1
|
Gao Y, Luo D, Li X, Xue B, Xie J, Sun T. Preparation and characterization of bovine serum albumin/chitosan composite nanoparticles for delivery of Antarctic krill peptide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:162-170. [PMID: 39152639 DOI: 10.1002/jsfa.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Antarctic krill peptide (AKP) has gained considerable interest because of its multiple biological functions. However, its application may be limited by its poor stability and susceptibility to degradation. Encapsulation of AKP using a nanoparticle delivery system is an effective way to overcome these problems. In the present study, bovine serum albumin (BSA) and chitosan (CS) were used as delivery vehicles to encapsulate AKP. RESULTS The results revealed that the particle size (83.3 ± 4.4-222.4 ± 32.7 nm) and zeta-potential (35.1 ± 0.7-45.0 ± 2.7 mV) of nanoparticles (NPs) increased with the increasing content of BSA, but the polydispersity index decreased (1.000 ± 0.002 to 0.306 ± 0.011). Hydrogen bonding, hydrophobic and electrostatic interactions were the main forces to form BSA/CS-AKP NPs. X-ray diffraction revealed that AKP was encapsulated by BSA/CS. Scanning electron microscopy images exhibited that the NPs were spherical in shape, uniform in size and tightly bound. BSA/CS-AKP NPs exhibited excellent stability in the pH range (2-5) and after 15 days of storage, and could hinder the release of AKP in simulated gastric environment and promote the release of AKP in simulated intestinal environment. After simulated digestion, the hypoglycemic activity of encapsulated AKP was better than that of unencapsulated AKP. CONCLUSION Our results revealed that the BSA/CS showed great potential for protecting and delivering AKP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingying Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dandan Luo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Adibifar A, Salimi M, Rostamkhani N, Karami Z, Agh-Atabay AH, Rostamizadeh K. Folic acid-conjugated bovine serum albumin-coated selenium-ZIF-8 core/shell nanoparticles for dual target-specific drug delivery in breast cancer. Drug Deliv Transl Res 2024:10.1007/s13346-024-01714-7. [PMID: 39317912 DOI: 10.1007/s13346-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Methotrexate (MTX), a frequently used chemotherapeutic agent, has limited water solubility, leading to rapid clearance even in local injections. In the present study, we developed folic acid-conjugated BSA-stabilized selenium-ZIF-8 core/shell nanoparticles for targeted delivery of MTX to combat breast cancer. FT-IR, XRD, SEM, TEM, and elemental mapping analysis confirmed the successful formation of FA-BSA@MTX@Se@ZIF-8. The developed nano-DDS had a mean diameter, polydispersity index, and zeta potential of 254.8 nm, 0.17, and - 16.5 mV, respectively. The release behavior of MTX from the nanocarriers was pH-dependent, where the cumulative release percentage at pH 5.4 was higher than at pH 7.4. BSA significantly improved the blood compatibility of nanoparticles so that after modifying their surface with BSA, the percentage of hemolysis decreased from 12.67 to 5.12%. The loading of methotrexate in BSA@Se@ZIF-8 nanoparticles reduced its IC50 on 4T1 cells from 40.29 µg/mL to 16.54 µg/mL, and by conjugating folic acid on the surface, this value even decreased to 12.27 µg/mL. In vivo evaluation of the inhibitory effect in tumor-bearing mice showed that FA-BSA@MTX@Se@ZIF-8 caused a 2.8-fold reduction in tumor volume compared to the free MTX, which is due to the anticancer effect of selenium nanoparticles, the pH sensitivity of ZIF-8, and the presence of folic acid on the surface as a targeting agent. More importantly, histological studies and animal body weight monitoring confirmed that developed nano-DDS does not have significant organ toxicity. Taking together, the incorporation of chemotherapeutics in folic acid-conjugated BSA-stabilized selenium-ZIF-8 nanoparticles may hold a significant impact in the field of future tumor management.
Collapse
Affiliation(s)
- Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salimi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Rostamkhani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
3
|
Das U, Kapoor DU, Singh S, Prajapati BG. Unveiling the potential of chitosan-coated lipid nanoparticles in drug delivery for management of critical illness: a review. Z NATURFORSCH C 2024; 79:107-124. [PMID: 38721838 DOI: 10.1515/znc-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/20/2024] [Indexed: 07/04/2024]
Abstract
Chitosan (CT), a natural, cationic, chemically stable molecule, biocompatible, biodegradable, nontoxic, polysaccharide derived from the deacetylation of chitin, has very uniquely surfaced as a material of promise for drug delivery and biomedical applications. For the oral, ocular, cutaneous, pulmonary, and nose-to-brain routes, CT-coated nanoparticles (CTCNPs) have numerous advantages, consisting of improved controlled drug release, physicochemical stability, improved cell and tissue interactions, and increased bioavailability and efficacy of the active ingredient. CTCNPs have a broad range of therapeutic properties including anticancer, antiviral, antifungal, anti-inflammatory, antibacterial properties, treating neurological disorders, and other diseases. This has led to substantial research into the many potential uses of CT as a drug delivery vehicle. CT has also been employed in a wide range of biomedical processes, including bone and cartilage tissue regeneration, ocular tissue regeneration, periodontal tissue regeneration, heart tissue regeneration, and wound healing. Additionally, CT has been used in cosmeceutical, bioimaging, immunization, and gene transfer applications. CT exhibits a number of biological activities, which are the basis for its remarkable potential for use as a drug delivery vehicle, and these activities are covered in detail in this article. The alterations applied to CT to obtain the necessary properties have been described.
Collapse
Affiliation(s)
- Ushasi Das
- Department of Pharmaceutical Technology, 30167 Jadavpur University , Jadavpur, Kolkata, West Bengal 700032, India
| | - Devesh U Kapoor
- 78467 Dr. Dayaram Patel Pharmacy College , Bardoli 394601, India
| | - Sudarshan Singh
- Office of Research Administration, 26682 Chiang Mai University , Chiang Mai 50200, Thailand
- Faculty of Pharmacy, 26682 Chiang Mai University , Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, 79233 Ganpat University , Kherva, Gujarat 384012, India
| |
Collapse
|
4
|
Rezaei N, Zarkesh I, Fotouhi A, Alikhani HK, Hassan M, Vosough M. Chitosan-coated nanoparticles in innovative cancer bio-medicine. Drug Dev Res 2024; 85:e22189. [PMID: 38678548 DOI: 10.1002/ddr.22189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In the recent decade, nanoparticles (NPs) have had enormous implications in cancer biomedicine, including research, diagnosis, and therapy. However, their broad application still faces obstacles due to some practical limitations and requires further development. Recently, there has been more interest in the coated class of nanoparticles to address those challenges. Chitosan-coated NPs are simple to produce, biodegradable, biocompatible, exhibit antibacterial activity, and have less cytotoxicity. This study provides an updated and comprehensive overview of the application of chitosan-coated NPs as a promising class of NPs in cancer biomedicine. Additionally, we discussed chitosan-coated lipid, metal, and polymer-based nanoparticles in biomedical applications. Furthermore, different coating methods and production/characterization procedures were reviewed. Moreover, the biological and physicochemical advantages of chitosan-coated NPs, including facilitated controlled release, greater physicochemical stability, improved cell/tissue interaction, and enhanced bioavailability of medications, were highlighted. Finally, the prospects of chitosan-coated NPs in cancer biomedicine were discussed.
Collapse
Affiliation(s)
- Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnique), Tehran, Iran
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
6
|
Hassani S, Maghsoudi H, Fattahi F, Malekinejad F, Hajmalek N, Sheikhnia F, Kheradmand F, Fahimirad S, Ghorbanpour M. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int J Biol Macromol 2023; 241:124508. [PMID: 37085076 DOI: 10.1016/j.ijbiomac.2023.124508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Colorectal cancer is among the frequently diagnosed cancers with high mortality rates around the world. Polyphenolic compounds such as flavonoids are secondary plant metabolites which exhibit anti-cancer activities along with anti-inflammatory effects. However, due to their hydrophobicity, sensitivity to degradation and low bioavailability, therapeutic effects have shown poor therapeutic effect. Nano delivery systems such as nanoliposomes, nanomicelles, silica nanoparticles have been investigated to overcome these difficulties. This review provides a summary of the efficiency of certain flavonoids and polyphenols (apigenin, genistein, resveratrol, quercetin, silymarin, catechins, luteolin, fisetin, gallic acid, rutin, and curcumin) on colorectal cancer models. It comprehensively discusses the influence of nano-formulation of flavonoids on their biological functions, including cellular uptake rate, bioavailability, solubility, and cytotoxicity, as well as their potential for reducing colorectal cancer tumor size under in vivo situations.
Collapse
Affiliation(s)
- Sepideh Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| |
Collapse
|
7
|
Günter E, Popeyko O, Popov S. Ca-Alginate Hydrogel with Immobilized Callus Cells as a New Delivery System of Grape Seed Extract. Gels 2023; 9:gels9030256. [PMID: 36975705 PMCID: PMC10048767 DOI: 10.3390/gels9030256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The development of new delivery systems for polyphenols is necessary to maintain their antioxidant activity and targeted delivery. The purpose of this investigation was to obtain alginate hydrogels with immobilized callus cells, in order to study the interaction between the physicochemical properties of hydrogels, texture, swelling behaviour, and grape seed extract (GSE) release in vitro. The inclusion of duckweed (LMC) and campion (SVC) callus cells in hydrogels led to a decrease in their porosity, gel strength, adhesiveness, and thermal stability, and an increase in the encapsulation efficiency compared with alginate hydrogel. The incorporation of LMC cells (0.17 g/mL), which were smaller, resulted in the formation of a stronger gel. The Fourier transform infrared analyses indicated the entrapment of GSE in the alginate hydrogel. Alginate/callus hydrogels had reduced swelling and GSE release in the simulated intestinal (SIF) and colonic (SCF) fluids due to their less porous structure and the retention of GSE in cells. Alginate/callus hydrogels gradually released GSE in SIF and SCF. The faster GSE release in SIF and SCF was associated with reduced gel strength and increased swelling of the hydrogels. LMC-1.0Alginate hydrogels with lower swelling, higher initial gel strength, and thermal stability released GSE more slowly in SIF and SCF. The GSE release was dependent on the content of SVC cells in 1.0% alginate hydrogels. The data obtained show that the addition of callus cells to the hydrogel provides them with physicochemical and textural properties that are useful for the development of drug delivery systems in the colon.
Collapse
Affiliation(s)
- Elena Günter
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Oxana Popeyko
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia
| |
Collapse
|
8
|
Li X, An S, Wang C, Jiang Q, Gao D, Wang L. Protein-polysaccharides based nanoparticles for loading with Malus baccata polyphenols and their digestibility in vitro. Int J Biol Macromol 2023; 228:783-793. [PMID: 36581037 DOI: 10.1016/j.ijbiomac.2022.12.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The poor solubility, instability and low absorption rate obstruct the bioavailability of polyphenols isolated from Malus baccata (MBP) during gastrointestinal digestion. In order to solve the limitable problems, the food-grade nanoparticles were fabricated by mucin (MC) and Hohenbuehelia serotina polysaccharides (HSP) for delivery of MBP (MBP-NPs). The physicochemical properties and morphology of MBP-NPs prepared by different condition were respectively characterized. During gastrointestinal digestion in vitro, the release characteristic and variation in phenolic composition of MBP-NPs were evaluated. The results showed that MBP-NPs formed by hydrogen bonding and hydrophobic interaction possessed the regularly spherical shapes and smooth surfaces and semi-crystalline properties. Moreover, MBP-NPs presented the excellent physicochemical stability. During simulated gastrointestinal digestion in vitro, MBP-NPs exhibited the sustained release characteristics of phenolic compounds, which were confirmed by SDS-PAGE measurement. Compared with that of unencapsulated MBP, the significant variation was occurred in the phenolic composition of MBP-NPs, indicating that MBP-NPs could prevent the degradation and transformation of phenolic compounds. This study provides a novel strategy to improve the bioavailability of polyphenols.
Collapse
Affiliation(s)
- Xiaoyu Li
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Cheng Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Qianyu Jiang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Dawei Gao
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
9
|
Sabzevari AG, Sabahi H, Nikbakht M, McInnes SJ. Development and characteristics of layered EGCG/Montmorillonite hybrid: An oral controlled-release formulation of EGCG. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Günter EA, Popeyko OV. Delivery system for grape seed extract based on biodegradable pectin-Zn-alginate gel particles. Int J Biol Macromol 2022; 219:1021-1033. [PMID: 35963355 DOI: 10.1016/j.ijbiomac.2022.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 01/02/2023]
Abstract
Pectin-Zn-alginate gel particles from callus culture pectin with increased linearity and decreased rhamnogalacturonan I branching and degree of methylesterification had a higher gel strength and encapsulation capacity. An increase of the alginate concentration led to an increase in the particle gel strength. The grape seed extract (GSE) loaded and empty particles swelled slightly in the simulated gastric fluid (SGF) and gradually in the intestinal (SIF) fluid. The swelling degrees of the GSE-loaded and empty particles in the simulated colonic fluids (SCF) were decreased in the range SCF-7.0 (pH 7.0 + pectinase) > SCF-5.3 (pH 5.3 + pectinase) > SCF-2.3 (pH 2.3 + pectinase). The FTIR spectra indicated that GSE was embedded in the composite particles. Negligible leakage of GSE in SGF was shown. The increase in GSE release in SIF was due to the decrease in particle gel strength and increased swelling degree. The GSE release in fluids simulating the colon inflammation (SCF-2.3 and SCF-5.3) was similar, and it was lower than that in the SCF-7.0 simulating a healthy colon due to the increased gel strength. The percentage release of GSE increased slightly after exposure to different pH. Pectin-Zn-alginate hydrogel systems may be promising candidates for colon-targeted GSE delivery systems.
Collapse
Affiliation(s)
- Elena A Günter
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya str., Syktyvkar 167982, Russia.
| | - Oxana V Popeyko
- Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya str., Syktyvkar 167982, Russia
| |
Collapse
|
11
|
Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022; 19:49. [PMID: 35854319 PMCID: PMC9297619 DOI: 10.1186/s12989-022-00491-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. Results The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. Conclusions Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00491-w.
Collapse
Affiliation(s)
- Giulia Antonello
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy.,Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Panagiotis Kainourgios
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Costanza Ravagli
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | | | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics ISTEC-CNR, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Esperanza Padín-González
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - David Beal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Headwork, Via Livorno 60, 10144, Turin, Italy
| | - Giovanni Baldi
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Costas A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
12
|
Hung SW, Li Y, Chen X, Chu KO, Zhao Y, Liu Y, Guo X, Man GCW, Wang CC. Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer. Front Pharmacol 2022; 13:906746. [PMID: 35860020 PMCID: PMC9289441 DOI: 10.3389/fphar.2022.906746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
With a rich abundance of natural polyphenols, green tea has become one of the most popular and healthiest nonalcoholic beverages being consumed worldwide. Epigallocatechin-3-gallate (EGCG) is the predominant catechin found in green tea, which has been shown to promote numerous health benefits, including metabolic regulation, antioxidant, anti-inflammatory, and anticancer. Clinical studies have also shown the inhibitory effects of EGCG on cancers of the male and female reproductive system, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Autophagy is a natural, self-degradation process that serves important functions in both tumor suppression and tumor cell survival. Naturally derived products have the potential to be an effective and safe alternative in balancing autophagy and maintaining homeostasis during tumor development. Although EGCG has been shown to play a critical role in the suppression of multiple cancers, its role as autophagy modulator in cancers of the male and female reproductive system remains to be fully discussed. Herein, we aim to provide an overview of the current knowledge of EGCG in targeting autophagy and its related signaling mechanism in reproductive cancers. Effects of EGCG on regulating autophagy toward reproductive cancers as a single therapy or cotreatment with other chemotherapies will be reviewed and compared. Additionally, the underlying mechanisms and crosstalk of EGCG between autophagy and other cellular processes, such as reactive oxidative stress, ER stress, angiogenesis, and apoptosis, will be summarized. The present review will help to shed light on the significance of green tea as a potential therapeutic treatment for reproductive cancers through regulating autophagy.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiwei Zhao
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xi Guo
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi-Wai Man
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| |
Collapse
|
13
|
Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin- 3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022; 63:10382-10411. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| |
Collapse
|
14
|
Visentini FF, Perez AA, Santiago LG. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit Rev Food Sci Nutr 2022; 63:7238-7268. [PMID: 35238254 DOI: 10.1080/10408398.2022.2045471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enriched products with bioactive compounds (BCs) show the capacity to produce a wide range of possible health effects. Most BCs are essentially hydrophobic and sensitive to environmental factors; so, encapsulation becomes a strategy to solve these problems. Many globular proteins have the intrinsic ability to bind, protect, encapsulate, and introduce BCs into nutraceutical or pharmaceutical matrices. Among them, albumins as human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin (OVA) and α-lactalbumin (ALA) are widely abundant, available, and applied in many industrial sectors, becoming promissory materials to encapsulate BCs. Therefore, this review focuses on researches about the main groups of natural origin BCs (namely phenolic compounds, lipids, vitamins, and carotenoids), the different types of nanostructures based on albumins to encapsulate them and the main fields of application for BCs-loaded albumin systems. In this context, phenolic compounds (catechins, quercetin, and chrysin) are the most extensively BCs studied and encapsulated in albumin-based nanocarriers. Other extensively studied subgroups are stilbenes and curcuminoids. Regarding lipids and vitamins; terpenes, carotenoids (β-carotene), and xanthophylls (astaxanthin) are the most considered. The main application areas of BCs are related to their antitumor, anti-inflammatory, and antioxidant properties. Finally, BSA is the most used albumin to produced BCs-loaded nanocarriers.
Collapse
Affiliation(s)
- Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
15
|
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polyphenols, the phenolic hydroxyl group-containing organic molecules, are widely found in natural plants and have shown beneficial effects on human health. Recently, polyphenol-containing nanoparticles have attracted extensive research attention due to their antioxidation property, anticancer activity, and universal adherent affinity, and thus have shown great promise in the preparation, stabilization, and modification of multifunctional nanoassemblies for bioimaging, therapeutic delivery, and other biomedical applications. Additionally, the metal-polyphenol networks, formed by the coordination interactions between polyphenols and metal ions, have been used to prepare an important class of polyphenol-containing nanoparticles for surface modification, bioimaging, drug delivery, and disease treatments. By focusing on the interactions between polyphenols and different materials (e.g., metal ions, inorganic materials, polymers, proteins, and nucleic acids), a comprehensive review on the synthesis and properties of the polyphenol-containing nanoparticles is provided. Moreover, the remarkable versatility of polyphenol-containing nanoparticles in different biomedical applications, including biodetection, multimodal bioimaging, protein and gene delivery, bone repair, antibiosis, and cancer theranostics is also demonstrated. Finally, the challenges faced by future research regarding the polyphenol-containing nanoparticles are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
16
|
Jiang Y, Jiang Z, Ma L, Huang Q. Advances in Nanodelivery of Green Tea Catechins to Enhance the Anticancer Activity. Molecules 2021; 26:3301. [PMID: 34072700 PMCID: PMC8198522 DOI: 10.3390/molecules26113301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death globally. A variety of phenolic compounds display preventative and therapeutic effects against cancers. Green teas are rich in phenolics. Catechins are the most dominant phenolic component in green teas. Studies have shown that catechins have anticancer activity in various cancer models. The anticancer activity of catechins, however, may be compromised due to their low oral bioavailability. Nanodelivery emerges as a promising way to improve the oral bioavailability and anticancer activity of catechins. Research in this area has been actively conducted in recent decades. This review provides the molecular mechanisms of the anticancer effects of catechins, the factors that limit the oral bioavailability of catechins, and the latest advances of delivering catechins using nanodelivery systems through different routes to enhance their anticancer activity.
Collapse
Affiliation(s)
- Yike Jiang
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518132, China;
| | - Ziyi Jiang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lan Ma
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518132, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
17
|
Kuo YC, Wang IH, Rajesh R. Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson's disease therapy. Acta Biomater 2021; 119:360-374. [PMID: 33189953 DOI: 10.1016/j.actbio.2020.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Complex liposomes were assembled with 1,2-distearoyl-sn-glycero-3-phosphocholine, dihexadecyl phosphate (DHDP), cholesterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (PA) to act as drug carriers for resveratrol (RES) and epigallocatechin gallate (EGCG). The liposomes were modified with leptin (Lep) on the surface to cross the blood-brain barrier (BBB) and to rescue degenerated dopaminergic neurons. The activity of RES and EGCG against neurotoxicity was investigated using an in vitro neurodegenerative model established by SH-SY5Y cells with an insult of 1-methyl-4-phenylpyridinium (MPP+). The results indicated that increasing the mole percentage of DHDP and PA increased the particle size and absolute zeta potential value, and improved the entrapment efficiency of RES and EGCG; however, this increase reduced the release rate of RES and EGCG and the grafting efficiency of Lep. The ability of Lep/RES-EGCG-PA-liposomes to cross the BBB was found to be higher than that of non-modified liposomes. Further, the addition of PA and Lep into liposomes enhanced cell viability and target efficiency. The immunofluorescence results demonstrated that the conjugation of Lep with liposomes enabled the docking of HBMECs and SH-SY5Y cells via Lep receptor, and enhanced their ability to permeate the BBB and cellular uptake. Immunofluorescence and western blot analysis also revealed that RES and EGCG encapsulated into liposomes could be a neural defensive strategy by reducing the apoptosis promotor protein Bcl-2 associated X protein and α-synuclein, and enhancement in the apoptosis inhibitor protein B cell lymphoma 2, tyrosine hydroxylase, and the dopamine transporter. Hence, Lep-PA-liposomes can be an excellent choice of potential delivery system for PD treatment.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC.
| | - I-Hsin Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| |
Collapse
|
18
|
Velázquez-Lam E, Imperial J, Ponz F. Polyphenol-Functionalized Plant Viral-Derived Nanoparticles Exhibit Strong Antimicrobial and Antibiofilm Formation Activities. ACS APPLIED BIO MATERIALS 2020; 3:2040-2047. [DOI: 10.1021/acsabm.9b01161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Edith Velázquez-Lam
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
- Doctorado en Biotecnología y Recursos Genéticos de Plantas y Microorganismos Asociados, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Imperial
- Instituto de Ciencias Agrarias, CSIC, Serrano 115bis, 28006 Madrid, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
19
|
Frank L, Onzi G, Morawski A, Pohlmann A, Guterres S, Contri R. Chitosan as a coating material for nanoparticles intended for biomedical applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104459] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Dai W, Ruan C, Sun Y, Gao X, Liang J. Controlled release and antioxidant activity of chitosan and β-lactoglobulin complex nanoparticles loaded with epigallocatechin gallate. Colloids Surf B Biointerfaces 2020; 188:110802. [PMID: 31958618 DOI: 10.1016/j.colsurfb.2020.110802] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 11/25/2022]
Abstract
In order to investigate the influence of different embedding methods on the properties and function of polyphenols, the Epigallocatechin gallate (EGCG) loaded chitosan nanoparticles prepared with or without β-lactoglobulin (β-Lg) were obtained by ionic cross linking method. The average particle sizes of EGCG loaded chitosan nanoparticles (EGCG-CS NPs) decreased from 190 nm to 157 nm after adding with β-Lg, whereas the encapsulation efficiency (EE) increased from 59.79 % to 76.29 %. The results of transmission electron microscopy (TEM) showed that the obtained nanoparticles had obvious core-shell structure. The results of simulated gastrointestinal digestion showed that the release rate of EGCG in CS/β-Lg NPs was much lower than that of CS-NPs. Compared with free EGCG, the DPPH and FRAP assay showed that EGCG-CS NPs and EGCG-CS/β-Lg NPs had slow-controlled antioxidant activity. Meanwhile, the study of cellular antioxidant activity (CAA) showed that the EC50 values of EGCG-CS NPs and EGCG-CS/β-Lg NPs were decreased by 8.56 % and 18.35 %, respectively.
Collapse
Affiliation(s)
- Wenzhong Dai
- State Key Laboratory of Tea Plant Biology and Utilization / International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and and Technology, Anhui Agricultural University, China
| | - Chengcheng Ruan
- State Key Laboratory of Tea Plant Biology and Utilization / International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and and Technology, Anhui Agricultural University, China
| | - Yue Sun
- State Key Laboratory of Tea Plant Biology and Utilization / International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and and Technology, Anhui Agricultural University, China
| | - Xueling Gao
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and and Technology, Anhui Agricultural University, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization / International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and and Technology, Anhui Agricultural University, China.
| |
Collapse
|
21
|
Peter B, Saftics A, Kovacs B, Kurunczi S, Horvath R. Oxidization increases the binding of EGCG to serum albumin revealed by kinetic data from label-free optical biosensor with reference channel. Analyst 2020; 145:588-595. [DOI: 10.1039/c9an01779h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schematic illustration of the biosensor to measure the EGCG–BSA interaction and the concentration dependent bound amount of EGCG and oxidized EGCG.
Collapse
Affiliation(s)
- Beatrix Peter
- Nanobiosensorics Group
- Centre for Energy Research
- Institute of Technical Physics and Materials Science
- H-1121 Budapest
- Hungary
| | - Andras Saftics
- Nanobiosensorics Group
- Centre for Energy Research
- Institute of Technical Physics and Materials Science
- H-1121 Budapest
- Hungary
| | - Boglarka Kovacs
- Nanobiosensorics Group
- Centre for Energy Research
- Institute of Technical Physics and Materials Science
- H-1121 Budapest
- Hungary
| | - Sandor Kurunczi
- Nanobiosensorics Group
- Centre for Energy Research
- Institute of Technical Physics and Materials Science
- H-1121 Budapest
- Hungary
| | - Robert Horvath
- Nanobiosensorics Group
- Centre for Energy Research
- Institute of Technical Physics and Materials Science
- H-1121 Budapest
- Hungary
| |
Collapse
|
22
|
Rana A, Kumar S. Chemistry, Pharmacology and Therapeutic Delivery of Major Tea Constituents. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41838-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Ferrado JB, Perez AA, Ruiz MC, León IE, Santiago LG. Chrysin-loaded bovine serum albumin particles as bioactive nanosupplements. Food Funct 2020; 11:6007-6019. [DOI: 10.1039/d0fo00299b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Freeze-dried Chrys-loaded BSAnp retained their properties after reconstitution and induced apoptosis on breast cancer cells. BSAnp-70-11 (smallest sized) was the most cytotoxic system with a gastrointestinal release of 14% Chrys.
Collapse
Affiliation(s)
- Joana B. Ferrado
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina
- CONICET
- Santa Fe
- Argentina
- Área de Biocoloides y Nanotecnología
| | - Adrián A. Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina
- CONICET
- Santa Fe
- Argentina
- Área de Biocoloides y Nanotecnología
| | - Maria C. Ruiz
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP)
- Universidad Nacional de La Plata (UNLP)
- La Plata
- Argentina
| | - Ignacio E. León
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP)
- Universidad Nacional de La Plata (UNLP)
- La Plata
- Argentina
| | - Liliana G. Santiago
- Área de Biocoloides y Nanotecnología
- Instituto de Tecnología de Alimentos
- Facultad de Ingeniería Química
- Universidad Nacional del Litoral (ITA-FIQ-UNL)
- Santa Fe
| |
Collapse
|
24
|
Elgegren M, Kim S, Cordova D, Silva C, Noro J, Cavaco-Paulo A, Nakamatsu J. Ultrasound-Assisted Encapsulation of Sacha Inchi ( Plukenetia volubilis Linneo.) Oil in Alginate-Chitosan Nanoparticles. Polymers (Basel) 2019; 11:E1245. [PMID: 31357570 PMCID: PMC6723186 DOI: 10.3390/polym11081245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Sacha inchi oil is rich in essential and non-essential fatty acids and other types of bioactive agents like tocopherols and polyphenolic compounds, which are very well-known antioxidants. In this study, the encapsulation of sacha inchi oil in alginate (AL) and chitosan (CS) nanoparticles was achieved with the assistance of high-intensity ultrasound. Nanoemulsion is the most effective delivery and high stability system for lipophilic bioactive agents. Chitosan and surfactant concentrations were varied to study their effect on particle formulations. Size, zeta-potential, polydispersity, and stability of particles were determined in time to optimize the preparation conditions. Sacha inchi oil encapsulated in AL-CS nanoparticles showed a higher loading efficiency and stability for short and long periods compared with other vegetable oils such as olive and soybean. Also, because of the types of tocopherols present in sacha inchi oil (γ- and δ-tocopherols), a much higher antioxidant activity (95% of radical reduction in 15 min) was found in comparison with nanocapsules with olive oil, which contain α-tocopherols. The particles showed high efficiency of protein loading at high concentration of bovine serum albumin (BSA) and a low rate of leaching profiles in various testing media like simulated gastric and intestinal fluids with/without enzymes, that is, pepsin 0.1% (w/v) and pancreatin 0.1% (w/v), respectively.
Collapse
Affiliation(s)
- Mariela Elgegren
- Department of Science, Chemistry Division, Pontificia Universidad Católica del Perú PUCP, Av. Universitaria 1801, Lima 32, Peru
| | - Suyeon Kim
- Department of Engineering, Pontificia Universidad Católica del Perú PUCP, Av. Universitaria 1801, Lima 32, Peru.
| | - Diego Cordova
- Department of Science, Chemistry Division, Pontificia Universidad Católica del Perú PUCP, Av. Universitaria 1801, Lima 32, Peru
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus De Gualtar, 4710-057 Braga, Portugal
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Campus De Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus De Gualtar, 4710-057 Braga, Portugal
| | - Javier Nakamatsu
- Department of Science, Chemistry Division, Pontificia Universidad Católica del Perú PUCP, Av. Universitaria 1801, Lima 32, Peru
| |
Collapse
|
25
|
EGCG intestinal absorption and oral bioavailability enhancement using folic acid-functionalized nanostructured lipid carriers. Heliyon 2019; 5:e02020. [PMID: 31317081 PMCID: PMC6611934 DOI: 10.1016/j.heliyon.2019.e02020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022] Open
Abstract
This work aimed to develop folic acid-functionalized nanostructured lipid carriers (NLC) loading epigallocatechin-3-gallate (EGCG) to increase its oral bioavailability. An active targeting strategy was used and these nanoparticles (NPs) were fully characterized. The NP's effect on Caco-2 cell viability was evaluated and the apparent permeability (Papp) on a Caco-2 cell monolayer was determined. The results demonstrated that the developed NPs exhibited adequate physicochemical characteristics for oral administration and were found to be biocompatible with epithelial Caco-2 cells. Further, folic acid-functionalized EGCG-loaded NLC significantly increased EGCG transport across the intestinal barrier, promoting a 1.8- fold increase in its apparent permeability (Papp). Taken together, these results support that the developed NLC can be used as a promising carrier for safer and efficient management of several diseases since the pharmacokinetic (PK) properties of EGCG were improved with this nanomedicine-based strategy.
Collapse
|
26
|
Ramesh N, Mandal AKA. Encapsulation of epigallocatechin-3-gallate into albumin nanoparticles improves pharmacokinetic and bioavailability in rat model. 3 Biotech 2019; 9:238. [PMID: 31143560 PMCID: PMC6538741 DOI: 10.1007/s13205-019-1772-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
In the present study, we fabricated epigallocatechin-3-gallate (EGCG) loaded albumin nanoparticles (Alb-NP-EGCG) to enhance bioavailability and improve pharmacokinetic parameters of EGCG. The physicochemical properties of the Alb-NP-EGCG were studied using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction and in vitro release studies. Characterization of Alb-NP-EGCG indicated the formation of spherical nanoparticles with no drug and excipient interaction. Alb-NP-EGCG showed a high drug loading capacity of 92%. Further, in vitro study showed a sustained release of EGCG from Alb-NP-EGCG over a period of 48 h. Mathematical modeling and release kinetics indicated that the Alb-NP-EGCG followed zero order kinetic and EGCG was released via fickian diffusion method. In vivo bioavailability and distribution of Alb-NP-EGCG showed an enhanced plasma concentration of EGCG with 1.5 fold increase along with prolonged T 1/2 of 15.6 h in the system when compared with the free EGCG. All this study demonstrated the fabrication of EGCG loaded albumin nanoparticles which favored the slow and sustained release of EGCG with improved pharmacokinetics and bioavailability thereby prolonging the action of EGCG. Additional acute and sub-acute toxicity test of the Alb-NP-EGCG demonstrated the safety of the Alb-NP-EGCG. Therefore, the Alb-NP-EGCG could be a promising drug delivery system for EGCG.
Collapse
Affiliation(s)
- Nithya Ramesh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632014 India
| | - Abul Kalam Azad Mandal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632014 India
| |
Collapse
|
27
|
Wang Y, Zuo Y, Deng S, Zhu F, Liu Q, Wang R, Li T, Cai H, Wan X, Xie Z, Xie Z, Li D. Using Caffeine and Free Amino Acids To Enhance the Transepithelial Transport of Catechins in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5477-5485. [PMID: 30983343 DOI: 10.1021/acs.jafc.9b01701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catechins are well-known to possess health-promoting functions. The interaction of the catechins with other components in tea could alter their absorption and efflux. This study investigated whether the absorption of catechins is affected by caffeine and amino acids using the Caco-2 monolayer cell model. We found that (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC) were all actively effluxed. Co-transportation of EGCG, ECG, or EC with caffeine, theanine, serine, or glycine increased their apparent permeability coefficient [ Papp(AP-BL)] value by 3.42-5.40- fold, 1.19-5.75-fold, and 1.55-8.01-fold, respectively. Meanwhile, their efflux ratio values were significantly decreased. Moreover, the expression of multi-drug resistance protein 2 (MRP2) after 3 h of incubation with either 50 μM EGCG or 50 μM EC was elevated by 1.58- and 2.98-fold, respectively, while 50 μM ECG had no significantly effects. In addition, the expression of P-glycoprotein (P-gp) after treatment with either 50 μM EGCG, 50 μM ECG, or 50 μM EC was enhanced by 1.53-, 1.63-, and 1.80-fold, respectively. The addition of either caffeine or any one of the three amino acids decreased the expression of both MRP2 and P-gp induced by EGCG, and the expression of P-gp induced by ECG or EC also decreased. In contrast, only glycine decreased the expression of MRP2 induced by EC. Taken together, our data indicated that caffeine and theanine, glycine, or serine in tea might increase the absorption of catechins by the selectively suppressed expression of the efflux transporters induced by catechins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zijian Xie
- Marshall Institute for Interdisciplinary Research , Marshall University , 1 John Marshall Drive , Huntington , West Virginia 25755 , United States
| | | | | |
Collapse
|
28
|
Wang L, Li X, Wang H. Fabrication of BSA-Pinus koraiensis polyphenol-chitosan nanoparticles and their release characteristics under in vitro simulated gastrointestinal digestion. Food Funct 2019; 10:1295-1301. [DOI: 10.1039/c8fo01965g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BSA and chitosan were used to prepare nanoparticles of polyphenols from the pine cones of Pinus koraiensis (PKP-NPs).
Collapse
Affiliation(s)
- Lu Wang
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- PR China
| | - Xiaoyu Li
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- PR China
| | - Hongchao Wang
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- PR China
| |
Collapse
|
29
|
Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR. Bioavailability of Tea Catechins and Its Improvement. Molecules 2018; 23:molecules23092346. [PMID: 30217074 PMCID: PMC6225109 DOI: 10.3390/molecules23092346] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Many in vitro studies have shown that tea catechins had vevarious health beneficial effects. However, inconsistent results between in vitro and in vivo studies or between laboratory tests and epidemical studies are observed. Low bioavailability of tea catechins was an important factor leading to these inconsistencies. Research advances in bioavailability studies involving absorption and metabolic biotransformation of tea catechins were reviewed in the present paper. Related techniques for improving their bioavailability such as nanostructure-based drug delivery system, molecular modification, and co-administration of catechins with other bioactives were also discussed.
Collapse
Affiliation(s)
- Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xu-Min Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jin-Pei Liang
- Intellectual Property Office of Lanshan District, Rizhao 543003, China.
| | - Li-Ping Xiang
- National Tea and Tea Product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Kai-Rong Wang
- Ningbo Extension Station of Forestry & Speciality Technology, Ningbo 315012, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Rui Yang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Meng Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Sodium caseinate stabilized emulsions as a delivery system for epigallocatechin-gallate: Bioaccessibility, anti-proliferative activity and intestinal absorption. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
31
|
Fernández KF, González MA, Parada MS. Transport of biodegradable polymeric particles loaded with grape seed extract across Caco-2 cell monolayers. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Katherina F. Fernández
- Department of Chemical Engineering; Faculty of Engineering; University of Concepción; Barrio Universitario s/n; P.O. Box 160-C, Correo 3 Concepción 4030000 Chile
| | - Marcelo A. González
- Department of Physiology; Faculty of Biological Sciences; University of Concepción; Barrio Universitario s/n; P.O. Box 160-C, Correo 3 Concepción 4030000 Chile
| | - María S. Parada
- Department of Chemical Engineering; Faculty of Engineering; University of Concepción; Barrio Universitario s/n; P.O. Box 160-C, Correo 3 Concepción 4030000 Chile
| |
Collapse
|
32
|
Stringer M, Goodlett CR, Roper RJ. Targeting trisomic treatments: optimizing Dyrk1a inhibition to improve Down syndrome deficits. Mol Genet Genomic Med 2017; 5:451-465. [PMID: 28944229 PMCID: PMC5606891 DOI: 10.1002/mgg3.334] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Overexpression of Dual-specificity tyrosine-phosphorylated regulated kinase 1A (DYRK1A), located on human chromosome 21, may alter molecular processes linked to developmental deficits in Down syndrome (DS). Trisomic DYRK1A is a rational therapeutic target, and although reductions in Dyrk1a genetic dosage have shown improvements in trisomic mouse models, attempts to reduce Dyrk1a activity by pharmacological mechanisms and correct these DS-associated phenotypes have been largely unsuccessful. Epigallocatechin-3-gallate (EGCG) inhibits DYRK1A activity in vitro and this action has been postulated to account for improvement of some DS-associated phenotypes that have been reported in preclinical studies and clinical trials. However, the beneficial effects of EGCG are inconsistent and there is no direct evidence that any observed improvement actually occurs through Dyrk1a inhibition. Inconclusive outcomes likely reflect a lack of knowledge about the tissue-specific patterns of spatial and temporal overexpression and elevated activity of Dyrk1a that may contribute to emerging DS traits during development. Emerging evidence indicates that Dyrk1a expression varies over the life span in DS mouse models, yet preclinical therapeutic treatments targeting Dyrk1a have largely not considered these developmental changes. Therapies intended to improve DS phenotypes through normalizing trisomic Dyrk1a need to optimize the timing and dose of treatment to match the spatiotemporal patterning of excessive Dyrk1a activity in relevant tissues. This will require more precise identification of developmental periods of vulnerability to enduring adverse effects of elevated Dyrk1a, representing the concurrence of increased Dyrk1a expression together with hypothesized tissue-specific-sensitive periods when Dyrk1a regulates cellular processes that shape the long-term functional properties of the tissue. Future efforts targeting inhibition of trisomic Dyrk1a should identify these putative spatiotemporally specific developmental sensitive periods and determine whether normalizing Dyrk1a activity then can lead to improved outcomes in DS phenotypes.
Collapse
Affiliation(s)
- Megan Stringer
- Department of PsychologyIUPUI402 North Blackford Street, LD 124IndianapolisIndiana46202-3275
| | - Charles R Goodlett
- Department of PsychologyIUPUI402 North Blackford Street, LD 124IndianapolisIndiana46202-3275
| | - Randall J Roper
- Department of BiologyIUPUI723 West Michigan Street SL 306IndianapolisIndiana46202-3275
| |
Collapse
|
33
|
A Review of the Antiviral Role of Green Tea Catechins. Molecules 2017; 22:molecules22081337. [PMID: 28805687 PMCID: PMC6152177 DOI: 10.3390/molecules22081337] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Over the centuries, infectious diseases caused by viruses have seriously threatened human health globally. Viruses are responsible not only for acute infections but also many chronic infectious diseases. To prevent diseases caused by viruses, the discovery of effective antiviral drugs, in addition to vaccine development, is important. Green tea catechins (GTCs) are polyphenolic compounds from the leaves of Camelliasinensis. In recent decades, GTCs have been reported to provide various health benefits against numerous diseases. Studies have shown that GTCs, especially epigallocatechin-3-gallate (EGCG), have antiviral effects against diverse viruses. The aim of this review is to summarize the developments regarding the antiviral activities of GTCs, to discuss the mechanisms underlying these effects and to offer suggestions for future research directions and perspectives on the antiviral effects of EGCG.
Collapse
|
34
|
Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017; 246:13-39. [PMID: 28716187 DOI: 10.1016/j.cis.2017.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
A major challenge in the field of nanomedicine is to transform laboratory innovations into commercially successful clinical products. In this campaign, a variety of nanoenabled approaches have been designed and investigated for their role in biomedical applications. The advantages associated with the unique structure of albumin imparts it with the ability to interact with variety of molecules, while the functional groups present on their surface provide base for large number of modifications making it as an ideal nanocarrier system. So far, a variety of albumin based nanoenabled approaches have been intensively exploited for effective diagnosis and personalized medicine, among them some have successfully completed their journey from lab bench to marketed products. This review focuses on the recent most promising advancement in the field of albumin based nanoenabled approaches for various biomedical applications and their potential use in cancer diagnosis and therapy.
Collapse
|
35
|
Tyagi N, De R, Begun J, Popat A. Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. Int J Pharm 2016; 518:220-227. [PMID: 27988378 DOI: 10.1016/j.ijpharm.2016.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
With the recent quantum leap in chemoprevention by dietary products, their use as cancer therapeutics is garnering worldwide attention. The concept of effortlessly fighting this deadly disease by gulping cups of green tea or swallowing green tea extract capsules is appreciated universally. Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, has generated significant interest in controlling carcinogenesis due to its growth-inhibitory efficacy against a variety of cancers by targeting multiple signaling pathways. However, the success of EGCG in preclinical studies is difficult to translate into clinical trials due to issues of low solubility, bioavailability and an uncertain therapeutic window. The laborious and expensive journey of drugs from the laboratory to commercialization can be improved by utilizing nanoparticles as anti-cancer drug carriers. Exploitation of biopolymeric nanoparticles in recent years has improved EGCG's biodistribution, stability and tumor selectivity, revealing its superior chemopreventive effects. This review briefly summarizes recent developments regarding the targets and side effects of EGCG, complications associated with its low bioavailability and critically analyses the application of biopolymeric nanoparticles encapsulating EGCG as a next generation delivery systems.
Collapse
Affiliation(s)
- Nisha Tyagi
- School of Pharmacy, The University of Queensland Brisbane, QLD,4102,Australia
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Jakob Begun
- Inflammatory Disease Biology and Therapeutics Group- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia; School of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland Brisbane, QLD,4102,Australia; Inflammatory Disease Biology and Therapeutics Group- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
36
|
Kumar S, Meena R, Rajamani P. Fabrication of BSA-Green Tea Polyphenols-Chitosan Nanoparticles and Their Role in Radioprotection: A Molecular and Biochemical Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6024-6034. [PMID: 27389300 DOI: 10.1021/acs.jafc.6b02068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Normal tissue damage from ionizing radiation during radiotherapy is a major concern in cancer treatment. Tea polyphenols (TPs) have been shown to reduce radiation-induced damage in multiple studies, but their pharmacological application is still limited due to poor bioavailability. The present study was aimed at to increase the TPs bioavailability by nanoformulation by using BSA as the matrix and chitosan as the external shell. Encapsulated TPs nanoparticles were spherical in size and promoted TPs stability in normal and gastrointestinal conditions without losing antioxidant activity. Oral administration of nanoparticles for 3 days prior to irradiation exposure has been shown to protect mice from hematological injuries that result in the reduction of radiation-induced lethality. TPs reduce radiation-induced oxidative damage and apoptosis by restoring the redox status through the Nrf2-ERK pathway and reducing Bax expression, respectively. Regarding potency, encapsulated TPs have shown a significantly higher level of radioprotection than TPs, suggesting that TP nanoparticles can be explored as valuable radioprotective and pharmacotherapeutic agent.
Collapse
Affiliation(s)
- Sumit Kumar
- School of Life Science and ‡School of Environmental Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Ramovatar Meena
- School of Life Science and ‡School of Environmental Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Paulraj Rajamani
- School of Life Science and ‡School of Environmental Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| |
Collapse
|
37
|
Gonçalves VSS, Poejo J, Matias AA, Rodríguez-Rojo S, Cocero MJ, Duarte CMM. Using different natural origin carriers for development of epigallocatechin gallate (EGCG) solid formulations with improved antioxidant activity by PGSS-drying. RSC Adv 2016. [DOI: 10.1039/c6ra13499h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the catechin with the highest antioxidant activity present in green tea.
Collapse
Affiliation(s)
- V. S. S. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
- Instituto de Biologia Experimental e Tecnológica
| | - J. Poejo
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
- Instituto de Biologia Experimental e Tecnológica
| | - A. A. Matias
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
- Instituto de Biologia Experimental e Tecnológica
| | - S. Rodríguez-Rojo
- Escuela de Ingenierías Industriales
- Universidad de Valladolid
- 47011 Valladolid
- Spain
| | - M. J. Cocero
- Escuela de Ingenierías Industriales
- Universidad de Valladolid
- 47011 Valladolid
- Spain
| | - C. M. M. Duarte
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
- Instituto de Biologia Experimental e Tecnológica
| |
Collapse
|
38
|
Abd El-Salam MH, El-Shibiny S. Natural biopolymers as nanocarriers for bioactive ingredients used in food industries. ENCAPSULATIONS 2016:793-829. [DOI: 10.1016/b978-0-12-804307-3.00019-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
39
|
Gonzalez-Moragas L, Yu SM, Carenza E, Laromaine A, Roig A. Protective Effects of Bovine Serum Albumin on Superparamagnetic Iron Oxide Nanoparticles Evaluated in the Nematode Caenorhabditis elegans. ACS Biomater Sci Eng 2015; 1:1129-1138. [PMID: 33429554 DOI: 10.1021/acsbiomaterials.5b00253] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nanomaterials give rise to unique biological reactivity that needs to be thoroughly investigated. The quest for enhanced magnetic nanomaterials of different shapes, magnetic properties, or surface coatings continues for applications in drug delivery, targeting therapies, biosensing, and magnetic separation. In this context, the use of simple in vivo models, such as Caenorhabditis elegans, to biologically evaluate nanoparticles is currently in increasing demand as it offers low-cost and information-rich experiments. In this work, we evaluated how surface modification (citrate- and protein-coated) of superparamagnetic iron oxide nanoparticles (C-SPIONs and BSA-SPIONs, respectively) induces changes in their toxicological profile and biodistribution using the animal model C. elegans and combining techniques from materials science and biochemistry. The acute toxicity and nanoparticle distribution were assessed in two populations of worms (adults and larvae) treated with both types of SPIONs. After 24 h treatment, nanoparticles were localized in the alimentary system of C. elegans; acute toxicity was stronger in adults and larvae exposed to C-SPIONs rather than BSA-SPIONs. Adult uptake was similar for both SPION types, whereas uptake in larvae was dependent on the surface coating, being higher for BSA-SPIONs. Nanoparticle size was evaluated upon excretion, and a slight size decrease was found. Interestingly, all results indicate the protective effects of the BSA to prevent degradation of the nanoparticles and decrease acute toxicity to the worms, especially at high concentrations. We argue that this relevant information on the chemistry and toxicity of SPIONs in vivo could not be gathered using more classical in vitro approaches such as cell culture assays, thus endorsing the potential of C. elegans to assess nanomaterials at early stages of their synthetic formulations.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Si-Ming Yu
- Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Elisa Carenza
- Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
40
|
Lin WC, Shih PH, Wang W, Wu CH, Hsia SM, Wang HJ, Hwang PA, Wang CY, Chen SH, Kuo YT. Inhibitory effects of high stability fucoxanthin on palmitic acid-induced lipid accumulation in human adipose-derived stem cells through modulation of long non-coding RNA. Food Funct 2015; 6:2215-23. [PMID: 26057608 DOI: 10.1039/c5fo00301f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Obesity is a serious worldwide disease, which is growing in epidemic proportions. Adipose-derived stem cells (ADSCs) are characterized as a source of mesenchymal stem cells that have acted as a potential application for regeneration. Recently, seaweeds rich in flavonoids and polysaccharides have been supposed to show the ability to modulate risk factors for obesity and related diseases. In the present study, we investigated the anti-obesity properties of high stability fucoxanthin (HS-Fx) derived from brown seaweeds on the adipogenesis of ADSCs upon treatment with palmitic acid (PA). First, we showed the differentiation capability of ADSCs from morbid obesity patients to transform into different cell types. Second, we found that the co-treatment of ADSCs with HS-Fx and PA showed no significant cytotoxicity against ADSCs, but PA induced the elevation of reactive oxygen species (ROS) and lipid droplet accumulation was abolished. Thirdly, the PA-mediated down-regulation of lipid metabolism genes was reversed by the treatment of HS-Fx. By long non-coding RNAs (lncRNAs) screening, we found that PA-induced increases in the targeted lncRNAs were also decreased upon treatment with HS-Fx. On Silencing, these lncRNAs corresponded to the decrease in the lipid droplet accumulation of ADSCs induced by PA. ADSCs from obese patients would be direct and meaningful model cells to investigate the development of obesity-related diseases and their treatments, rather than cell lines from other species. HS-Fx showed anti-obesity capability through modulating the elevation of ROS, down-regulation of lipid metabolism genes induced by PA, and upstream signaling, which might be critically resulted from the expression of lncRNAs.
Collapse
Affiliation(s)
- Wen-Chuan Lin
- Department of Pediatrics Shuang Ho Hospital, Taipei Medical University, 291, Jhongjheng Rd., Jhonghe Dist., New Taipei City 23561, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kerch G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 2015; 13:2158-82. [PMID: 25871293 PMCID: PMC4413205 DOI: 10.3390/md13042158] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed.
Collapse
Affiliation(s)
- Garry Kerch
- Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, LV-1048, Latvia.
| |
Collapse
|
42
|
Zou L, Peng S, Liu W, Chen X, Liu C. A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (−)-epigallocatechin gallate. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Sanna V, Lubinu G, Madau P, Pala N, Nurra S, Mariani A, Sechi M. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2026-2032. [PMID: 25599125 DOI: 10.1021/jf505850q] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
With the aim to obtain controlled release and to preserve the antioxidant activity of the polyphenols, nanoencapsulation of white tea extract into polymeric nanoparticles (NPs) based on poly(ε-caprolactone) (PCL) and alginate was successfully performed. NPs were prepared by nanoprecipitation method and were characterized in terms of morphology and chemical properties. Total polyphenols and catechins contents before and after encapsulation were determined. Moreover, in vitro release profiles of encapsulated polyphenols from NPs were investigated in simulated gastrointestinal fluids. The antioxidant activity and stability of encapsulated extract were further evaluated. Interestingly, NPs released 20% of the polyphenols in simulated gastric medium, and 80% after 5 h at pH 7.4, showing a good capacity to control the polyphenols delivery. Furthermore, DPPH(•) assay confirmed that white tea extract retained its antioxidant activity and NPs protected tea polyphenols from degradation, thus opening new perspectives for the exploitation of white tea extract-loaded NPs for nutraceutical applications.
Collapse
Affiliation(s)
- Vanna Sanna
- Department of Chemistry and Pharmacy, University of Sassari , Via Vienna 2, 07100 Sassari, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Teng Z, Xu R, Wang Q. Beta-lactoglobulin-based encapsulating systems as emerging bioavailability enhancers for nutraceuticals: a review. RSC Adv 2015. [DOI: 10.1039/c5ra01814e] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Encapsulating systems prepared with beta-lactoglobulin, the major component of whey protein, may serve as versatile bioavailability enhancers for poorly absorbed nutraceuticals.
Collapse
Affiliation(s)
- Zi Teng
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| | - Ruoyang Xu
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| | - Qin Wang
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| |
Collapse
|