a subsequent step the reaction can bifurcate to either halogenation or hydroxylation of substrate, but substrate binding and positioning drives the reaction to optimal substrate halogenation. Furthermore, several key residues in the protein have been identified for their involvement in charge-dipole interactions and induced electric field effects. In particular, two charged second coordination sphere amino acid residues (Glu223 and Arg245) appear to influence the charge density on the Cl ligand and push the mechanism toward halogenation. Our studies, therefore, conclude that nonheme iron halogenases have a chemical structure that induces an electric field on the active site that affects the halide and iron charge distributions and enable efficient halogenation. As such, HctB is intricately designed for a substrate halogenation and operates distinctly different from other nonheme iron halogenases.
Collapse
Affiliation(s)
- Amy Timmins
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| | - Nicholas J. Fowler
- The Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- The Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Grit D. Straganz
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Institute of Molecular Biosciences, Graz University, Graz, Austria
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
Hofer TS, de Visser SP. Editorial: Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems - Recent Developments and Advanced Applications. Front Chem 2018; 6:357. [PMID: 30271768 PMCID: PMC6146044 DOI: 10.3389/fchem.2018.00357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Sam P de Visser
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
29
|
Xu K, Hirao H. Revisiting the catalytic mechanism of Mo-Cu carbon monoxide dehydrogenase using QM/MM and DFT calculations. Phys Chem Chem Phys 2018; 20:18938-18948. [PMID: 29744484 DOI: 10.1039/c8cp00858b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous density functional theory (DFT) studies have shown that the release of the produced carbon dioxide (CO2) from an active-site cluster is a thermodynamically or kinetically difficult step in the enzymatic carbon monoxide (CO) oxidation catalyzed by Mo-Cu carbon monoxide dehydrogenase (Mo-Cu CODH). To better understand the effect of the protein environment on this difficult CO2 release step as well as other reaction steps, we applied hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to the Mo-Cu CODH enzyme. The results show that in the first step, the equatorial Mo[double bond, length as m-dash]O group in the active-site cluster attacks the nearby CO molecule bound to the Cu site. Afterward, a stable thiocarbonate intermediate is formed in which the CO2 molecule is embedded and the copper-S(μ-sulfido) bond is broken. A free CO2 molecule, i.e., the final product, is then released from the active-site cluster, not directly from the thiocarbonate intermediate but via a previously formed intermediate that also contains CO2 but retains the Cu-S(μ-sulfido) bond. In contrast to the previous DFT results, the calculated barrier for this process was low in our QM/MM calculations. An additional QM/MM analysis of the barrier height showed that the effect of the protein environment on this barrier lowering is not very large. We found that the reason for the low barrier obtained by QM/MM is that the barrier for CO2 release is already not high at the DFT level. These results allow us to conclude that the CO oxidation reaction passes through the formation of a thiocarbonate intermediate, and that the subsequent CO2 release is kinetically not difficult. Nevertheless, the protein environment has an important role to play in making the latter process thermodynamically favored. No low-barrier pathway for the product release could be obtained for the reaction of n-butylisocyanide, which is consistent with the experimental fact that n-butylisocyanide inhibits Mo-Cu CODH.
Collapse
Affiliation(s)
- Kai Xu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | | |
Collapse
|
30
|
Abdizadeh H, Atilgan AR, Atilgan C, Dedeoglu B. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins. Metallomics 2018; 9:1513-1533. [PMID: 28967944 DOI: 10.1039/c7mt00216e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the advances in three-dimensional structure determination techniques, high quality structures of the iron transport proteins transferrin and the bacterial ferric binding protein (FbpA) have been deposited in the past decade. These are proteins of relatively large size, and developments in hardware and software have only recently made it possible to study their dynamics using standard computational resources. We review computational techniques towards understanding the equilibrium and kinetic properties of iron transport proteins under different environmental conditions. At the level of detail that requires quantum chemical treatments, the octahedral geometry around iron has been scrutinized and it has been established that the iron coordinating tyrosines are in an unusual deprotonated state. At the atomistic level, both the N-lobe and the full bilobal structure of transferrin have been studied under varying conditions of pH, ionic strength and binding of other metal ions by molecular dynamics (MD) simulations. These studies have allowed questions to be answered, among others, on the function of second shell residues in iron release, the role of synergistic anions in preparing the active site for iron binding, and the differences between the kinetics of the N- and the C-lobe. MD simulations on FbpA have led to the detailed observation of the binding kinetics of phosphate to the apo form, and to the conformational preferences of the holo form under conditions mimicking the environmental niches provided by the periplasmic space. To study the dynamics of these proteins with their receptors, one must resort to coarse-grained methodologies, since these systems are prohibitively large for atomistic simulations. A study of the complex of human transferrin (hTf) with its pathogenic receptor by such methods has revealed a potential mechanistic explanation for the defense mechanism that arises in evolutionary warfare. Meanwhile, the motions in the transferrin receptor bound hTf have been shown to disfavor apo hTf dissociation, explaining why the two proteins remain in complex during the recycling process from the endosome to the cell surface. Open problems and possible technological applications related to metal ion binding-release in iron transport proteins that may be handled by hybrid use of quantum mechanical, MD and coarse-grained approaches are discussed.
Collapse
Affiliation(s)
- H Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı 34956, Tuzla, Istanbul, Turkey.
| | | | | | | |
Collapse
|
31
|
Mirzaei S, Taherpour AA, Khalilian H. Importance of Azo-Hydrazo Tautomerization in the Oxidative Degradation of Procarbazine by Cytochrome P450: Computational Insights. ChemistrySelect 2018. [DOI: 10.1002/slct.201800633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry; Marquette University, 1414 W. Clybourn St., Milwaukee; WI 53233 USA
| | - Avat Arman Taherpour
- Department of Organic Chemistry; Faculty of Chemistry; Razi University; 67149-67346, Kermanshah, Iran; Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah Iran
| | - Hossein Khalilian
- Department of Chemistry; University of British Columbia; Okanagan; 3247 University Way, Kelowna, British Columbia V1 V 1 V7 Canada
| |
Collapse
|
32
|
de Visser SP. Mechanistic Insight on the Activity and Substrate Selectivity of Nonheme Iron Dioxygenases. CHEM REC 2018; 18:1501-1516. [PMID: 29878456 DOI: 10.1002/tcr.201800033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/18/2018] [Indexed: 01/05/2023]
Abstract
Nonheme iron dioxygenases catalyze vital reactions for human health particularly related to aging processes. They are involved in the biosynthesis of amino acids, but also the biodegradation of toxic compounds. Typically they react with their substrate(s) through oxygen atom transfer, although often with the assistance of a co-substrate like α-ketoglutarate that is converted to succinate and CO2 . Many reaction processes catalyzed by the nonheme iron dioxygenases are stereoselective or regiospecific and hence understanding the mechanism and protein involvement in the selectivity is important for the design of biotechnological applications of these enzymes. To this end, I will review recent work of our group on nonheme iron dioxygenases and include background information on their general structure and catalytic cycle. Examples of stereoselective and regiospecific reaction mechanisms we elucidated are for the AlkB repair enzyme, prolyl-4-hydroxylase and the ergothioneine biosynthesis enzyme. Finally, I cover an example where we bioengineered S-p-hydroxymandelate synthase into the R-p-hydroxymandelate synthase.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
33
|
Bissaro B, Isaksen I, Vaaje-Kolstad G, Eijsink VGH, Røhr ÅK. How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin. Biochemistry 2018; 57:1893-1906. [PMID: 29498832 DOI: 10.1021/acs.biochem.8b00138] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are major players in biomass conversion, both in Nature and in the biorefining industry. How the monocopper LPMO active site is positioned relative to the crystalline substrate surface to catalyze powerful, but potentially self-destructive, oxidative chemistry is one of the major questions in the field. We have adopted a multidisciplinary approach, combining biochemical, spectroscopic, and molecular modeling methods to study chitin binding by the well-studied LPMO from Serratia marcescens SmAA10A (or CBP21). The orientation of the enzyme on a single-chain substrate was determined by analyzing enzyme cutting patterns. Building on this analysis, molecular dynamics (MD) simulations were performed to study interactions between the LPMO and three different surface topologies of crystalline chitin. The resulting atomistic models showed that most enzyme-substrate interactions involve the polysaccharide chain that is to be cleaved. The models also revealed a constrained active site geometry as well as a tunnel connecting the bulk solvent to the copper site, through which only small molecules such as H2O, O2, and H2O2 can diffuse. Furthermore, MD simulations, quantum mechanics/molecular mechanics calculations, and electron paramagnetic resonance spectroscopy demonstrate that rearrangement of Cu-coordinating water molecules is necessary when binding the substrate and also provide a rationale for the experimentally observed C1 oxidative regiospecificity of SmAA10A. This study provides a first, experimentally supported, atomistic view of the interactions between an LPMO and crystalline chitin. The confinement of the catalytic center is likely crucially important for controlling the oxidative chemistry performed by LPMOs and will help guide future mechanistic studies.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| | - Ingvild Isaksen
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology, and Food Science , Norwegian University of Life Sciences , Chr. M. Falsensvei 1 , N-1432 Aas , Norway
| |
Collapse
|
34
|
Kaczmarek MA, Malhotra A, Balan GA, Timmins A, de Visser SP. Nitrogen Reduction to Ammonia on a Biomimetic Mononuclear Iron Centre: Insights into the Nitrogenase Enzyme. Chemistry 2017; 24:5293-5302. [PMID: 29165842 PMCID: PMC5915742 DOI: 10.1002/chem.201704688] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/05/2022]
Abstract
Nitrogenases catalyse nitrogen fixation to ammonia on a multinuclear Fe‐Mo centre, but their mechanism and particularly the order of proton and electron transfer processes that happen during the catalytic cycle is still unresolved. Recently, a unique biomimetic mononuclear iron model was developed using tris(phosphine)borate (TPB) ligands that was shown to convert N2 into NH3. Herein, we present a computational study on the [(TPB)FeN2]− complex and describe its conversion into ammonia through the addition of electrons and protons. In particular, we tested the consecutive proton transfer on only the distal nitrogen atom or alternated protonation of the distal/proximal nitrogen. It is found that the lowest energy pathway is consecutive addition of three protons to the same site, which forms ammonia and an iron‐nitrido complex. In addition, the proton transfer step of complexes with the metal in various oxidation and spin states were tested and show that the pKa values of biomimetic mononuclear nitrogenase intermediates vary little with iron oxidation states. As such, the model gives several possible NH3 formation pathways depending on the order of electron/proton transfer, and all should be physically accessible in the natural system. These results may have implications for enzymatic nitrogenases and give insight into the catalytic properties of mononuclear iron centres.
Collapse
Affiliation(s)
- Monika A Kaczmarek
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Abheek Malhotra
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - G Alex Balan
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Amy Timmins
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
35
|
Cantú Reinhard FG, Barman P, Mukherjee G, Kumar J, Kumar D, Kumar D, Sastri CV, de Visser SP. Keto-Enol Tautomerization Triggers an Electrophilic Aldehyde Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex. J Am Chem Soc 2017; 139:18328-18338. [PMID: 29148746 DOI: 10.1021/jacs.7b10033] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxygen atom transfer by high-valent enzymatic intermediates remains an enigma in chemical catalysis. In particular, manganese is an important first-row metal involved in key biochemical processes, including the biosynthesis of molecular oxygen (through the photosystem II complex) and biodegradation of toxic superoxide to hydrogen peroxide by superoxide dismutase. Biomimetic models of these biological systems have been developed to gain understanding on the structure and properties of short-lived intermediates but also with the aim to create environmentally benign oxidants. In this work, we report a combined spectroscopy, kinetics and computational study on aldehyde deformylation by two side-on manganese(III)-peroxo complexes with bispidine ligands. Both manganese(III)-peroxo complexes are characterized by UV-vis and mass spectrometry techniques, and their reactivity patterns with aldehydes was investigated. We find a novel mechanism for the reaction that is initiated by a hydrogen atom abstraction reaction, which enables a keto-enol tautomerization in the substrate. This is an essential step in the mechanism that makes an electrophilic attack on the olefin bond possible as the attack on the aldehyde carbonyl is too high in energy. Kinetics studies determine a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium, while replacing the transferring hydrogen atom by a methyl group makes the substrate inactive and hence confirm the hypothesized mechanism. Our new mechanism is confirmed with density functional theory modeling on the full mechanism and rationalized through valence bond and thermochemical cycles. Our unprecedented new mechanism may have relevance to biological and biomimetic chemistry processes in general and gives insight into the reactivity patterns of metal-peroxo and metal-hydroperoxo intermediates in general.
Collapse
Affiliation(s)
- Fabián G Cantú Reinhard
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Jitendra Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Deep Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Devesh Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
36
|
Sabolović J, Ramek M, Marković M. Calculating the geometry and Raman spectrum of physiological bis(l-histidinato)copper(II): an assessment of DFT functionals for aqueous and isolated systems. J Mol Model 2017; 23:290. [DOI: 10.1007/s00894-017-3448-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022]
|
37
|
Shimizu I, Morimoto Y, Faltermeier D, Kerscher M, Paria S, Abe T, Sugimoto H, Fujieda N, Asano K, Suzuki T, Comba P, Itoh S. Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand. Inorg Chem 2017; 56:9634-9645. [DOI: 10.1021/acs.inorgchem.7b01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ikuma Shimizu
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuma Morimoto
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Dieter Faltermeier
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Sayantan Paria
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tsukasa Abe
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nobutaka Fujieda
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kaori Asano
- Comprehensive Analysis Center, The Institute of Scientific
and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific
and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Shinobu Itoh
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Ji L, Wang C, Ji S, Kepp KP, Paneth P. Mechanism of Cobalamin-Mediated Reductive Dehalogenation of Chloroethylenes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00540] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Ji
- College
of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Chenchen Wang
- College
of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College
of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kasper P. Kepp
- DTU
Chemistry, Technical University of Denmark, Building 206, Kgs. Lyngby DK-2800, Denmark
| | - Piotr Paneth
- Institute
of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
39
|
Guillou A, Lima LMP, Roger M, Esteban‐Gómez D, Delgado R, Platas‐Iglesias C, Patinec V, Tripier R. 1,4,7‐Triazacyclononane‐Based Bifunctional Picolinate Ligands for Efficient Copper Complexation. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amaury Guillou
- UMR‐CNRS 6521 Université de Bretagne Occidentale 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3 France
| | - Luís M. P. Lima
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - Mélissa Roger
- UMR‐CNRS 6521 Université de Bretagne Occidentale 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3 France
| | - David Esteban‐Gómez
- Universidade da Coruña Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental Facultade de Ciencias 15071 A Coruña Galicia Spain
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - Carlos Platas‐Iglesias
- Universidade da Coruña Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental Facultade de Ciencias 15071 A Coruña Galicia Spain
| | - Véronique Patinec
- UMR‐CNRS 6521 Université de Bretagne Occidentale 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3 France
| | - Raphaël Tripier
- UMR‐CNRS 6521 Université de Bretagne Occidentale 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3 France
| |
Collapse
|
40
|
Paulikat M, Wechsler C, Tittmann K, Mata RA. Theoretical Studies of the Electronic Absorption Spectra of Thiamin Diphosphate in Pyruvate Decarboxylase. Biochemistry 2017; 56:1854-1864. [PMID: 28296385 DOI: 10.1021/acs.biochem.6b00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronic absorption spectra are oftentimes used to identify reaction intermediates or substrates/products in enzymatic systems, as long as absorption bands can be unequivocally assigned to the species being studied. The latter task is far from trivial given the transient nature of some states and the complexity of the surrounding environment around the active site. To identify unique spectral fingerprints, controlled experiments with model compounds have been used in the past, but even these can sometimes be unreliable. Circular dichroism (CD) and ultraviolet-visible spectra have been tools of choice in the study of the rich chemistry of thiamin diphosphate-dependent enzymes. In this study, we focus on the Zymomonas mobilis pyruvate decarboxylase, and mutant analogues thereof, as a prototypical representative of the thiamin diphosphate (ThDP) enzyme superfamily. Through the use of electronic structure methods, we analyze the nature of electronic excitations in the cofactor. We find that all the determining CD bands around the 280-340 nm spectral range correspond to charge-transfer excitations between the pyrimidine and thiazolium rings of ThDP, which, most likely, is a general property of related ThDP-dependent enzymes. While we can confirm the assignments of previously proposed bands to chemical states, our calculations further suggest that a hitherto unassigned band of enzyme-bound ThDP reports on the ionization state of the canonical glutamate that is required for cofactor activation. This finding expands the spectroscopic "library" of chemical states of ThDP enzymes, permitting a simultaneous assignment of both the cofactor ThDP and the activating glutamate. We anticipate this finding to be helpful for mechanistic analyses of related ThDP enzymes.
Collapse
Affiliation(s)
- Mirko Paulikat
- Institute of Physical Chemistry, University of Goettingen , Tammannstraße 6, D-37077 Göttingen, Germany
| | - Cindy Wechsler
- Department of Molecular Enzymology, Albrecht-von-Haller-Institute for Plant Sciences, and Göttingen Center for Molecular Biosciences, University of Goettingen , Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Albrecht-von-Haller-Institute for Plant Sciences, and Göttingen Center for Molecular Biosciences, University of Goettingen , Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, University of Goettingen , Tammannstraße 6, D-37077 Göttingen, Germany
| |
Collapse
|
41
|
Hedegård ED, Ryde U. Multiscale Modelling of Lytic Polysaccharide Monooxygenases. ACS OMEGA 2017; 2:536-545. [PMID: 31457454 PMCID: PMC6641039 DOI: 10.1021/acsomega.6b00521] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 05/27/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) enzymes have attracted considerable attention owing to their ability to enhance polysaccharide depolymerization, making them interesting with respect to production of biofuel from cellulose. LPMOs are metalloenzymes that contain a mononuclear copper active site, capable of activating dioxygen. However, many details of this activation are unclear. Some aspects of the mechanism have previously been investigated from a computational angle. Yet, either these studies have employed only molecular mechanics (MM), which are inaccurate for metal active sites, or they have described only the active site with quantum mechanics (QM) and neglected the effect of the protein. Here, we employ hybrid QM and MM (QM/MM) methods to investigate the first steps of the LPMO mechanism, which is reduction of CuII to CuI and the formation of a CuII-superoxide complex. In the latter complex, the superoxide can bind either in an equatorial or an axial position. For both steps, we obtain structures that are markedly different from previous suggestions, based on small QM-cluster calculations. Our calculations show that the equatorial isomer of the superoxide complex is over 60 kJ/mol more stable than the axial isomer because it is stabilized by interactions with a second-coordination-sphere glutamine residue, suggesting a possible role for this residue. The coordination of superoxide in this manner agrees with recent experimental suggestions.
Collapse
|
42
|
Cantú Reinhard FG, de Visser SP. Oxygen Atom Transfer Using an Iron(IV)-Oxo Embedded in a Tetracyclic N-Heterocyclic Carbene System: How Does the Reactivity Compare to Cytochrome P450 Compound I? Chemistry 2017; 23:2935-2944. [PMID: 28052598 DOI: 10.1002/chem.201605505] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 12/21/2022]
Abstract
N-Heterocyclic carbenes (NHC) are commonly featured as ligands in transition metal catalysis. Recently, a cyclic system containing four NHC groups with a central iron atom was synthesized and its iron(IV)-oxo species, [FeIV (O)(cNHC4 )]2+ , was characterized. This tetracyclic NHC ligand system may give the iron(IV)-oxo species unique catalytic properties as compared to traditional non-heme and heme iron ligand systems. Therefore, we performed a computational study on the structure and reactivity of the [FeIV (O)(cNHC4 )]2+ complex in substrate hydroxylation and epoxidation reactions. The reactivity patterns are compared with cytochrome P450 Compound I and non-heme iron(IV)-oxo models and it is shown that the [FeIV (O)(cNHC4 )]2+ system is an effective oxidant with oxidative power analogous to P450 Compound I. Unfortunately, in polar solvents, a solvent molecule will bind to the sixth ligand position and decrease the catalytic activity of the oxidant. A molecular orbital and valence bond analysis provides insight into the origin of the reactivity differences and makes predictions of how to further exploit these systems in chemical catalysis.
Collapse
Affiliation(s)
- Fabián G Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
43
|
Tang Z, Wang Y, Zhang P. Theoretical investigation of different reactivities of Fe(IV)O and Ru(IV)O complexes with the same ligand topology. J COORD CHEM 2017. [DOI: 10.1080/00958972.2016.1277023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhe Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Peng Zhang
- School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
44
|
Zhang X, Li XX, Liu Y, Wang Y. Suicide Inhibition of Cytochrome P450 Enzymes by Cyclopropylamines via a Ring-Opening Mechanism: Proton-Coupled Electron Transfer Makes a Difference. Front Chem 2017; 5:3. [PMID: 28197402 PMCID: PMC5281577 DOI: 10.3389/fchem.2017.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/10/2017] [Indexed: 01/27/2023] Open
Abstract
N-benzyl-N-cyclopropylamine (BCA) has been attracting great interests for decades for its partial suicide inactivation role to cytochrome P450 (P450) via a ring-opening mechanism besides acting as a role of normal substrates. Understanding the mechanism of such partial inactivation is vital to the clinical drug design. Thus, density functional theoretical (DFT) calculations were carried out on such P450-catalyzed reactions, not only on the metabolic pathway, but on the ring-opening inactivation one. Our theoretical results demonstrated that, in the metabolic pathway, besides the normal carbinolamine, an unexpected enamine was formed via the dual hydrogen abstraction (DHA) process, in which the competition between rotation of the H-abstracted substrate radical and the rotation of hydroxyl group of the protonated Cpd II moiety plays a significant role in product branch; In the inactivation pathway, the well-noted single electron transfer (SET) mechanism-involved process was invalidated for its high energy barrier, a proton-coupled electron transfer [PCET(ET)] mechanism plays a role. Our results are consistent with other related theoretical works on heteroatom-hydrogen (X-H, X = O, N) activation and revealed new features. The revealed mechanisms will play a positive role in relative drug design.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- College of Physics and Materials Science, Henan Normal University Xinxiang, China
| | - Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou, China
| | - Yufang Liu
- College of Physics and Materials Science, Henan Normal University Xinxiang, China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou, China
| |
Collapse
|
45
|
Fortino M, Marino T, Russo N, Sicilia E. Mechanistic investigation of trimethylamine-N-oxide reduction catalysed by biomimetic molybdenum enzyme models. Phys Chem Chem Phys 2017; 18:8428-36. [PMID: 26932500 DOI: 10.1039/c5cp07278f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we report a theoretical investigation of the reduction reaction mechanism of Me3NO using molybdenum containing systems that are functional and structural analogues of trimethylamine N-oxide reductase mononuclear molybdenum enzyme. The reactivity of the monooxomolybdenum(IV) benzenedithiolato complex and its derivatives to carbamoyl (t-BuNHCO) and acylamino (t-BuCONH) substituents on the benzene rings in both cis and trans arrangements was explored. The calculated energy profiles describing the steps of two mechanisms of attack considered viable (named cis- and trans-attack) by the Me3NO substrate at cis and trans positions with respect to the oxo ligand show that the attack on cis is energetically more favourable than the attack on trans. Along the pathway for the cis-attack the first step of the reaction, that is rate-determining for all the studied compounds, is the approach of the substrate to the Mo centre in cis to the oxo ligand that causes a distortion of the initial square-pyramidal geometry of the complex. The reaction steps involved in the trans position attack were also explored. Calculations confirm that, as previously suggested, the introduction of ligands able to form intramolecular NH···S hydrogen bonds accelerates the reduction of the Me3NO substrate and contributes to the tuning of the reactivity of molybdoenzyme models.
Collapse
Affiliation(s)
- M Fortino
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, Italy.
| | - T Marino
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, Italy.
| | - N Russo
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, Italy.
| | - E Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, Italy.
| |
Collapse
|
46
|
Patra R, Coin G, Castro L, Dubourdeaux P, Clémancey M, Pécaut J, Lebrun C, Maldivi P, Latour JM. Rational design of Fe catalysts for olefin aziridination through DFT-based mechanistic analysis. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01283g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental and DFT-based mechanistic studies are used to optimise Fe catalysts for aziridination.
Collapse
|
47
|
Camus N, Le Bris N, Nuryyeva S, Chessé M, Esteban-Gómez D, Platas-Iglesias C, Tripier R, Elhabiri M. Tuning the copper(ii) coordination properties of cyclam by subtle chemical modifications. Dalton Trans 2017; 46:11479-11490. [DOI: 10.1039/c7dt00750g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A copper(ii) coordination investigation of modified cyclams bearing “oxo” and/or “N-benzyl” and/or “C-hydroxyethyl” units was performed by potentiometry, ESI-MS, UV-Vis, electrochemistry and DFT.
Collapse
Affiliation(s)
- Nathalie Camus
- Université de Bretagne Occidentale
- UMR 6521 CNRS
- SFR ScInBioS
- UFR des Sciences et Techniques
- 29238 Brest Cedex 3
| | - Nathalie Le Bris
- Université de Bretagne Occidentale
- UMR 6521 CNRS
- SFR ScInBioS
- UFR des Sciences et Techniques
- 29238 Brest Cedex 3
| | - Selbi Nuryyeva
- Laboratoire de Chimie Bioorganique et Médicinale
- UMR 7509 CNRS-Université de Strasbourg
- ECPM
- 67087 Strasbourg Cedex
- France
| | - Matthieu Chessé
- Laboratoire de Chimie Bioorganique et Médicinale
- UMR 7509 CNRS-Université de Strasbourg
- ECPM
- 67087 Strasbourg Cedex
- France
| | - David Esteban-Gómez
- Universidade da Coruña
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- A Coruña
- Spain
| | - Carlos Platas-Iglesias
- Universidade da Coruña
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- A Coruña
- Spain
| | - Raphaël Tripier
- Université de Bretagne Occidentale
- UMR 6521 CNRS
- SFR ScInBioS
- UFR des Sciences et Techniques
- 29238 Brest Cedex 3
| | - Mourad Elhabiri
- Laboratoire de Chimie Bioorganique et Médicinale
- UMR 7509 CNRS-Université de Strasbourg
- ECPM
- 67087 Strasbourg Cedex
- France
| |
Collapse
|
48
|
Zhang X, Chung LW. Alternative Mechanistic Strategy for Enzyme Catalysis in a Ni-Dependent Lactate Racemase (LarA): Intermediate Destabilization by the Cofactor. Chemistry 2016; 23:3623-3630. [DOI: 10.1002/chem.201604893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoyong Zhang
- Department of Chemistry; South University of Science and Technology of China; Shenzhen 518055 P. R. China
| | - Lung W. Chung
- Department of Chemistry; South University of Science and Technology of China; Shenzhen 518055 P. R. China
| |
Collapse
|
49
|
Cantú Reinhard FG, Faponle AS, de Visser SP. Substrate Sulfoxidation by an Iron(IV)-Oxo Complex: Benchmarking Computationally Calculated Barrier Heights to Experiment. J Phys Chem A 2016; 120:9805-9814. [PMID: 27973805 DOI: 10.1021/acs.jpca.6b09765] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High-valent metal-oxo oxidants are common reactive species in synthetic catalysts as well as heme and nonheme iron enzymes. In general, they efficiently react with substrates through oxygen atom transfer, and for a number of cases, experimental rate constants have been determined. However, because these rate constants are generally measured in a polar solution, it has been found difficult to find computational methodologies to reproduce experimental trends and reactivities. In this work, we present a detailed computational study into para-substituted thioanisole sulfoxidation by a nonheme iron(IV)-oxo complex. A range of density functional theory methods and basis sets has been tested for their suitability to describe the reaction mechanism and compared with experimentally obtained free energies of activation. It is found that the enthalpy of activation is reproduced well, but all methods overestimate the entropy of activation by about 50%, for which we recommend a correction factor. The effect of solvent and dispersion on the barrier heights is explored both at the single-point level and also through inclusion in geometry optimizations, and particularly, solvent is seen as highly beneficial to reproduce experimental free energies of activation. Interestingly, in general, experimental trends and Hammett plots are reproduced well with almost all methods and procedures, and only a systematic error seems to apply for these chemical systems. Very good agreement between experiment and theory is found for a number of different methods, including B3LYP and PBE0, and procedures that are highlighted in the paper.
Collapse
Affiliation(s)
- Fabián G Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
50
|
Proshlyakov DA, McCracken J, Hausinger RP. Spectroscopic analyses of 2-oxoglutarate-dependent oxygenases: TauD as a case study. J Biol Inorg Chem 2016; 22:367-379. [PMID: 27812832 DOI: 10.1007/s00775-016-1406-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
A wide range of spectroscopic approaches have been used to interrogate the mononuclear iron metallocenter in 2-oxoglutarate (2OG)-dependent oxygenases. The results from these spectroscopic studies have provided valuable insights into the structural changes at the active site during substrate binding and catalysis, thus providing critical information that complements investigations of these enzymes by X-ray crystallography, biochemical, and computational approaches. This mini-review highlights taurine hydroxylase (taurine:2OG dioxygenase, TauD) as a case study to illustrate the wealth of knowledge that can be generated by applying a diverse array of spectroscopic investigations to a single enzyme. In particular, electronic absorption, circular dichroism, magnetic circular dichroism, conventional and pulse electron paramagnetic, Mössbauer, X-ray absorption, and resonance Raman methods have been exploited to uncover the properties of the metal site in TauD.
Collapse
Affiliation(s)
- Denis A Proshlyakov
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - John McCracken
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|