1
|
Bag R, Kar M, Sharma NK. Ag(I)-Mediated Site-Selective C(sp 2)-H Chalcogenation of Tryptophan-Peptides with Dichalcogenides at Room Temperature. J Org Chem 2024; 89:14981-15002. [PMID: 39373108 DOI: 10.1021/acs.joc.4c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This report presents a silver-mediated site-selective chalcogenation of tryptophan-containing peptides with various dichalcogenides (disulfides/diselenides) at room temperature in good to excellent yields. The significant features include broad substrate scope, functional group diversity, late-stage modification of drug molecules (Dopamine and Levodopa), and various valuable postsynthetic transformations under mild conditions.
Collapse
Affiliation(s)
- Raghunath Bag
- National Institute of Science Education and Research-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Malobika Kar
- National Institute of Science Education and Research-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Domokos-Szabolcsy É, Soós Á, Kovács B, Kovács Z, Dernovics M. Water-soluble organic selenometabolites of alfalfa (Medicago sativa L.) green biomass-derived fractions. J Trace Elem Med Biol 2024; 86:127545. [PMID: 39426331 DOI: 10.1016/j.jtemb.2024.127545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Tolerance of plants towards selenium, a non-essential microelement for higher plants, is a key issue when designing either the indirect (selenium-depletion from highly seleniferous soils) or directed (selenized feed production) enrichment of selenium in forages. Alfalfa (Medicago sativa L.), the well-known forage crop of the Fabaceae family, has been gaining considerable interest due to its application as a green manure, as a cover crop, or in soil remediation by nitrogen fixation. OBJECTIVE The goal of our study was to assess into which selenocompounds alfalfa plants biotransform the excess selenium uptake from the soil. Selenocompounds (other than selenomethionine and inorganic forms) accumulated in the fiber and the so-called brown juice by-product fractions of processed alfalfa biomass were targeted. METHODOLOGY Inductively coupled plasma - mass spectrometry assisted multidimensional (strong anion exchange, strong cation exchange, reversed phase) orthogonal chromatographic purification was applied to supply Se-containing fractions in adequately high purity for electrospray high-resolution mass spectrometry (used for the first time for this matrix) analyses. RESULTS As a total, 30 selenocompounds (with isomers) were described, showing the abundance of the derivatives of selenohexose, selenohomolanthionine, and 2,3-dihydroxypropionic acid. Out of the 30 selenocompounds, 15 could be assigned the elemental composition, and the tentative structure of five compounds including among others deamino-2-oxo-selenohomolanthionine, deamino-hydroxy-selenohomolanthionine, and the dimer of 2,3-dihydroxypropionyl-selenohomocysteine could be presented. CONCLUSIONS The studied fractions arising from the standard alfalfa processing technology contained a wide variety of selenocompounds whose origin can be either the plant's inherent Se metabolism or the processing technology itself. The importance of negative mode data acquisition has been highlighted, as out of the 30 compounds, 16 could be detected exclusively in this electrospray ionization mode.
Collapse
Affiliation(s)
- Éva Domokos-Szabolcsy
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, Debrecen 4032, Hungary
| | - Áron Soós
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, Debrecen 4032, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, Debrecen 4032, Hungary
| | - Zoltán Kovács
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, Debrecen 4032, Hungary
| | - Mihály Dernovics
- Department of Plant Physiology and Metabolomics, Agricultural Institute, HUN-REN Centre for Agricultural Research, Brunszvik str. 2, Martonvásár 2462, Hungary.
| |
Collapse
|
3
|
Qi Z, Duan A, Ng K. Selenosugar, selenopolysaccharide, and putative selenoflavonoid in plants. Compr Rev Food Sci Food Saf 2024; 23:e13329. [PMID: 38551194 DOI: 10.1111/1541-4337.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. Selenium supports cellular antioxidant defense and possesses bioeffects such as anti-inflammation, anti-cancer, anti-diabetic, and cardiovascular and liver protective effects arising from Se-enhanced cellular antioxidant activity. Past studies on Se have focused on elucidating Se speciation in foods, biofortification strategies to produce Se-enriched foods to address Se deficiency in the population, and the biochemical activities of Se in health. The bioavailability and toxicity of Se are closely correlated to its chemical forms and may exhibit varying effects on body physiology. Selenium exists in inorganic and organic forms, in which inorganic Se such as sodium selenite and sodium selenate is more widely available. However, it is a challenge for safe and effective supplementation considering inorganic Se low bioavailability and high cytotoxicity. Organic Se, by contrast, exhibits higher bioavailability and lower toxicity and has a more diverse composition and structure. Organic Se exists as selenoamino acids and selenoproteins, but recent research has provided evidence that it also exists as selenosugars, selenopolysaccharides, and possibly as selenoflavonoids. Different food categories contain various Se compounds, and their Se profiles vary significantly. Therefore, it is necessary to delineate Se speciation in foods to understand their impact on health. This comprehensive review documents our knowledge of the recent uncovering of the existence of selenosugars and selenopolysaccharides and the putative evidence for selenoflavonoids. The bioavailability and bioactivities of these food-derived organic Se compounds are highlighted, in addition to their composition, structural features, and structure-activity relationships.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Đulović A, Usanović K, Kukoč Modun L, Blažević I. Selenium Biofortification Effect on Glucosinolate Content of Brassica oleracea var. italic and Eruca vesicaria. Molecules 2023; 28:7203. [PMID: 37894683 PMCID: PMC10609431 DOI: 10.3390/molecules28207203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Glucosinolates (GSLs) in different plant parts of broccoli (Brassica oleracea var. italic) and rocket (Eruca vesicaria) were analyzed qualitatively and quantitatively before and after treatment with sodium selenate (2 and 5 mM), by their desulfo-counterparts using the UHPLC-DAD-MS/MS technique. Twelve GSLs were detected in broccoli (five aliphatic, one arylaliphatic, and six indolic), where 4-(methylsulfanyl)butyl GSL (glucoerucin) was the main one in the roots (4.88-9.89 µmol/g DW), 4-(methylsulfinyl)butyl GSL (glucoraphanin) in stems (0.44-1.11 µmol/g DW), and 4-hydroxyindol-3-ylmethyl GSL (4-hydroxyglucobrassicin) in leaves (0.51-0.60 µmol/g DW). No GSL containing selenium was detected in the treated broccoli. Ten GSLs were detected in rocket (seven aliphatic and three indolic), where 4-(methylsulfanyl)butyl GSL (glucoerucin) was the main one in the roots (4.50-20.59 µmol/g DW) and 4-methoxyindol-3-ylmethyl GSL (4-methoxyglucobrassicin) in the aerial part (0.57-5.69 µmol/g DW). As a result of induced stress by selenium fertilization, the total GSL content generally increased in both plants. In contrast to broccoli, the roots and the aerial part of the rocket treated with a high concentration of sodium selenate contained 4-(methylseleno)butyl GSL (glucoselenoerucin) (0.36-4.48 µmol/g DW). Although methionine-derived GSLs are the most abundant in both plants, the plants' ability to tolerate selenate and its regulation by selenoglucosinolate production is species- and growth-stage-dependent.
Collapse
Affiliation(s)
- Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (A.Đ.); (K.U.)
| | - Katarina Usanović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (A.Đ.); (K.U.)
| | - Lea Kukoč Modun
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (A.Đ.); (K.U.)
| |
Collapse
|
5
|
Dima ȘO, Constantinescu-Aruxandei D, Tritean N, Ghiurea M, Capră L, Nicolae CA, Faraon V, Neamțu C, Oancea F. Spectroscopic Analyses Highlight Plant Biostimulant Effects of Baker's Yeast Vinasse and Selenium on Cabbage through Foliar Fertilization. PLANTS (BASEL, SWITZERLAND) 2023; 12:3016. [PMID: 37631226 PMCID: PMC10458166 DOI: 10.3390/plants12163016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin-Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits.
Collapse
Affiliation(s)
- Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biology, University of Bucharest, Splaiul Independenței nr. 91-95, Sector 5, 050095 Bucharest, Romania
| | - Marius Ghiurea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Luiza Capră
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Cristian-Andi Nicolae
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Victor Faraon
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Constantin Neamțu
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Florin Oancea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști nr. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
6
|
Tolu J, Bouchet S, Helfenstein J, Hausheer O, Chékifi S, Frossard E, Tamburini F, Chadwick OA, Winkel LHE. Understanding soil selenium accumulation and bioavailability through size resolved and elemental characterization of soil extracts. Nat Commun 2022; 13:6974. [PMID: 36379945 PMCID: PMC9666626 DOI: 10.1038/s41467-022-34731-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary deficiency of selenium is a global health threat related to low selenium concentrations in crops. Despite the chemical similarity of selenium to the two more abundantly studied elements sulfur and arsenic, the understanding of its accumulation in soils and availability for plants is limited. The lack of understanding of soil selenium cycling is largely due to the unavailability of methods to characterize selenium species in soils, especially the organic ones. Here we develop a size-resolved multi-elemental method using liquid chromatography and elemental mass spectrometry, which enables an advanced characterization of selenium, sulfur, and arsenic species in soil extracts. We apply the analytical approach to soils sampled along the Kohala rainfall gradient on Big Island (Hawaii), which cover a large range of organic carbon and (oxy)hydroxides contents. Similarly to sulfur but contrarily to arsenic, a large fraction of selenium is found associated with organic matter in these soils. However, while sulfur and arsenic are predominantly found as oxyanions in water extracts, selenium mainly exists as small hydrophilic organic compounds. Combining Kohala soil speciation data with concentrations in parent rock and plants further suggests that selenium association with organic matter limits its mobility in soils and availability for plants.
Collapse
Affiliation(s)
- Julie Tolu
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Sylvain Bouchet
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Julian Helfenstein
- ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Agricultural Sciences (IAS), Group of Plant Nutrition, Eschikon 33, 8315 Lindau, Switzerland ,grid.4818.50000 0001 0791 5666Present Address: Soil Geography and Landscape Group, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Olivia Hausheer
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Sarah Chékifi
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Emmanuel Frossard
- ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Agricultural Sciences (IAS), Group of Plant Nutrition, Eschikon 33, 8315 Lindau, Switzerland
| | - Federica Tamburini
- ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Agricultural Sciences (IAS), Group of Plant Nutrition, Eschikon 33, 8315 Lindau, Switzerland
| | - Oliver A. Chadwick
- grid.133342.40000 0004 1936 9676Department of Geography, University of California, Santa Barbara, CA 93106 USA
| | - Lenny H. E. Winkel
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Synthesis of novel organic selenium compounds and speciation of their metabolites in biofortified kale sprouts. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Gao YT, Liu SD, Cheng L, Liu L. A fast and direct iodide-catalyzed oxidative 2-selenylation of tryptophan. Chem Commun (Camb) 2021; 57:3504-3507. [PMID: 33690761 DOI: 10.1039/d1cc00700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A metal-free 2-selenylation of tryptophan derivatives is reported, where the use of iodide as the catalyst and oxone as the oxidant is key to obtain high yields. Various functional groups within the di-seleny and the indole ring are tolerated, and no racemization is generally observed.
Collapse
Affiliation(s)
- Yu-Ting Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
9
|
Ouerdane L, Both EB, Xiang J, Yin H, Kang Y, Shao S, Kiszelák K, Jókai Z, Dernovics M. Water soluble selenometabolome of Cardamine violifolia. Metallomics 2020; 12:2032-2048. [PMID: 33165451 DOI: 10.1039/d0mt00216j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Low molecular weight selenium containing metabolites in the leaves of the selenium hyperaccumulator Cardamine violifolia (261 mg total Se per kg d.w.) were targeted in this study. One dimensional cation exchange chromatography coupled to ICP-MS was used for purification and fractionation purposes prior to LC-Unispray-QTOF-MS analysis. The search for selenium species in full scan spectra was assisted with an automated mass defect based filtering approach. Besides selenocystathionine, selenohomocystine and its polyselenide derivative, a total number of 35 water soluble selenium metabolites other than selenolanthionine were encountered, including 30 previously unreported compounds. High occurrence of selenium containing hexoses was observed, together with the first assignment of N-glycoside derivatives of selenolanthionine. Quantification of the most abundant selenium species, selenolanthionine, was carried out with an ion pairing LC - post column isotope dilution ICP-MS setup, which revealed that this selenoamino acid accounted for 30% of the total selenium content of the leaf (78 mg (as Se) per kg d.w.).
Collapse
Affiliation(s)
- Laurent Ouerdane
- Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPREM-UMR5254, Hélioparc, 2, Av. Pr. Angot, 64053 Pau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abdalla MA, Sulieman S, Mühling KH. Regulation of Selenium/Sulfur Interactions to Enhance Chemopreventive Effects: Lessons to Learn from Brassicaceae. Molecules 2020; 25:molecules25245846. [PMID: 33322081 PMCID: PMC7763292 DOI: 10.3390/molecules25245846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Selenium (Se) is an essential trace element, which represents an integral part of glutathione peroxidase and other selenoproteins involved in the protection of cells against oxidative damage. Selenomethionine (SeMet), selenocysteine (SeCys), and methylselenocysteine (MeSeCys) are the forms of Se that occur in living systems. Se-containing compounds have been found to reduce carcinogenesis of animal models, and dietary supplemental Se might decrease cancer risk. Se is mainly taken up by plant roots in the form of selenate via high-affinity sulfate transporters. Consequently, owing to the chemical similarity between Se and sulfur (S), the availability of S plays a key role in Se accumulation owing to competition effects in absorption, translocation, and assimilation. Moreover, naturally occurring S-containing compounds have proven to exhibit anticancer potential, in addition to other bioactivities. Therefore, it is important to understand the interaction between Se and S, which depends on Se/S ratio in the plant or/and in the growth medium. Brassicaceae (also known as cabbage or mustard family) is an important family of flowering plants that are grown worldwide and have a vital role in agriculture and populations’ health. In this review we discuss the distribution and further interactions between S and Se in Brassicaceae and provide several examples of Se or Se/S biofortifications’ experiments in brassica vegetables that induced the chemopreventive effects of these crops by enhancing the production of Se- or/and S-containing natural compounds. Extensive further research is required to understand Se/S uptake, translocation, and assimilation and to investigate their potential role in producing anticancer drugs.
Collapse
|
11
|
Bierla K, Chiappetta G, Vinh J, Lobinski R, Szpunar J. Potential of Fourier Transform Mass Spectrometry (Orbitrap and Ion Cyclotron Resonance) for Speciation of the Selenium Metabolome in Selenium-Rich Yeast. Front Chem 2020; 8:612387. [PMID: 33363115 PMCID: PMC7755988 DOI: 10.3389/fchem.2020.612387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023] Open
Abstract
The evolution of the field of element speciation, from the targeted analysis for specific element species toward a global exploratory analysis for the entirety of metal- or metalloid-related compounds present in a biological system (metallomics), requires instrumental techniques with increasing selectivity and sensitivity. The selectivity of hyphenated techniques, combining chromatography, and capillary electrophoresis with element-specific detection (usually inductively coupled plasma mass spectrometry, ICP MS), is often insufficient to discriminate all the species of a given element in a sample. The necessary degree of specificity can be attained by ultrahigh-resolution (R >100,000 in the m/z < 1,000 range for a 1 s scan) mass spectrometry based on the Fourier transformation of an image current of the ions moving in an Orbitrap or an ion cyclotron resonance (ICR) cell. The latest developments, allowing the separate detection of two ions differing by a mass of one electron (0.5 mDa) and the measurement of their masses with a sub-ppm accuracy, make it possible to produce comprehensive lists of the element species present in a biological sample. Moreover, the increasing capacities of multistage fragmentation often allow their de novo identification. This perspective paper critically discusses the potential state-of-the-art of implementation, and challenges in front of FT (Orbitrap and ICR) MS for a large-scale speciation analysis using, as example, the case of the metabolism of selenium by yeast.
Collapse
Affiliation(s)
- Katarzyna Bierla
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Hélioparc, Pau, France
| | | | - Joëlle Vinh
- SMBP, ESPCI Paris, Université PSL, CNRS, Paris, France
| | - Ryszard Lobinski
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Hélioparc, Pau, France
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Hélioparc, Pau, France
| |
Collapse
|
12
|
Jiang Z, Tian Z, Zhang C, Li D, Wu R, Tian N, Xing L, Ma L. Recent Advances in Speciation Analyses of Tobacco and Other Important Economic Crops. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411017999201201115234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Speciation analysis is defined as the analytical activities of identifying and/or measuring the
quantities of one or more individual chemical species in a sample. The knowledge of elemental species provides more
complete information about mobility, bioavailability and the impact of elements on ecological systems or biological
organisms. It is no longer sufficient to quantitate the total elemental content of samples to define toxicity or essentiality.
Thus speciation analysis is of vital importance and generally offers a better understanding of a specific element.
Discussion:
Thorough speciation scheme consisting of sampling, sample preparation, species analysis and evaluation
were described. Special emphasis is placed on recent speciation analysis approaches including both direct and coupling
methods. A current summary of advantages and limitations of the various methods as well as an illustrative method
comparison are presented. Certain elements and species of interest are briefly mentioned and practical examples of
speciation applications in tobacco and other important economic crops are also discussed.
Aim/Conclusion:
This review aims to offer comprehensive knowledge about elemental speciation and provide readers
with valuable information. Many strategies have been developed for the determination of multiple elemental species in
tobacco and other important economic crops. Nevertheless, it is an eternal pursuit to establish speciation methods which
can balance accuracy, agility as well as universality.
Collapse
Affiliation(s)
- Zhiping Jiang
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Zhizhang Tian
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Chuntao Zhang
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Dengke Li
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Ruoxin Wu
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Nan Tian
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Lixia Xing
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| | - Lichao Ma
- Tianjin Workstation, Technical Center, Shanghai Tobacco Group Co., Ltd, China
| |
Collapse
|
13
|
Pyrzynska K, Sentkowska A. Selenium in plant foods: speciation analysis, bioavailability, and factors affecting composition. Crit Rev Food Sci Nutr 2020; 61:1340-1352. [PMID: 32363893 DOI: 10.1080/10408398.2020.1758027] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interest in selenium has been increasing over the past few decades with growing knowledge of its importance to overall health. The ability of several plants to accumulate and transform inorganic selenium forms into its bioactive organic compounds has important implications for human nutrition and health. In this review, we present the studies carried out during the last decade to characterize selenium species produced by different plant foods. Attention is also paid to the effect of selenium treatment on chemical composition and antioxidant properties of plants.
Collapse
|
14
|
do Nascimento da Silva E, Cadore S. Bioavailability Assessment of Copper, Iron, Manganese, Molybdenum, Selenium, and Zinc from Selenium-Enriched Lettuce. J Food Sci 2019; 84:2840-2846. [PMID: 31517998 DOI: 10.1111/1750-3841.14785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 01/16/2023]
Abstract
Cu, Fe, Mn, Mo, Selenium (Se), and Zn bioavailability from selenate- and selenite-enriched lettuce plants was studied by in vitro gastrointestinal digestion followed by an assay with Caco-2 cells. The plants were cultivated in the absence and presence of two concentrations (25 and 40 µmol/L of Se). After 28 days of cultivation, the plants were harvested, dried, and evaluated regarding the total concentration, bioaccessibility, and bioavailability of the analytes. The results showed that biofortification with selenate leads to higher Se absorption by the plant than biofortification with selenite. For the other nutrients, Mo showed high accumulation in the plants of selenate assays, and the presence of any Se species led to a reduction of the plant uptake of Cu and Fe. The accumulation of Zn and Mn was not strongly influenced by the presence of any Se species. The bioaccessibility values were approximately 71%, 10%, 52%, 84%, 71%, and 86% for Cu, Fe, Mn, Mo, Se, and Zn, respectively, and the contribution of the biofortified lettuce to the ingestion of these minerals is very small (except for Se and Mo). Due to the low concentrations of elements from digested plants, it was not possible to estimate the bioavailability for some elements, and for Mo and Zn, the values are below 6.9% and 3.4% of the total concentration, respectively. For Se, the bioavailability was greater for selenite-enriched than selenate-enriched plants (22% and 6.0%, respectively), because selenite is biotransformed by the plant to organic forms that are better assimilated by the cells.
Collapse
Affiliation(s)
- Emanueli do Nascimento da Silva
- Inst. of Chemistry, Univ. of Campinas, Campinas, SP, Brazil
- Dept. of Chemistry, Inst. of Exact and Biologic Sciences, Federal Univ. of Ouro Preto, Ouro Preto, MG, Brazil
| | - Solange Cadore
- Inst. of Chemistry, Univ. of Campinas, Campinas, SP, Brazil
| |
Collapse
|
15
|
Pyrzynska K, Sentkowska A. Liquid chromatographic analysis of selenium species in plant materials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
White PJ. Selenium metabolism in plants. Biochim Biophys Acta Gen Subj 2018; 1862:2333-2342. [DOI: 10.1016/j.bbagen.2018.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
17
|
Speciation Analysis of Selenium in Candida utilis Yeast Cells Using HPLC-ICP-MS and UHPLC-ESI-Orbitrap MS Techniques. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Selenium plays a key role in the proper metabolism of living organisms. The search for new selenium compounds opens up new possibilities for understanding selenometabolome in yeast cells. This study was aimed at the identification of compounds containing selenium in the feed yeasts Candida utilis ATCC 9950. Yeast biomass was kept in aqueous solutions enriched with inorganic selenium (20 mg·L−1) for 24 h. Speciation analysis of the element was performed using the HPLC-ICP-MS and UHPLC-ESI-Orbitrap MS techniques. The obtained selenium value in the yeast was 629 μg·g−1, while the selenomethionine value was 31.57 μg·g−1. The UHPLC-ESI-Orbitrap MS analysis conducted allowed for the identification of six selenium compounds: dehydro-selenomethionine-oxide, selenomethionine, selenomethionine-NH3, a Se-S conjugate of selenoglutathione-cysteine, methylthioselenoglutathione, and 2,3-DHP-selenocysteine-cysteine. In order to explain the structure of selenium compounds, the selected ions were subjected to fragmentation. The selenium compounds obtained with a low mass play a significant role in the metabolism of the compound. However, the bioavailability of such components and their properties have not been fully understood. The number of signals indicating the presence of selenium compounds obtained using the UHPLC-ESI-Orbitrap MS method was characterized by higher sensitivity than when using the HPLC-ICP-MS method. The obtained results will expand upon knowledge about the biotransformation of selenium in eukaryotic yeast cells. Future research should focus on understanding the entire selenium metabolism in cells and on the search for new transformation pathways for this element. This opens up new possibilities for obtaining functional food, rich in easily absorbable selenium sources, and constituting an alternative to dietary supplements based on this compound found primarily in inorganic form.
Collapse
|
18
|
Tian M, Xu X, Liu F, Fan X, Pan S. Untargeted metabolomics reveals predominant alterations in primary metabolites of broccoli sprouts in response to pre-harvest selenium treatment. Food Res Int 2018; 111:205-211. [DOI: 10.1016/j.foodres.2018.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/01/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
19
|
Marrubini G, Appelblad P, Maietta M, Papetti A. Hydrophilic interaction chromatography in food matrices analysis: An updated review. Food Chem 2018; 257:53-66. [PMID: 29622230 DOI: 10.1016/j.foodchem.2018.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/27/2023]
Abstract
This review focuses on the most recent papers (from 2011 to submission date in 2017) dealing with the analysis of different organic components in foods (i.e. nucleobases, nucleosides, nucleotides, uric acid, and creatinine, amino acids and related compounds, choline-related compounds and phospholipids, carbohydrates, artificial sweeteners and polyphenolic compounds), using hydrophilic interaction liquid chromatography (HILIC) combined with different detection techniques. For each compound class, the investigated food matrices are grouped per: foods of animal origin, vegetables, fruits and related products, baby food, and other matrices such as drinks and mushrooms/fungi. Furthermore, the main advantages of HILIC chromatography respect to the other commonly used techniques are discussed.
Collapse
Affiliation(s)
- Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Mariarosa Maietta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
20
|
Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 2018; 8:2789. [PMID: 29434336 PMCID: PMC5809607 DOI: 10.1038/s41598-018-21268-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential mineral element for animals and humans. Cardamine hupingshanensis (Brassicaceae), found in the Wuling mountain area of China, has been identified as a novel Se hyperaccumulator plant. However, the mechanism for selenium tolerance in Cardamine plants remains unknown. In this study, two cDNA libraries were constructed from seedlings of C. hupingshanensis treated with selenite. Approximately 100 million clean sequencing reads were de novo assembled into 48,989 unigenes, of which 39,579 and 33,510 were expressed in the roots and leaves, respectively. Biological pathways and candidate genes involved in selenium tolerance mechanisms were identified. Differential expression analysis identified 25 genes located in four pathways that were significantly responsive to selenite in C. hupingshanensis seedlings. The results of RNA sequencing (RNA-Seq) and quantitative real-time PCR (RT-qPCR) confirmed that storage function, oxidation, transamination and selenation play very important roles in the selenium tolerance in C. hupingshanensis. Furthermore, a different degradation pathway synthesizing malformed or deformed selenoproteins increased selenium tolerance at different selenite concentrations. This study provides novel insights into the mechanisms of selenium tolerance in a hyperaccumulator plant, and should serve as a rich gene resource for C. hupingshanensis.
Collapse
Affiliation(s)
- Yifeng Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China.,Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Qiaoyu Tang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Meiru Wu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Di Mou
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Hui Liu
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chi Zhang
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Li Ding
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Both EB, Shao S, Xiang J, Jókai Z, Yin H, Liu Y, Magyar A, Dernovics M. Selenolanthionine is the major water-soluble selenium compound in the selenium tolerant plant Cardamine violifolia. Biochim Biophys Acta Gen Subj 2018; 1862:2354-2362. [PMID: 29331509 DOI: 10.1016/j.bbagen.2018.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Selenium hyperaccumulation in plants often involves the synthesis of non-proteinaceous methylated selenoamino acids serving for the elimination of excess selenium from plant metabolism to protect plant homeostasis. METHODS Our study aimed at the identification of the main selenium species of the selenium hyperaccumulator plant Cardamine violifolia (Brassicaceae) that grows in the wild in the seleniferous region of Enshi, China. A sample of this plant (3.7 g Se kg-1 d.w.) was prepared with several extraction methods and the extracted selenium species were identified and quantified with liquid chromatography mass spectrometry set-ups. RESULTS The Cardamine violifolia sample did not contain in considerable amount any of the organic selenium species that are often formed in hyperaccumulator plants; the inorganic selenium content (mostly as elemental selenium) accounted only for <20% of total Se. The most abundant selenium compound, accounting for about 40% of total Se was proved to be selenolanthionine, a selenium species that has never been unambiguously identified before from any selenium containing sample. The identification process was completed with chemical synthesis too. The molar ratio of lanthionine:selenolanthionine in the water extract was ca. 1:8. CONCLUSIONS Finding selenolanthionine as the main organic selenium species in a plant possibly unearths a new way of selenium tolerance. This article is part of a Special Issue entitled Selenium research in biochemistry and biophysics - 200 year anniversary issue, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.
Collapse
Affiliation(s)
- Eszter Borbála Both
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, 1118 Budapest, Hungary
| | - Shuxun Shao
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou Province 550081, China
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, 517 Shizhou Road, Enshi, Hubei Province 445002, China
| | - Zsuzsa Jókai
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, 1118 Budapest, Hungary
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, 517 Shizhou Road, Enshi, Hubei Province 445002, China
| | - Yafeng Liu
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou Province 550081, China
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Mihály Dernovics
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, 1118 Budapest, Hungary.
| |
Collapse
|
22
|
|
23
|
Duncan EG, Maher WA, Jagtap R, Krikowa F, Roper MM, O'Sullivan CA. Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:955-966. [PMID: 27443882 DOI: 10.1007/s10653-016-9857-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/12/2016] [Indexed: 05/21/2023]
Abstract
This study investigated whether selenium species in wheat grains could be altered by exposure to different combinations of nitrogen (N) and sulphur (S) fertilisers in an agronomic biofortification experiment. Four Australian wheat cultivars (Mace, Janz, Emu Rock and Magenta) were grown in a glasshouse experiment and exposed to 3 mg Se kg-1 soil as selenate (SeVI). Plants were also exposed to 60 mg N kg-1 soil as urea and 20 mg S kg-1 soil as gypsum in a factorial design (N + S + Se; N + Se; S + Se; Se only). Plants were grown to maturity with grain analysed for total Se concentrations via ICP-MS and Se species determined via HPLC-ICP-MS. Grain Se concentrations ranged from 22 to 70 µg Se g-1 grain (dry mass). Selenomethionine (SeMet), Se-methylselenocystine (MeSeCys), selenohomolanthionine (SeHLan), plus a large concentration of uncharacterised Se species were found in the extracts from grains. SeMet was the major Se species identified accounting for between 9 and 24 µg Se g-1 grain. Exposure to different N and S fertiliser combinations altered the SeMet content of Mace, Janz and Emu Rock grain, but not that of Magenta. MeSeCys and SeHLan were found in far lower concentrations (<4 µg Se g-1 grain). A large component of the total grain Se was uncharacterisable (>30 % of total grain Se) in all samples. When N fertiliser was applied (with or without S), the proportion of uncharacterisable Se increased between 60 and 70 % of the total grain Se. The data presented here indicate that it is possible to alter the content of individual Se species in wheat grains via biofortification combined with manipulation of N and S fertiliser regimes. This has potential significance in alleviating or combating both Se deficiency and Se toxicity effects in humans.
Collapse
Affiliation(s)
- Elliott G Duncan
- CSIRO Agriculture, Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA, 6014, Australia.
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT, 2601, Australia.
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095, Australia.
| | - William A Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT, 2601, Australia
| | - Rajani Jagtap
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT, 2601, Australia
| | - Frank Krikowa
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT, 2601, Australia
| | - Margaret M Roper
- CSIRO Agriculture, Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA, 6014, Australia
| | - Cathryn A O'Sullivan
- CSIRO Agriculture, Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA, 6014, Australia
| |
Collapse
|
24
|
Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1365. [PMID: 28824693 PMCID: PMC5540907 DOI: 10.3389/fpls.2017.01365] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 05/04/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.
Collapse
Affiliation(s)
- Melanie Wiesner-Reinhold
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- *Correspondence: Melanie Wiesner-Reinhold
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Susanne Baldermann
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of PotsdamNuthethal, Germany
| | - Dietmar Schwarz
- Functional Plant Biology, Leibniz Institute of Vegetable and Ornamental CropGrossbeeren, Germany
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University JenaJena, Germany
| | - Daryl D. Rowan
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Kerry L. Bentley-Hewitt
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Marian J. McKenzie
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| |
Collapse
|
25
|
Ochsenkühn-Petropoulou M, Tsopelas F, Ruzik L, Bierła K, Szpunar J. Selenium and Selenium Species. Metallomics 2016. [DOI: 10.1002/9783527694907.ch6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Ochsenkühn-Petropoulou
- National Technical University of Athens, School of Chemical Engineering; Laboratory of Inorganic and Analytical Chemistry; Iroon Polytechneiou 9, Zografou Campus 157 80 Athens Greece
| | - Fotios Tsopelas
- Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Lena Ruzik
- National Technical University of Athens, School of Chemical Engineering; Laboratory of Inorganic and Analytical Chemistry; Iroon Polytechneiou 9, Zografou Campus 157 80 Athens Greece
| | - Katarzyna Bierła
- Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Joanna Szpunar
- CNRS-UPPA IPREM; , Laboratory of Bioinorganic Analytical and Environmental Chemistry, UMR 5254; 2, Avenue Président Angot 64053 Pau France
| |
Collapse
|
26
|
Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R. Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. THE NEW PHYTOLOGIST 2016; 211:1129-41. [PMID: 27111838 DOI: 10.1111/nph.13964] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 05/16/2023]
Abstract
Description of metal species in plant fluids such as xylem, phloem or related saps remains a complex challenge usually addressed either by liquid chromatography-mass spectrometry, X-ray analysis or computational prediction. To date, none of these techniques has achieved a complete and true picture of metal-containing species in plant fluids, especially for the least concentrated complexes. Here, we present a generic analytical methodology for a large-scale (> 10 metals, > 50 metal complexes) detection, identification and semiquantitative determination of metal complexes in the xylem and embryo sac liquid of the green pea, Pisum sativum. The procedure is based on direct injection using hydrophilic interaction chromatography with dual detection by elemental (inductively coupled plasma mass spectrometry) and molecular (high-resolution electrospray mass spectrometry) mass spectrometric detection. Numerous and novel complexes of iron(II), iron(III), copper(II), zinc, manganese, cobalt(II), cobalt(III), magnesium, calcium, nickel and molybdenum(IV) with several ligands including nicotianamine, citrate, malate, histidine, glutamine, aspartic acid, asparagine, phenylalanine and others are observed in pea fluids and discussed. This methodology provides a large inventory of various types of metal complexes, which is a significant asset for future biochemical and genetic studies into metal transport/homeostasis.
Collapse
Affiliation(s)
- Paulina Flis
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (UMR5254), Centre National de la Recherche Scientifique, Université de Pau et des Pays de l'Adour, Pau Cedex 9, F-64063, France
| | - Laurent Ouerdane
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (UMR5254), Centre National de la Recherche Scientifique, Université de Pau et des Pays de l'Adour, Pau Cedex 9, F-64063, France
| | - Louis Grillet
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut de Biologie Intégrative des Plantes, Centre National de la Recherche Scientifique (UMR5004), Institut National de la Recherche Agronomique, Université Montpellier II, Ecole Nationale Supérieure d'Agronomie, Montpellier Cedex 2, F-34060, France
| | - Catherine Curie
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut de Biologie Intégrative des Plantes, Centre National de la Recherche Scientifique (UMR5004), Institut National de la Recherche Agronomique, Université Montpellier II, Ecole Nationale Supérieure d'Agronomie, Montpellier Cedex 2, F-34060, France
| | - Stéphane Mari
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut de Biologie Intégrative des Plantes, Centre National de la Recherche Scientifique (UMR5004), Institut National de la Recherche Agronomique, Université Montpellier II, Ecole Nationale Supérieure d'Agronomie, Montpellier Cedex 2, F-34060, France
| | - Ryszard Lobinski
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (UMR5254), Centre National de la Recherche Scientifique, Université de Pau et des Pays de l'Adour, Pau Cedex 9, F-64063, France
| |
Collapse
|
27
|
White PJ. Selenium accumulation by plants. ANNALS OF BOTANY 2016; 117:217-35. [PMID: 26718221 PMCID: PMC4724052 DOI: 10.1093/aob/mcv180] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. SCOPE This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. CONCLUSIONS The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Collapse
Affiliation(s)
- Philip J White
- Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK and Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Huang K, Xu K, Zhu W, Yang L, Hou X, Zheng C. Hydride Generation for Headspace Solid-Phase Extraction with CdTe Quantum Dots Immobilized on Paper for Sensitive Visual Detection of Selenium. Anal Chem 2015; 88:789-95. [DOI: 10.1021/acs.analchem.5b03128] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ke Huang
- Key
Laboratory of Green Chemistry and Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kailai Xu
- Key
Laboratory of Green Chemistry and Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wei Zhu
- Key
Laboratory of Green Chemistry and Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lu Yang
- National Research
Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Xiandeng Hou
- Key
Laboratory of Green Chemistry and Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chengbin Zheng
- Key
Laboratory of Green Chemistry and Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
29
|
Hann S, Dernovics M, Koellensperger G. Elemental analysis in biotechnology. Curr Opin Biotechnol 2015; 31:93-100. [DOI: 10.1016/j.copbio.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/23/2014] [Indexed: 01/25/2023]
|
30
|
Rigby MC, Lemly AD, Gerads R. Fish toxicity testing with selenomethionine spiked feed--what's the real question being asked? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:511-517. [PMID: 24473081 DOI: 10.1039/c3em00612c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The US Environmental Protection Agency and several U.S. states and Canadian provinces are currently developing national water quality criteria for selenium that are based in part on toxicity tests performed by feeding freshwater fish a selenomethionine-spiked diet. Using only selenomethionine to examine the toxicity of selenium is based in part on the limitations of the analytical chemistry methods commonly used in the 1990s and 2000s to speciate selenium in freshwater biota. While these methods provided a good starting point, recent improvements in analytical chemistry methodology have demonstrated that selenium speciation in biota is far more complex than originally thought. Here, we review the recent literature that suggests that there are numerous additional selenium species present in freshwater food chains and that the toxicities of these other selenium species, both individually and in combination, have not been evaluated in freshwater fishes. Evidence from studies on birds and mammals suggests that the other selenium forms differ in their metabolic pathways and toxicity from selenomethionine. Therefore, we conclude that toxicity testing using selenomethionine-spiked feed is only partly addressing the question "what is the toxicity of selenium to freshwater fishes?" and that using the results of these experiments to derive freshwater quality criteria may lead to biased water quality criteria. We also discuss additional studies that are needed in order to derive a more ecologically relevant freshwater quality criterion for selenium.
Collapse
Affiliation(s)
- Mark C Rigby
- Parsons, 10235 South Jordan Gateway, Suite 300, South Jordan, Utah 84095, USA.
| | | | | |
Collapse
|
31
|
Egressy-Molnár O, Magyar A, Gyepes A, Dernovics M. Validation of the 2,3-dihydroxy-propionyl group in selenium speciation by chemical synthesis and LC-MS analyses. RSC Adv 2014. [DOI: 10.1039/c4ra02660h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Research on 2,3-dihydroxy-propionyl derivatives of selenocysteine has now been facilitated by providing a method for synthesis and clean-up.
Collapse
Affiliation(s)
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry
- 1518 Budapest, Hungary
| | - Attila Gyepes
- Department of Applied Chemistry
- Corvinus University of Budapest
- 1118 Budapest, Hungary
| | - Mihály Dernovics
- Department of Applied Chemistry
- Corvinus University of Budapest
- 1118 Budapest, Hungary
| |
Collapse
|
32
|
García-Sevillano MA, García-Barrera T, Gómez-Ariza JL. Development of a new column switching method for simultaneous speciation of selenometabolites and selenoproteins in human serum. J Chromatogr A 2013; 1318:171-9. [PMID: 24139503 DOI: 10.1016/j.chroma.2013.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/27/2023]
Abstract
A method for the simultaneous speciation of selenoproteins and selenometabolites in human serum has been developed on the basis of in series three dimensional chromatography: size exclusion, affinity and anion exchange high performance liquid chromatography (3D/SE-AF-AEC-HPLC), using different columns of each type and hyphenation to inductively coupled plasma-(quadrupole) mass spectrometry (ICP-qMS). The method allows the quantitative simultaneous analysis of selenoprotein P (SeP), extracellular glutathione peroxidase (eGPx), selenoalbumin (SeAlb), selenite and selenate in human serum using species-unspecific isotope dilution (SUID). The 3D chromatographic separation is proposed to remove typical spectral interferences in this matrix from chloride and bromide on (77)Se ((40)Ar(37)Cl), (80)Se ((79)Br(1)H) and (82)Se ((81)Br(1)H). In addition, a previous method based on 2D/SE-AF-HPLC is proposed as a simple alternative when low molecular mass selenium species are absent in the samples. The method is robust, reliable and fast with typical chromatographic runtime less than 35min. Detection limits are in the range of 0.2-1.3ng of Seg(-1). Method accuracy for determination of total protein-bound to Se was assessed by analyzing an human serum reference material (BCR-637) certified for total Se content and method reliability checked in samples of human serum providing results in good agreement with the total selenium concentration. In addition, the application of the method to commercial human serum and plasma reference materials for quality control analysis, certified for total Se, has provided, for the first time, indicative levels of selenium containing proteins in these samples.
Collapse
Affiliation(s)
- M A García-Sevillano
- Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain; Research Center on Health and Environment (CYSMA), University of Huelva, Spain; International Campus of Excellence on Agrofood (ceiA3), University of Huelva, Spain
| | | | | |
Collapse
|