1
|
Li L, Okamoto R, Sun XL, Kido T, Nogawa K, Suwazono Y, Nakagawa H, Sakurai M. Association between urinary metallothionein concentration and causes of death among cadmium-exposed residents in Japan: a 35-year follow-up study. Environ Health Prev Med 2025; 30:1. [PMID: 39779248 PMCID: PMC11744029 DOI: 10.1265/ehpm.24-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND As research progresses, there is a growing body of evidence indicating that urinary metallothionein (MT) levels may be elevated in individuals exposed to cadmium (Cd). This study aimed to investigate the potential association between urinary MT levels and causes of mortality among residents of the Kakehashi River Basin who have been exposed to Cd. METHOD The study involved a total of 1,398 men and 1,731 women were conducted between 1981 and 1982, with follow-up until November 2016. The study employed the Cox proportional-hazards model to examine the association between higher urinary MT concentrations and the risk of all-cause or cause-specific mortality within the population. Furthermore, the Fine and Gray competing risks regression model was used to evaluate the links between specific causes of death. RESULTS The findings revealed that elevated urinary MT concentrations were linked to increased all-cause mortality and higher mortality rates from renal and urinary tract diseases across all participants. Specifically, in men, higher urinary MT levels were associated with elevated all-cause mortality, while in women, increased concentrations were linked to higher mortality from endocrine, nutritional, and metabolic diseases, as well as cardiovascular diseases. Even after adjusting for competing risks, higher urinary MT concentrations were associated with tumor-related mortality in men and continued to be associated with cardiovascular disease mortality in women. CONCLUSIONS In conclusion, the results suggest that women may face a greater risk of adverse health effects due to prolonged exposure to Cd. Urinary MT levels could potentially serve as a biomarker for mortality from these diseases in populations chronically exposed to Cd.
Collapse
Affiliation(s)
- Lianen Li
- School of Medicine, and The First Affiliated Hospital, Huzhou University, 759 2nd Ring East Road, Huzhou 313000, China
| | - Rie Okamoto
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, Japan
| | - Xian Liang Sun
- School of Medicine, and The First Affiliated Hospital, Huzhou University, 759 2nd Ring East Road, Huzhou 313000, China
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, Japan
| | - Kazuhiro Nogawa
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuoku, Chiba, Japan
| | - Yasushi Suwazono
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuoku, Chiba, Japan
| | - Hideaki Nakagawa
- Department of Social and Environmental Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, Japan
| | - Masaru Sakurai
- Department of Social and Environmental Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, Japan
| |
Collapse
|
2
|
Crocco P, De Rango F, La Grotta R, Passarino G, Rose G, Dato S. Metallothionein-1A (MT1A) Gene Variability May Play a Role in Female Frailty: A Preliminary Study. Genes (Basel) 2024; 16:15. [PMID: 39858562 PMCID: PMC11765288 DOI: 10.3390/genes16010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Frailty is a complex geriatric syndrome resulting in decreased physiological reserve. While genetics plays a role, the underlying mechanisms remain unsolved. Metallothioneins (MTs), metal-binding proteins with high affinity for zinc, an essential mineral for many physiological functions, are involved in processes including oxidative stress and inflammation. We investigated the impact of genetic variations in MTs on frailty. METHODS 448 subjects (235 females and 213 males, median age of 76 years) were categorized into three frailty groups (non-frail/pre-frail/frail), by hierarchical cluster analysis based on cognitive status (MMSE), functional capacity (ADL), and physical strength (HGS). Subjects were analyzed for selected SNPs in MT1A, MT1B, MT2A, and MT3 genes by PCR-RFLP. RESULTS An association was found between the rs8052394-A/G (Lys51Arg) polymorphism in the MT1A gene and frailty in females both in binary (OR = 0.345, p = 0.037) and multinomial logistic regression (OR = 0.343, p = 0.036) corrected for age and sex, with carriers of the minor G-allele less likely to transition from non-frail to pre-frail status. Additionally, a significant association with albumin levels (beta = 0.231; p = 0.027) and a trend of association with CRP levels (beta = -1.563; p = 0.097) were observed for this SNP in non-frail females, both indicative of a low inflammatory status. However, Bonferroni correction for multiple SNPs and physiological parameters tested renders these results statistically non-significant. CONCLUSIONS Although its associations do not survive Bonferroni correction, this exploratory study suggests a sex-specific influence of MT1A variability in frailty, likely affecting zinc availability, aligning with ongoing research on sex differences in frailty risk and progression. Larger studies are needed to validate these findings and clarify the mechanisms behind MTs' variability in frailty progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy; (P.C.); (F.D.R.); (R.L.G.); (G.P.); (G.R.)
| |
Collapse
|
3
|
Zhou H, Zhang R, Li M, Wang F, Gao Y, Fang K, Zong J, Chang X. Methazolamide Can Treat Atherosclerosis by Increasing Immunosuppressive Cells and Decreasing Expressions of Genes Related to Proinflammation, Calcification, and Tissue Remodeling. J Immunol Res 2024; 2024:5009637. [PMID: 39081633 PMCID: PMC11288698 DOI: 10.1155/2024/5009637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/01/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
It has been reported that carbonic anhydrase I (CA1) is a target for the diagnosis and therapy of atherosclerosis (AS) since CA1 can promote AS aortic calcification. We also found that methazolamide (MTZ), a drug for glaucoma treatment and an inhibitor of carbonic anhydrases, can treat AS by inhibiting calcification in aortic tissues. This study focused on the therapeutic mechanism of MTZ and the pathogenic mechanism of AS. In this study, a routine AS animal model was established in ApoE-/- mice, which were treated with MTZ. The aortic tissues were analyzed using single-cell sequencing. MTZ significantly increased the proportions of B-1/MZB B cells with high expressions of Nr4A1 and Ccr7, CD8+CD122+ Treg-like cells with high Nr4A1 expression, and smooth muscle cells with high Tpm2 expression. These cells or their marker genes were reported to exert immunosuppressive, anti-proinflammatory, and atheroprotective effects. MTZ also decreased the proportions of endothelial cells with high expressions of Retn, Apoc1, Lcn2, Mt1, Serpina3, Lpl, and Lgals3; nonclassical CD14+CD16++ monocytes with high expressions of Mt1, Tyrobp, Lgals3, and Cxcl2; and Spp1+ macrophages with high expressions of Mmp-12, Trem2, Mt1, Lgals3, Cxcl2, and Lpl. These cells or their marker genes have been reported to promote inflammation, calcification, tissue remodeling, and atherogenesis. A significant decrease in the proportion of CD8+CD183 (CXCR3)+ T cells, the counterpart of murine CD8+CD122+ T cells, was detected in the peripheral blood of newly diagnosed AS patients rather than in that of patients receiving anti-AS treatments. These results suggest that MTZ can treat AS by increasing immunosuppressive cells and decreasing expressions of genes related to inflammation, calcification, and tissue remodeling.
Collapse
Affiliation(s)
- Hongji Zhou
- Medical Research CenterThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao 266000, China
- Department of CardiologyThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao 266000, China
| | - Rui Zhang
- Department of CardiologyThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao 266000, China
| | - Min Li
- Clinical Laboratory and Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Road Renmin 4, Qingdao 266033, Shandong Province, China
| | - Fuyan Wang
- Clinical Laboratory and Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Road Renmin 4, Qingdao 266033, Shandong Province, China
| | - Yuxia Gao
- Shandong Engineering Research Center of Bacterial Anti-tumor Drugs and Cell Therapy, Jingshi Road 7000, Jinan 250000, Shandong Province, China
| | - Kehua Fang
- Clinical LaboratoryThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Jinbao Zong
- Clinical Laboratory and Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Road Renmin 4, Qingdao 266033, Shandong Province, China
| | - Xiaotian Chang
- Medical Research CenterThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao 266000, China
| |
Collapse
|
4
|
Chen RF, Chen PM, Pan CS, Huang CC, Chiang EPI. Association of metallothionein 2A rs10636 with low mean corpuscular volume (MCV), low mean corpuscular haemoglobin (MCH) in healthy Taiwanese. Sci Rep 2023; 13:1292. [PMID: 36690679 PMCID: PMC9869811 DOI: 10.1038/s41598-022-27304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
Human metallothionein-2A (MT2A) protein participates in metal homeostasis, detoxification, oxidative stress reduction, and immune defense. It decreases heavy metal ions and reactive oxygen species (ROS) during injury of cells and tissues. The single nucleotide polymorphisms at the MT2A gene have been associated in various human diseases including cancer. The current study aimed to elucidate associations between MT2A genotypes with the clinical, biochemical, and molecular characteristics that potentially related to lowered MT2A ex-pression. One hundred and forty-one healthy Taiwanese subjects were enrolled from Changhua Show-Chwan Memorial Hospital. Clinical, biochemical and molecular characteristics including the frequent minor allele SNPs, rs28366003 and rs10636, within the MT2A gene were determined. The genotype distribution of MT2A rs10636 fits the Hardy-Weinberg equilibrium. The significant associations with gradually decline of mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were identified with MT2A rs10636 and rs28366003 using analysis of variance (ANOVA) with Tukey's analysis as a post hoc test. We further validated the correlations between the expressions of genes in erythropoiesis, cholesterol synthesis, platelet synthesis, insulin with MT2A using the web-based Gene Expression Profiling Interactive Analysis (GEPIA) databases. The results revealed that hypoxia-inducible factor 1α (HIF-1α), erythropoietin (EPO), lipoprotein lipase (LPL), and lecithin-cholesterol acyltransferase (LCAT) mRNA ex-pression are significantly correlated with MT2A mRNA expression. In conclusion, these results suggested that genetic variations of MT2A rs10636 and rs28366003 might be an important risk factor for erythropoiesis in the Taiwanese general population.
Collapse
Affiliation(s)
- Rong-Fu Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan, Republic of China
| | - Po-Ming Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Research Assistant Center, Show-Chwan Memorial Hospital, Changhua, 500, Taiwan, Republic of China
| | - Chau-Shiung Pan
- Department of Neurology, Show-Chwan Memorial Hospital, Changhua, Taiwan, Republic of China
| | - Chieh-Cheng Huang
- Department of Life Science, National Chung Hsing University, Taichung, 40402, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 402, Taiwan, Republic of China
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 402, Taiwan, Republic of China.
| |
Collapse
|
5
|
The Difference in Zinc Concentrations Required for Induction among Metallothionein Isoforms Can Be Explained by the Different MTF1 Affinities to MREs in Its Promoter. Int J Mol Sci 2022; 24:ijms24010283. [PMID: 36613726 PMCID: PMC9820605 DOI: 10.3390/ijms24010283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Metallothioneins (MTs) are cysteine-rich low-molecular-weight proteins that protect cells from heavy metal toxicity. MT1 and MT2 are considered ubiquitously expressed among the MT isoforms ranging from 1 to 4. These MT1 and MT2 transcriptions are regulated by metal regulatory transcription factor 1 (MTF1) binding to the metal response element (MRE) of the promoter, which is upregulated in response to zinc. The functional MT isoforms are MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, and MT2A in humans, but these expressions were differently regulated. Here, MT1A was shown to be significantly less upregulated by zinc than MT1E, MT1G, MT1X, and MT2A. The poor responsiveness of the MT1A zinc was suggested to be due to the MRE sequence in the MT1A promoter region having a lower MTF1 binding affinity compared to the other isoforms. MT1A may be induced via pathways other than the MTF1-MRE binding pathway. These findings may help elucidate the differential regulation of MT isoform expression.
Collapse
|
6
|
Wahyudi LD, Yu SH, Cho MK. The effect of curcumin on the cadmium-induced mitochondrial apoptosis pathway by metallothionein 2A regulation. Life Sci 2022; 310:121076. [DOI: 10.1016/j.lfs.2022.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
7
|
Wei S, Yu X, Wen X, Zhang M, Lang Q, Zhong P, Huang B. Genetic Variations in Metallothionein Genes and Susceptibility to Hypertensive Disorders of Pregnancy: A Case-Control Study. Front Genet 2022; 13:830446. [PMID: 35734434 PMCID: PMC9208279 DOI: 10.3389/fgene.2022.830446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background: The involvement of oxidative stress in the pathological process of hypertensive disorders of pregnancy (HDP) gives rise to the interest in exploring the association of genetic variations in antioxidant metallothionein (MT) genes with HDP susceptibility. Methods: Seventeen single-nucleotide polymorphisms(SNPs) in MT genes were selected to conduct genotyping based on a case-control study consisting of 371 HDP cases (pregnancy with chronic hypertension (66), gestational hypertension (172), and preeclampsia or preeclampsia superimposed on chronic hypertension (133)) and 479 controls. The association between SNPs in MTs and the risk of HDP was estimated with unconditional logistic regression analysis and further tested with the false-positive report probability (FPRP) procedure. The joint effects of SNPs on the HDP risk were assessed by haplotype analysis. Results: After the adjustment for age and pre-pregnancy body mass index (pre-BMI) in the logistic regress analysis and followed by the FPRP test, the genetic variation rs10636 (OR = 0.46, 95% CI: 0.30–0.71 for GG vs. CC, p = 0.000 and OR = 0.48, 95% CI: 0.32–0.73 for GG vs. CG/CC, p = 0.001) in MT2A was associated with gestational hypertension. Other four SNPs, that is, rs11076161 (OR = 1.89, 95% CI: 1.35–2.63 for GG vs. GA/AA, p = 0.000) in MT1A; rs7191779 (OR = 1.54, 95% CI: 1.11–2.13 for CC vs. CG/GG, p = 0.010) in MT1B; rs8044719 (OR = 0.57, 95% CI: 0.40–0.80 for GT vs. GG, p = 0.001) in MT1DP; and rs8052334 (OR = 1.52, 95% CI: 1.10–2.11 for TT vs. TC/CC, p = 0.012) in MT1B were significantly associated with the susceptibility of HDP. The haplotype analysis among 11, 10, 10, and seven SNPs in MT (MT1A, MT2A, MT1M, MT1B, and MT1DP) genes showed that eight (A-C-G-T-C-G-A-G-C-G-C, OR = 4.559; A-C-T-C-C-C-A-G-C-G-C, OR = 5.777; A-C-T-T-C-G-A-G-C-G-C, OR = 4.590; G-A-T-C-C-G-C-G-G-C-C, OR = 4.065; G-A-T-C-G-C-C-G-G-C-C, OR = 4.652; G-A-T-T-C-C-C-G-G-C-C, OR = 0.404; G-C-T-C-C-C-A-G-G-C-C, OR = 1.901; G-C-T-T-C-C-A-G-G-C-C, and OR = 3.810), five (C-G-A-T-C-A-C-C-G-G, OR = 2.032; C-G-A-T-C-G-C-C-G-G, OR = 2.077; G-A-C-T-C-A-C-C-T-G, OR = 0.564; G-G-A-G-C-A-C-C-G-G, OR = 5.466; G-G-A-T-T-A-G-C-G-G, and OR = 0.284), five (A-C-G-T-C-G-A-G-C-C, OR = 2.399; A-C-T-C-C-C-C-T-G-G, OR = 0.259; G-A-T-C-C-C-C-G-G-C, OR = 1.572; G-A-T-C-G-C-C-G-G-C, OR = 0.001; G-C-T-C-G-C-A-G-G-C, and OR = 2.512), and five (A-C-T-C-C-C-G, OR = 0.634; G-A-G-C-C-C-G, OR = 4.047; G-A-T-T-G-C-G, OR = 0.499; G-C-G-T-C-A-G, and OR = 7.299; G-C-T-C-C-A-G, OR = 1.434) haplotypes were significantly associated with pregnancy with chronic hypertension, gestational hypertension, preeclampsia, or preeclampsia superimposed on chronic hypertension and HDP. Conclusion: These variant MT alleles and their combination patterns may be used as genetic markers for predicting HDP susceptibility.
Collapse
Affiliation(s)
- Shudan Wei
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Xiangyuan Yu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Xiaolan Wen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Min Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Qi Lang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Ping Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bo Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
- *Correspondence: Bo Huang,
| |
Collapse
|
8
|
Zhang Y, He J, Jin J, Ren C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer. Metallomics 2022; 14:6596881. [PMID: 35648480 DOI: 10.1093/mtomcs/mfac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
Metals play a critical role in human health and diseases. In recent years, metallomics has been introduced and extensively applied to investigate the distribution, regulation, function, and crosstalk of metal(loid) ions in various physiological and pathological processes. Based on high-throughput multielemental analytical techniques and bioinformatics methods, it is possible to elucidate the correlation between the metabolism and homeostasis of diverse metals and complex diseases, in particular for cancer. This review aims to provide an overview of recent progress made in the application of metallomics in cancer research. We mainly focuses on the studies about metallomic profiling of different human biological samples for several major types of cancer, which reveal distinct and dynamic patterns of metal ion contents and the potential benefits of using such information in the detection and prognosis of these malignancies. Elevated levels of copper appear to be a significant risk factor for various cancers, and each type of cancer has a unique distribution of metals in biofluids, hair/nails, and tumor-affected tissues. Furthermore, associations between genetic variations in representative metalloprotein genes and cancer susceptibility have also been demonstrated. Overall, metallomics not only offers a better understanding of the relationship between metal dyshomeostasis and the development of cancer but also facilitates the discovery of new diagnostic and prognostic markers for cancer translational medicine.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jie He
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jiao Jin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Cihan Ren
- Experimental High School Attached to Beijing Normal University, Beijing 100052, P. R. China
| |
Collapse
|
9
|
Cuomo D, Foster MJ, Threadgill D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35583-35598. [PMID: 35244845 PMCID: PMC9893814 DOI: 10.1007/s11356-022-19333-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
Lead (Pb) poisoning is a major public health concern in environmental justice communities of the USA and in many developing countries. There is no identified safety threshold for lead in blood, as low-level Pb exposures can lead to severe toxicity in highly susceptible individuals and late onset of diseases from early-life exposure. However, identifying "susceptibility genes" or "early exposure biomarkers" remains challenging in human populations. There is a considerable variation in susceptibility to harmful effects from Pb exposure in the general population, likely due to the complex interplay of genetic and/or epigenetic factors. This systematic review summarizes current state of knowledge on the role of genetic and epigenetic factors in determining individual susceptibility in response to environmental Pb exposure in humans and rodents. Although a number of common genetic and epigenetic factors have been identified, the reviewed studies, which link these factors to various adverse health outcomes following Pb exposure, have provided somewhat inconsistent evidence of main health effects. Acknowledging the compelling need for new approaches could guide us to better characterize individual responses, predict potential adverse outcomes, and identify accurate and usable biomarkers for Pb exposure to improve mitigation therapies to reduce future adverse health outcomes of Pb exposure.
Collapse
Affiliation(s)
- Danila Cuomo
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, USA.
| | - Margaret J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX, USA
| | - David Threadgill
- Department of Molecular and Cellular Medicine and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
11
|
Kadota Y, Yano A, Kawakami T, Sato M, Suzuki S. Metabolomic profiling of plasma from middle-aged and advanced-age male mice reveals the metabolic abnormalities of carnitine biosynthesis in metallothionein gene knockout mice. Aging (Albany NY) 2021; 13:24963-24988. [PMID: 34851303 PMCID: PMC8714139 DOI: 10.18632/aging.203731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022]
Abstract
Metallothionein (MT) is a family of low molecular weight, cysteine-rich proteins that regulate zinc homeostasis and have potential protective effects against oxidative stress and toxic metals. MT1 and MT2 gene knockout (MTKO) mice show shorter lifespans than wild-type (WT) mice. In this study, we aimed to investigate how MT gene deficiency accelerates aging. We performed comparative metabolomic analyses of plasma between MTKO and WT male mice at middle age (50-week-old) and advanced age (100-week-old) using liquid chromatography with time-of-flight mass spectrometry (LC-TOF-MS). The concentration of N6,N6,N6-trimethyl-L-lysine (TML), which is a metabolic intermediate in carnitine biosynthesis, was consistently higher in the plasma of MTKO mice compared to that of WT mice at middle and advanced age. Quantitative reverse transcription PCR (RT-PCR) analysis revealed remarkably lower mRNA levels of Tmlhe, which encodes TML dioxygenase, in the liver and kidney of male MTKO mice compared to that of WT mice. L-carnitine is essential for β-oxidation of long-chain fatty acids in mitochondria, the activity of which is closely related to aging. Our results suggest that reduced carnitine biosynthesis capacity in MTKO mice compared to WT mice led to metabolic disorders of fatty acids in mitochondria in MTKO mice, which may have caused shortened lifespans.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Asuka Yano
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| |
Collapse
|
12
|
Quina AS, Durão AF, Mathias MDL. Evidence of micro-evolution in Crocidura russula from two abandoned heavy metal mines: potential use of Cytb, CYP1A1, and p53 as gene biomarkers. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1969-1982. [PMID: 34505200 DOI: 10.1007/s10646-021-02472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals accumulated in the environment due to the mining industry may impact on the health of exposed wild animals with consequences at the population level via survival and selection of the most resistant individuals. The detection and quantification of shifts in gene frequencies or in the genetic structure in populations inhabiting polluted sites may be used as early indicators of environmental stress and reveal potential 'candidate gene biomarkers' for environmental health assessment. We had previously observed that specimens of the Greater white-toothed shrew (Crocidura russula) from two heavy metal mines in Southern Portugal (the Aljustrel and the Preguiça mines) carried physiological alterations compared to shrews from an unpolluted site. Here, we further investigated whether these populations showed genetic differences in genes relevant for physiological homeostasis and/or that are associated with pathways altered in animals living under chronic exposure to pollution, and which could be used as biomarkers. We analysed the mitochondrial cytochrome b (Cytb) gene and intronic and/or exonic regions of four nuclear genes: CYP1A1, LCAT, PRPF31, and p53. We observed (1) population differences in allele frequencies, types of variation, and diversity parameters in the Cytb, CYP1A1, and p53 genes; (2) purifying selection of Cytb in the mine populations; (3) genetic differentiation of the two mine populations from the reference by the p53 gene. Adding to our previous observations with Mus spretus, we provide unequivocal evidence of a population effect exerted by the contaminated environment of the mines on the local species of small mammals.
Collapse
Affiliation(s)
- Ana Sofia Quina
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Universidade de Aveiro Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CESAM - Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Ana Filipa Durão
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Maria da Luz Mathias
- CESAM - Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
13
|
Cho JH, Lee JS, Kim HG, Lee HW, Fang Z, Kwon HH, Kim DW, Lee CM, Jeong JW. Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Improvement of Antioxidant Capacities. Antioxidants (Basel) 2021; 10:antiox10070998. [PMID: 34201527 PMCID: PMC8300789 DOI: 10.3390/antiox10070998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 01/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH), affects 25% of the global population. Despite the prevalence of NAFLD worldwide, effective therapeutics are currently lacking. Amomum villosum var. xanthioides (Wall. ex Baker) T.L.Wu & S.J.Chen (AX) is a medicinal herb traditionally used for treating digestive tract disorders in countries across Asia. We aimed to examine the pharmacological effects of the ethyl acetate fraction of AX (AXEF) against tunicamycin (TM)-induced ER stress in a NASH mouse model using C57/BL6J male mice. Following TM injections (2 mg/kg), the mice were orally administrated AXEF (12.5, 25, or 50 mg/kg), silymarin (50 mg/kg), or distilled water daily for 5 days, and the outcomes for fatty liver, inflammation, and oxidative stress were measured in serum or liver tissue levels. AXEF drastically attenuated hepatic ER stress-induced NASH as indicated by decreases in lipid droplet accumulations, serum liver enzymes, hepatic inflammations, and cell death signals in the hepatic tissue and/or serum levels. Interestingly, AXEF showed potent antioxidant effects by quenching reactive oxidative stress and its final product lipid peroxide in the hepatic tissue, specifically an increase in metallothionein (MT). To confirm the underlying actions of AXEF, we observed that AXEF increases MT1 gene promoter activities in the physiological levels. Collectively, AXEF showed antioxidant properties on TM-induced ER stress in a NASH mice model through the improvement of MTs.
Collapse
Affiliation(s)
- Jung-Hyo Cho
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (J.-H.C.); (H.-G.K.)
- Department of East & West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea
| | - Jong-Suk Lee
- Biocenter, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea;
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (J.-H.C.); (H.-G.K.)
| | - Hye Won Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;
| | - Zhigang Fang
- Department of General Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China;
| | - Hyeok-Hee Kwon
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea; (H.-H.K.); (D.W.K.)
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea; (H.-H.K.); (D.W.K.)
| | - Chang-Min Lee
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si 37242, Gyeongsang-buk-do, Korea;
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si 37242, Gyeongsang-buk-do, Korea;
- Correspondence: ; Tel.: +82-54-530-0883; Fax: +82-54-530-0889
| |
Collapse
|
14
|
Ściskalska M, Ołdakowska M, Milnerowicz H. Importance of Genetic Polymorphisms in MT1 and MT2 Genes in Metals Homeostasis and Their Relationship with the Risk of Acute Pancreatitis Occurrence in Smokers-Preliminary Findings. Int J Mol Sci 2021; 22:5725. [PMID: 34072023 PMCID: PMC8197913 DOI: 10.3390/ijms22115725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
This study was aimed at evaluating the changes in metallothionein (MT) concentration in the blood of patients with acute pancreatitis (AP) and healthy subjects, taking into account the extracellular (plasma) and intracellular (erythrocyte lysate) compartments. The impact of single-nucleotide polymorphisms (SNPs) in the MT1A (rs11640851), MT1B (rs964372) and MT2A (rs10636) genes on MT concentration and their association with the concentration of metals (Cu, Zn, Cd) and ceruloplasmin as Cu-related proteins were analyzed. The concentration of a high-sensitivity C-reactive protein (hs-CRP) and IL-6 as markers of inflammation, and malonyldialdehyde (MDA), superoxide dismutase (SODs) activity and the value of total antioxidant capacity (TAC) as parameters describing the pro/antioxidative balance were also assessed. In the AP patient groups, an increased MT concentration in erythrocyte lysate compared to healthy subjects was shown, especially in individuals with the GG genotype for rs964372 in the MT1B gene. A Zn concentration was especially decreased in the blood of smoking AP patients with the AA genotype for SNP rs11640851 in the MT1A gene and the GC genotype for SNP rs10636 in MT2A, compared to non-smokers with AP, which was accompanied by an increase in the value of the Cu/Zn ratio. The exposure to tobacco smoke xenobiotics increased the risk of AP occurrence in subjects with the CC genotype for SNP rs11640851 in the MT1A gene by more than fourfold. The investigated polymorphisms, rs11640851 in the MT1A gene, rs964372 in the MT1B gene and rs10636 in the MT2A gene, seem to be an important factor in maintaining homeostasis in an organism under oxidative stress conditions.
Collapse
Affiliation(s)
- Milena Ściskalska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.O.); (H.M.)
| | | | | |
Collapse
|
15
|
Rosa RR, Garcia MA, Alves PT, Sousa EM, Pimentel LS, Barbosa LD, Loyola AM, Goulart LR, Faria PC, Cardoso SV. Revisiting the metallothionein genes polymorphisms and the risk of oral squamous cell carcinoma in a Brazilian population. Med Oral Patol Oral Cir Bucal 2021; 26:e334-e340. [PMID: 33340085 PMCID: PMC8141308 DOI: 10.4317/medoral.24215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Background Metallothioneins (MTs) gene polymorphisms have been associated with the ability of free radical scavenging and detoxification of heavy metals leading to cancer development. Our aim was to revisit, in a Brazilian population, single-nucleotide polymorphisms (SNPs) of the MT gene family previously associated with oral squamous cell carcinoma (OSCC).
Material and Methods A case-control investigation with 28 OSCC patients and 45 controls was conducted, using conventional risk factors (tobacco use and alcohol consumption) as covariates. SNPs genotyping for rs8052334 (MT1B), rs964372 (MT1B), and rs1610216 (MT2A) was performed by PCR-RFLP, and SNPs for rs11076161 (MT1A) were analyzed by TaqMan assay.
Results The only SNP associated with increased risk for OSCC was the MT-1A AA genotype (OR = 4.7; p = 0.01). We have also evidenced for the first time a significant linkage disequilibrium between the SNPs of MT-2A and MT-1A in this population with the highest frequency (30%) of the unfavorable haplotype G/A/C/T (rs1610216 / rs11076161 / rs964372 / rs8052334) of MT gene polymorphisms (OR = 6.2; p = 0.04). Interestingly, after removing the effects of conventional risk factors, we have uncovered the significance of the AA genotype of the rs11076161 with increased odds of 19-fold higher towards OSCC development.
Conclusions This is the first demonstration that a significant linkage disequilibrium among gene polymorphisms of the MT family may affect susceptibility to oral cancer, which is conditioned by the G/A/C/T haplotype (rs1610216/rs11076161/rs964372/ rs8052334) and the MT-1A gene polymorphism has a potential clinical utility for the OSCC risk assessment. Key words:Oral squamous cell carcinoma, polymorphism, metallothionein, oral cancer.
Collapse
Affiliation(s)
- R-R Rosa
- Federal University of Uberlândia School of Dentistry, Area of Pathology Av. Pará, nº 1.720, CEP: 38.405-320 Uberlândia - MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
17
|
Sirivarasai J, Chaisungnern K, Panpunuan P, Chanprasertyothin S, Chansirikanjana S, Sritara P. Role of MT1A Polymorphism and Environmental Mercury Exposure on the Montreal Cognitive Assessment (MoCA). Neuropsychiatr Dis Treat 2021; 17:2429-2439. [PMID: 34326641 PMCID: PMC8314684 DOI: 10.2147/ndt.s320374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Many age-related structural and functional changes in the brain have important consequences. Long-term exposure to mercury and the impact of functional polymorphisms of metal-regulating proteins such as metallothioneins (MTs) can result in neurological-neurobehavioral effects in elderly individuals. Therefore, the aims of this study are to examine the associations between biomarkers of mercury exposure and cognitive impairment and to investigate the effect of the rs8052394 single nucleotide polymorphism (SNP) of the potential modifier gene MT1A on different domains of the Montreal Cognitive Assessment (MoCA). MATERIALS AND METHODS We studied 436 participants aged ≥55 years from the Electricity Generating Authority of Thailand study. They underwent a physical examination, an extensive cognitive assessment with the MoCA (cutoff <26 points), and a biochemical analysis related to diabetes and dyslipidemia. The blood mercury level was determined by inductively coupled plasma mass spectrometry. Genotyping of the MT1A rs8052394 SNP was performed by the restriction fragmentation length polymorphism method. RESULTS The mean age of the study population was 58.8±3.01 years, and most had ≥12 years of education (75.7%). The primary study finding was that the prevalence of mild cognitive impairment (MCI) in older Thai adults was 39.7%. The frequency distributions of the G allele of the rs8052394 SNP of the MT1A gene were significantly associated with the total and sub-domain MoCA scores. The prevalence of MCI was significantly associated with increased age, hypertriglyceridemia, hyperhomocysteinemia, the third tertile of blood mercury concentration, and the rs8052394 variant genotype of MT1A (P values for all odds ratios <0.05). CONCLUSION These findings suggested that neurocognitive effects associate with mercury exposure and genetic susceptibility in toxicokinetics. Public health strategies can be used to implement as a comprehensive action plan to educate vulnerable populations on how to reduce mercury exposure. Concurrently, impact of such genetic predisposition requires replication for identifying and protecting susceptible individuals from mercury toxicity.
Collapse
Affiliation(s)
- Jintana Sirivarasai
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchaporn Chaisungnern
- Master of Science Program in Food and Nutritional Toxicology, Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Pachara Panpunuan
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suwannee Chanprasertyothin
- Research and Innovation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sirintorn Chansirikanjana
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piyamitr Sritara
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Hussain M, Liaqat I, Hanif U, Sultan A, Ara C, Aftab N, Urooj, Butt A. Medicinal Perspective of Antibacterial Bioactive Agents in Earthworms (Clitellata, Annelida): A Comprehensive Review. J Oleo Sci 2021; 71:563-573. [DOI: 10.5650/jos.ess21379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mudassar Hussain
- Microbiology Lab, Department of Zoology, Government College University Lahore
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore
| | - Uzma Hanif
- Department of Botany, Government College University Lahore
| | | | - Chaman Ara
- Department of Zoology, University of the Punjab
| | - Nauman Aftab
- Institute of Industrial Biotechnology, GC University
| | - Urooj
- Department of Zoology, University of the Punjab
| | - Abida Butt
- Superior College Daska, Department of Zoology, Government College University
| |
Collapse
|
19
|
Luo T, Gao J, Lin N, Wang J. Effects of Two Kinds of Iron Nanoparticles as Reactive Oxygen Species Inducer and Scavenger on the Transcriptomic Profiles of Two Human Leukemia Cells with Different Stemness. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1951. [PMID: 33007950 PMCID: PMC7600526 DOI: 10.3390/nano10101951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Leukemia is a common and lethal disease. In recent years, iron-based nanomedicines have been developed as a new ferroptosis inducer to leukemia. However, the cytotoxicity of iron nanoparticles to leukemia cells at the transcriptomic level remains unclear. This study investigated the effects of two kinds of iron nanoparticles, 2,3-Dimercaptosuccinic acid (DMSA)-coated Fe3O4 nanoparticles (FeNPs) as a reactive oxygen species (ROS) inducer and Prussian blue nanoparticles (PBNPs) as an ROS scavenger, on the transcriptomic profiles of two leukemia cells (KG1a and HL60) by RNA-Seq. As a result, 470 and 1690 differentially expressed genes (DEGs) were identified in the FeNP-treated HL60 and KG1a cells, respectively, and 2008 and 2504 DEGs were found in the PBNP-treated HL60 and KG1a cells, respectively. Among them, 14 common upregulated and 4 common downregulated DEGs were found, these genes were representative genes that play key roles in lipid metabolism (GBA and ABCA1), iron metabolism (FTL, DNM1, and TRFC), antioxidation (NQO1, GCLM, and SLC7A11), vesicle traffic (MCTP2, DNM1, STX3, and BIN2), and innate immune response (TLR6, ADGRG3, and DDX24). The gene ontology revealed that the mineral absorption pathway was significantly regulated by PBNPs in two cells, whereas the lipid metabolism and HIF-1 signaling pathways were significantly regulated by FeNPs in two cells. This study established the gene signatures of two kinds of nanoparticles in two leukemia cells, which revealed the main biological processes regulated by the two kinds of iron nanoparticles. These data shed new insights into the cytotoxicity of iron nanoparticles that differently regulate ROS in leukemia cells with variant stemness.
Collapse
Affiliation(s)
| | | | | | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; (T.L.); (J.G.); (N.L.)
| |
Collapse
|
20
|
Foligné B, George F, Standaert A, Garat A, Poiret S, Peucelle V, Ferreira S, Sobry H, Muharram G, Lucau‐Danila A, Daniel C. High‐dose dietary supplementation with zinc prevents gut inflammation: Investigation of the role of metallothioneins and beyond by transcriptomic and metagenomic studies. FASEB J 2020; 34:12615-12633. [DOI: 10.1096/fj.202000562rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Benoît Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
| | - Fanny George
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483‐IMPECS‐IMPact de l'Environnement Chimique sur la Santé humaine Lille France
| | - Annie Standaert
- Univ. Lille, INSERM, CHU Lille, U1286 ‐ Infinite ‐ Institute for Translational Research in Inflammation Lille France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483‐IMPECS‐IMPact de l'Environnement Chimique sur la Santé humaine Lille France
- CHU Lille, Unité Fonctionnelle de Toxicologie Lille France
| | - Sabine Poiret
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Véronique Peucelle
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | | | - Hélène Sobry
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Ghaffar Muharram
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| | - Anca Lucau‐Danila
- BIOECOAGRO INRAe, UArtois, ULiege, ULille, ULCO, UPJV, YNCREA, Institut Charles Viollette Lille France
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 ‐ CIIL ‐ Center for Infection and Immunity of Lille Lille France
| |
Collapse
|
21
|
Na H, Li X, Zhang X, Xu Y, Sun Y, Cui J, Chen Z, Shi X, Ren S, Zuo Y. lncRNA STEAP3-AS1 Modulates Cell Cycle Progression via Affecting CDKN1C Expression through STEAP3 in Colon Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:480-491. [PMID: 32679543 PMCID: PMC7360886 DOI: 10.1016/j.omtn.2020.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Previous studies have reported that long noncoding RNAs (lncRNAs) have acted as new players during tumorigenesis. Metallothionein also plays an important role in tumor progression. It is mainly considered to be involved in the process of cell proliferation, oxidative stress, and multidrug resistance. However, the potential involvement of metallothionein-related lncRNAs in colon cancer remains poorly understood. In our study, we found that MT1M affected the expression of lncRNA STEAP3-AS1. STEAP3-AS1 is located in physical contiguity with STEAP3 and notably increased in colon cancer tissues and cell lines. STEAP3-AS1 expression was negatively associated with the expression of STEAP3. High levels of STEPA3-AS1 were associated with poor overall survival in colon cancer patients. In in vitro assays, STEAP3-AS1 knockdown could inhibit colon cancer cell proliferation and migration and arrest colon cancer cells at the G0-G1 phase. In tumorigenicity assays, STEAP3-AS1 knockdown could strongly inhibit tumor growth. Mechanistic investigations demonstrated that STEAP3-AS1 downregulation could increase the expression of cyclin-dependent kinase inhibitor 1C (CDKN1C) by STEAP3 upregulation. Overall, we identify the underlying role of MT1M-related lncRNA STEAP3-AS1 in colon cancer progression, which provides a novel strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Heya Na
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China; Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Xiaomeng Li
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Xinsheng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yue Xu
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Yuzhu Sun
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Jingyi Cui
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Zihao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaomeng Shi
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Shuangyi Ren
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Yunfei Zuo
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
22
|
Merlos Rodrigo MA, Jimenez Jimemez AM, Haddad Y, Bodoor K, Adam P, Krizkova S, Heger Z, Adam V. Metallothionein isoforms as double agents - Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist Updat 2020; 52:100691. [PMID: 32615524 DOI: 10.1016/j.drup.2020.100691] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
Metallothioneins (MTs) are small cysteine-rich intracellular proteins with four major isoforms identified in mammals, designated MT-1 through MT-4. The best known biological functions of MTs are their ability to bind and sequester metal ions as well as their active role in redox homeostasis. Despite these protective roles, numerous studies have demonstrated that changes in MT expression could be associated with the process of carcinogenesis and participation in cell differentiation, proliferation, migration, and angiogenesis. Hence, MTs have the role of double agents, i.e., working with and against cancer. In view of their rich biochemical properties, it is not surprising that MTs participate in the emergence of chemoresistance in tumor cells. Many studies have demonstrated that MT overexpression is involved in the acquisition of resistance to anticancer drugs including cisplatin, anthracyclines, tyrosine kinase inhibitors and mitomycin. The evidence is gradually increasing for a cellular switch in MT functions, showing that they indeed have two faces: protector and saboteur. Initially, MTs display anti-oncogenic and protective roles; however, once the oncogenic process was launched, MTs are utilized by cancer cells for progression, survival, and contribution to chemoresistance. The duality of MTs can serve as a potential prognostic/diagnostic biomarker and can therefore pave the way towards the development of new cancer treatment strategies. Herein, we review and discuss MTs as tumor disease markers and describe their role in chemoresistance to distinct anticancer drugs.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Ana Maria Jimenez Jimemez
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Yazan Haddad
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Khaldon Bodoor
- Department of Applied Biology, Jordan University of Science and Technology, 3030, Irbid, Jordan
| | - Pavlina Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
23
|
Sekovanić A, Jurasović J, Piasek M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arh Hig Rada Toksikol 2020; 71:27-47. [PMID: 32597135 PMCID: PMC7837243 DOI: 10.2478/aiht-2020-71-3349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/01/2019] [Accepted: 03/01/2020] [Indexed: 02/08/2023] Open
Abstract
Human metallothioneins are a superfamily of low molecular weight intracellular proteins, whose synthesis can be induced by essential elements (primarily Zn and Cu), toxic elements and chemical agents, and stress-producing conditions. Of the four known isoforms in the human body MT2 is the most common. The expression of metallothioneins is encoded by a multigene family of linked genes and can be influenced by single nucleotide polymorphisms (SNPs) in these genes. To date, 24 SNPs in the MT2A gene have been identified with the incidence of about 1 % in various population groups, and three of them were shown to affect physiological and pathophysiological processes. This review summarises current knowledge about these three SNPs in the MT2A gene and their associations with element concentrations in the body of healthy and diseased persons. The most investigated SNP is rs28366003 (MT2A -5 A/G). Reports associate it with longevity, cancer (breast, prostate, laryngeal, and in paranasal sinuses), and chronic renal disease. The second most investigated SNP, rs10636 (MT2A +838G/C), is associated with breast cancer, cardiovascular disease, and type 2 diabetes. Both are also associated with several metal/metalloid concentrations in the organism. The third SNP, rs1610216 (MT2A -209A/G), has been studied for association with type 2 diabetes, cardiomyopathy, hyperglycaemia, and Zn concentrations. Metallothionein concentrations and MT2A polymorphisms have a potential to be used as biomarkers of metal exposure and clinical markers of a number of chronic diseases. This potential needs to be studied and verified in a large number of well-defined groups of participants (several hundreds and thousands) with a focus on particular physiological or pathological condition and taking into consideration other contributing factors, such as environmental exposure and individual genetic and epigenetic makeup.
Collapse
Affiliation(s)
- Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health,Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health,Zagreb, Croatia
| | - Martina Piasek
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health,Zagreb, Croatia
| |
Collapse
|
24
|
Meguid NA, Bjørklund G, Gebril OH, Doşa MD, Anwar M, Elsaeid A, Gaber A, Chirumbolo S. The role of zinc supplementation on the metallothionein system in children with autism spectrum disorder. Acta Neurol Belg 2019; 119:577-583. [PMID: 31302864 DOI: 10.1007/s13760-019-01181-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023]
Abstract
The present research was carried out to elucidate the role of zinc (Zn) supplementation on the plasma concentration and gene expression, as well as the effects on cognitive-motor performance, in a cohort of children with autism spectrum disorder (ASD). The study was performed on a cohort of 30 pediatric subjects with ASD, encompassing an age range of 3-8 years. The impact of Zn supplementation was investigated in 3 months (or 12 weeks) on the ASD children. Each daily dosage of Zn was calculated as being equal to the body weight in kg plus 15-20 mg. The effect of Zn was also evaluated on the serum level of metallothionein 1 (MT-1A), and the severity of autism via scores on the Childhood Autism Rating Scale. The effect of Zn was investigated on the gene expression of MT1-A before and after Zn supplementation. The data of the present study showed an increase in cognitive-motor performance and an increased serum metallothionein concentration, as well as a significant lowering in the circulating serum levels of copper (Cu) following Zn supplementation. In the cohort of ASD patients, the genetic expression of MT-1 was higher after Zn therapy than before the treatment. In conclusion, Zn supplementation might be an important factor in the treatment of children with ASD.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Ola H Gebril
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanţa, Romania
| | - Mona Anwar
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
- Department of Basic Sciences and Biomechanics, Faculty of Physical Therapy, Heliopolis University, Cairo, Egypt
| | - Amal Elsaeid
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Ahmad Gaber
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
25
|
Bensellam M, Shi YC, Chan JY, Laybutt DR, Chae H, Abou-Samra M, Pappas EG, Thomas HE, Gilon P, Jonas JC. Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans. Diabetologia 2019; 62:2273-2286. [PMID: 31624901 DOI: 10.1007/s00125-019-05008-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/13/2019] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The mechanisms responsible for beta cell compensation in obesity and for beta cell failure in type 2 diabetes are poorly defined. The mRNA levels of several metallothionein (MT) genes are upregulated in islets from individuals with type 2 diabetes, but their role in beta cells is not clear. Here we examined: (1) the temporal changes of islet Mt1 and Mt2 gene expression in mouse models of beta cell compensation and failure; and (2) the role of Mt1 and Mt2 in beta cell function and glucose homeostasis in mice. METHODS Mt1 and Mt2 expression was assessed in islets from: (1) control lean (chow diet-fed) and diet-induced obese (high-fat diet-fed for 6 weeks) mice; (2) mouse models of diabetes (db/db mice) at 6 weeks old (prediabetes) and 16 weeks old (after diabetes onset) and age-matched db/+ (control) mice; and (3) obese non-diabetic ob/ob mice (16-week-old) and age-matched ob/+ (control) mice. MT1E, MT1X and MT2A expression was assessed in islets from humans with and without type 2 diabetes. Mt1-Mt2 double-knockout (KO) mice, transgenic mice overexpressing Mt1 under the control of its natural promoter (Tg-Mt1) and corresponding control mice were also studied. In MIN6 cells, MT1 and MT2 were inhibited by small interfering RNAs. mRNA levels were assessed by real-time RT-PCR, plasma insulin and islet MT levels by ELISA, glucose tolerance by i.p. glucose tolerance tests and overnight fasting-1 h refeeding tests, insulin tolerance by i.p. insulin tolerance tests, insulin secretion by RIA, cytosolic free Ca2+ concentration with Fura-2 leakage resistant (Fura-2 LR), cytosolic free Zn2+ concentration with Fluozin-3, and NAD(P)H by autofluorescence. RESULTS Mt1 and Mt2 mRNA levels were reduced in islets of murine models of beta cell compensation, whereas they were increased in diabetic db/db mice. In humans, MT1X mRNA levels were significantly upregulated in islets from individuals with type 2 diabetes in comparison with non-diabetic donors, while MT1E and MT2A mRNA levels were unchanged. Ex vivo, islet Mt1 and Mt2 mRNA and MT1 and MT2 protein levels were downregulated after culture with glucose at 10-30 mmol/l vs 2-5 mmol/l, in association with increased insulin secretion. In human islets, mRNA levels of MT1E, MT1X and MT2A were downregulated by stimulation with physiological and supraphysiological levels of glucose. In comparison with wild-type (WT) mice, Mt1-Mt2 double-KO mice displayed improved glucose tolerance in association with increased insulin levels and enhanced insulin release from isolated islets. In contrast, isolated islets from Tg-Mt1 mice displayed impaired glucose-stimulated insulin secretion (GSIS). In both Mt1-Mt2 double-KO and Tg-Mt1 models, the changes in GSIS occurred despite similar islet insulin content, rises in cytosolic free Ca2+ concentration and NAD(P)H levels, or intracellular Zn2+ concentration vs WT mice. In MIN6 cells, knockdown of MT1 but not MT2 potentiated GSIS, suggesting that Mt1 rather than Mt2 affects beta cell function. CONCLUSIONS/INTERPRETATION These findings implicate Mt1 as a negative regulator of insulin secretion. The downregulation of Mt1 is associated with beta cell compensation in obesity, whereas increased Mt1 accompanies beta cell failure and type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium.
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Heeyoung Chae
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Michel Abou-Samra
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Evan G Pappas
- St Vincent's Institute, Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St Vincent's Institute, Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Patrick Gilon
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Jean-Christophe Jonas
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium.
| |
Collapse
|
26
|
SHOKRZADEH M, MOHAMMADPOUR A, GHASSEMI-BARGHI N, HOSEINI V, ABEDIANKENARI S, TABARI YS. METALLOTHIONEIN-2A (RS1610216&RS28366003) GENE POLYMORPHISMS AND THE RISK OF STOMACH ADENOCARCINOMA. ARQUIVOS DE GASTROENTEROLOGIA 2019; 56:367-371. [DOI: 10.1590/s0004-2803.201900000-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
ABSTRACT BACKGROUND: Gastric cancer is the fourth most common cause of worldwide cancer. Also in contrast to the huge advances in curing, the chance of living is very low even in surgery cases. Having a genetic predisposition plays an important role in cancer development. The association between Metallothionein-2A gene polymorphisms and the risk of adenocarcinoma has been widely studied, yet there is only one study on stomach diseases. OBJECTIVE: In this study, we aimed to investigate the association between 2 (MT-2A) polymorphisms and adenocarcinoma. METHODS: This cross-sectional case control study was performed between Mach 2014 and January 2015 at the Tuba Hospital of Sari, Iran. Peripheral blood samples were collected in EDTA tube. DNA extraction was performed using the spin column procedure. The MT-2A polymorphisms MT-2A (rs1610216), (rs28366003) were determined by polymerase chain reaction-restriction fragment length polymorphism analysis in 95 a topic adenocarcinoma patients and 90 healthy individuals from Iranian population. RESULTS: The MT-2A rs1610216 polymorphism increased the risk of adeno carcinoma in our Iranian population [OR: 3.8533; 95%CI, 1.3155-11.2869; P=0.0139] and rs28366003 [OR: 4.0978; 95%CI, 1.2521-13.4108; P=0.0197]. CONCLUSION: The MT-2A gene polymorphism was associated with the risk of adenocarcinoma in the Iranian population.
Collapse
|
27
|
Ge T, Yu Y, Cui J, Cai L. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad. Am J Physiol Heart Circ Physiol 2019; 317:H264-H275. [PMID: 31100011 DOI: 10.1152/ajpheart.00123.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is a metabolic disorder characterized by hyperglycemia, resulting in low-grade systemic inflammation. Diabetic cardiomyopathy (DCM) is a common complication among diabetic patients, and the mechanism underlying its induction of cardiac remodeling and dysfunction remains unclear. Numerous experimental and clinical studies have suggested that adaptive immunity, especially T lymphocyte-mediated immunity, plays a potentially important role in the pathogenesis of diabetes and DCM. Metallothioneins (MTs), cysteine-rich, metal-binding proteins, have antioxidant properties. Some potential mechanisms underlying the cardioprotective effects of MTs include the role of MTs in calcium regulation, zinc homeostasis, insulin sensitization, and antioxidant activity. Moreover, metal homeostasis, especially MT-regulated zinc homeostasis, is essential for immune function. This review discusses aberrant immune regulation in diabetic heart disease with respect to endothelial insulin resistance and the effects of hyperglycemia and hyperlipidemia on tissues and the different effects of intracellular and extracellular MTs on adaptive immunity. This review shows that intracellular MTs are involved in naïve T-cell activation and reduce regulatory T-cell (Treg) polarization, whereas extracellular MTs promote proliferation and survival in naïve T cells and Treg polarization but inhibit their activation, thus revealing potential therapeutic strategies targeting the regulation of immune cell function by MTs.
Collapse
Affiliation(s)
- Tingwen Ge
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky
| | - Youxi Yu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University , Changchun, Jilin , China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
28
|
Joneidi Z, Mortazavi Y, Memari F, Roointan A, Chahardouli B, Rostami S. The impact of genetic variation on metabolism of heavy metals: Genetic predisposition? Biomed Pharmacother 2019; 113:108642. [DOI: 10.1016/j.biopha.2019.108642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/08/2023] Open
|
29
|
Siddiqui S, Singh A, Ali S, Yadav M, Pandey V, Sharma D. Metallothionein: Potential therapeutic target for osteosarcoma. JOURNAL OF ONCOLOGICAL SCIENCES 2019. [DOI: 10.1016/j.jons.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
30
|
McNeill RV, Mason AS, Hodson ME, Catto JWF, Southgate J. Specificity of the Metallothionein-1 Response by Cadmium-Exposed Normal Human Urothelial Cells. Int J Mol Sci 2019; 20:E1344. [PMID: 30884885 PMCID: PMC6471910 DOI: 10.3390/ijms20061344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/21/2023] Open
Abstract
Occupational and environmental exposure to cadmium is associated with the development of urothelial cancer. The metallothionein (MT) family of genes encodes proteins that sequester metal ions and modulate physiological processes, including zinc homeostasis. Little is known about the selectivity of expression of the different MT isoforms. Here, we examined the effect of cadmium exposure on MT gene and isoform expression by normal human urothelial (NHU) cell cultures. Baseline and cadmium-induced MT gene expression was characterized by next-generation sequencing and RT-PCR; protein expression was assessed by Western blotting using isoform-specific antibodies. Expression of the zinc transporter-1 (SLC30A1) gene was also assessed. NHU cells displayed transcription of MT-2A, but neither MT-3 nor MT-4 genes. Most striking was a highly inducer-specific expression of MT-1 genes, with cadmium inducing transcription of MT-1A, MT-1G, MT-1H, and MT-1M. Whereas MT-1G was also induced by zinc and nickel ions and MT-1H by iron, both MT-1A and MT-1M were highly cadmium-specific, which was confirmed for protein using isoform-specific antibodies. Protein but not transcript endured post-exposure, probably reflecting sequestration. SLC30A1 transcription was also affected by cadmium ion exposure, potentially reflecting perturbation of intracellular zinc homeostasis. We conclude that human urothelium displays a highly inductive profile of MT-1 gene expression, with two isoforms identified as highly specific to cadmium, providing candidate transcript and long-lived protein biomarkers of cadmium exposure.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, York Biomedical Research Institute, University of York, York YO10 5DD, UK.
| | - Andrew S Mason
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, York Biomedical Research Institute, University of York, York YO10 5DD, UK.
| | - Mark E Hodson
- Department of Environment and Geography, University of York, York YO10 5DD, UK.
| | - James W F Catto
- Academic Urology Unit, University of Sheffield, Sheffield S10 2TN, UK.
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, York Biomedical Research Institute, University of York, York YO10 5DD, UK.
| |
Collapse
|
31
|
Zhao T, Huang Q, Su Y, Sun W, Huang Q, Wei W. Zinc and its regulators in pancreas. Inflammopharmacology 2019; 27:453-464. [PMID: 30756223 DOI: 10.1007/s10787-019-00573-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
Studies have demonstrated that susceptibility to type 2 diabetes (T2D) is influenced by common polymorphism in the zinc transporter 8 gene SLC30A8, providing novel insight into the role of zinc in diabetes. Intriguingly, zinc participates in every step of the process, including insulin synthesis, crystallization, storage, secretion and signaling. Zinc deficiency or overload is associated with various disorders, such as diabetes, cardiovascular disease and obesity. Zinc supplementation is considered as an effective means of treating or preventing T2D in people with certain SLC30A8 genotypes. Three important protein families-zinc transporters (ZnTs), zinc importers (ZiPs) and metallothionein (MT)-participate in maintaining zinc homeostasis. Here, we review research on the physiological characteristics of zinc and its role in the pancreas and homeostasis regulation mechanisms, along with the latest research on the structure and function of ZnT/ZiP and MT. In addition, we summarize the advancements in research on SLC30A8 gene polymorphism in search of a mechanism to explain the relationship between the R risk allele and zinc transporter activity.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiongfang Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yangni Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Wuyi Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiong Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
32
|
Altered expression of long non-coding RNA GAS5 in digestive tumors. Biosci Rep 2019; 39:BSR20180789. [PMID: 30606744 PMCID: PMC6340949 DOI: 10.1042/bsr20180789] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 12/16/2018] [Accepted: 12/27/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer has become one of the most important diseases that affect human health and life. The effects of cancer in the digestive system are particularly prominent. Recently, long non-coding RNA (lncRNA) has attracted the attention of more and more researchers and has become an emerging field of gene research. The lncRNA growth arrest-specific 5 (GAS5) is a novel lncRNA that has attracted the attention of researchers in recent years and plays an important role in the development of tumors, especially in digestive system tumors. GAS5 was first identified in a mouse cDNA library. It was generally considered that it has the role of tumor suppressor genes, but there are still studies that have a certain ability to promote cancer. Furthermore, the 5-bp indel polymorphism (rs145204276) in the GAS5 promoter region also has a carcinogenic effect. The discovery of GAS5 and in-depth study of single nucleotide polymorphism (SNP) mechanism can provide a new way for the prevention and treatment of digestive system tumors.
Collapse
|
33
|
Lappas M. Expression and regulation of metallothioneins in myometrium and fetal membranes. Am J Reprod Immunol 2018; 80:e13040. [PMID: 30155998 DOI: 10.1111/aji.13040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Metallothioneins (MTs) play important roles in regulating oxidative stress, inflammation, and hormone signaling. These processes play a major role in labor at term and preterm. The aims of this study were to characterize (a) temporal- and labor-associated changes and (b) the effect of pro-inflammatory and pro-labor insults on the expression of MT1 isoforms, MT2A, MT3, and MT4 in fetal membranes and myometrium. METHOD OF STUDY The expression of MTs was assessed in fetal membranes and myometrium from nonlaboring and laboring women at preterm and term by RT-qPCR. Tissue explants were used to assess the effect of pro-inflammatory cytokines and Toll-like receptor (TLR) ligands on the expression of MTs in fetal membranes and myometrium. RESULTS In fetal membranes, the expression of MT1A, MT1E, MT1F, MT1X, and MT2A was higher at term compared with preterm. Preterm labor and preterm histological chorioamnionitis were associated with increased expression of MT1A, MT1G, MT1M, MT1X, MT2A, and MT3. Term labor was associated with increased expression of MT1A, MT1F, MT1X, MT2A, and MT3 in fetal membranes and expression of MT1A, MT1E, MT1F, MT1G, MT1M, MT1X, MT2A, and MT3 in myometrium. Pro-inflammatory cytokines and TLR ligands increased the expression of MT1A, MT1E, MT1F, MT1G, MT1H, MT1X, and MT2A in fetal membranes and myometrium. CONCLUSION Temporal-, labor-, and infection-associated increases in MT1 isoforms, MT2A, and MT3 have been observed in fetal membranes and/or myometrium. Furthermore, pro-inflammatory cytokines and bacterial and viral products increased the expression of MT1 isoforms, MT2A, MT3, and MT4 mRNA expression in fetal membranes and myometrium.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
34
|
Liu Z, Ye Q, Wu L, Gao F, Xie H, Zhou L, Zheng S, Xu X. Metallothionein 1 family profiling identifies MT1X as a tumor suppressor involved in the progression and metastastatic capacity of hepatocellular carcinoma. Mol Carcinog 2018; 57:1435-1444. [PMID: 29873415 DOI: 10.1002/mc.22846] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Metallothionein 1 (MT1s) is a family of cysteine-rich proteins with diverse functions such as metal homeostasis, oxidative stress, and carcinogenesis. However, its involvement in hepatocellular carcinoma (HCC) remains not fully understood. We aimed to explore the contribution of the individual member of MT1s to HCC. Its member mRNA levels were determined in cohort 1 of normal (n = 30), cirrhotic (n = 30), peritumoral (n = 135), and HCC (n = 135). In cohort 1, seven of eight members were down-regulated during the transition from normal liver to HCC, and only MT1G and MT1X were correlated with tumor features and outcomes. The MT1X was selected to be further stained in cohort 2 consisting of a series of liver nodules (15 normal livers, 33 cirrhotic livers, 12 dysplastic nodules, 31 HCC, and 9 HCC metastasis), and in cohort 3 (HCC, n = 85). In cohort 2, MT1X immunoreactivity was reduced in HCC and lost in metastatic HCC and showed good diagnostic performance for HCC (AUC = 0.754, 95%IC = 0.659-0.849). In cohort 3, MT1X expression in peritumoral tissues was independent predictor for HCC (recurrence free survival: HR = 0.34, 95%CI = 0.17-0.66; overall survival: HR = 0.32, 95%CI = 0.16-0.60). Moreover, we found that ectopic overexpression of MT1X delayed G1/S progression of cell cycle and promoted apoptosis in HCC cells in vitro, and suppressed tumor growth and lung metastasis in nude mice in vivo. We further demonstrated that MT1X induces cell cycle arrest and apoptosis by inactivating NF-κB signaling in HCC. In conclusion, MT1X may serve as a candidate of prognostic indicator and inhibits the progression and metastasis of HCC.
Collapse
Affiliation(s)
- Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Qianwei Ye
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Lingjiao Wu
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Feng Gao
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| |
Collapse
|
35
|
Park C, Jeong J. Synergistic cellular responses to heavy metal exposure: A minireview. Biochim Biophys Acta Gen Subj 2018; 1862:1584-1591. [PMID: 29631058 DOI: 10.1016/j.bbagen.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Metal-responsive transcription factor 1 (MTF-1) induces the expression of metallothioneins (MTs) which bind and sequester labile metal ions. While MTF-1 primarily responds to excess metal exposure, additional stress response mechanisms are activated by excess metals. Evidence suggests potential crosstalk between responses mediated by MTF-1 and stress signaling enhances cellular tolerance to metal exposure. SCOPE OF REVIEW This review aims to summarize the current understanding of interaction between the stress response mediated by MTF-1 and other cellular mechanisms, notably the nuclear factor κB (NF-κB) and heat shock response (HSR). MAJOR CONCLUSIONS Crosstalk between MTF-1 mediated metal response and NF-κB signaling or HSR can modulate expression of stress proteins in response to metal exposure via effects on precursor signals or direct interaction of transcriptional activators. The interaction between stress signaling pathways can enhance cell survival and tolerance through a unified response system. GENERAL SIGNIFICANCE Elucidating the interactions between MTF-1 and cell stress response mechanisms is critical to a comprehensive understanding of metal-based cellular effects. Co-activation of HSR and NF-κB signaling allows the cell to detect metal contamination in the environment and improve survival outcomes.
Collapse
Affiliation(s)
- Chanyoung Park
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States
| | - Jeeyon Jeong
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States; Department of Biology, Amherst College, Amherst, MA 01002, United States.
| |
Collapse
|
36
|
Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1120-1132. [PMID: 29926844 PMCID: PMC6289396 DOI: 10.1038/aps.2018.25] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential nutrient for human health and has anti-oxidative stress and anti-inflammatory functions. The association between zinc deficiency and the development of cardiovascular diseases (CVDs) has been supported by numerous studies. Supplementing zinc can reduce the risk of atherosclerosis and protect against myocardial infarction and ischemia/reperfusion injury. In this review we summarize the evidence in the literature, to consolidate the current knowledge on the dysregulation of zinc homeostasis in CVDs, and to explore the significant roles of the zinc homeostasis-regulatory proteins in cardiac physiology and pathophysiology. Moreover, this review also deliberates on the potential diagnostic and prognostic implications of zinc/zinc homeostasis-associated molecules (ZIP, ZnT, and MTs) in CVDs.
Collapse
|
37
|
Tohma YA, Akad S, Colak E, Kulaksizoglu S, Akyol M, Terzi YK, Ozcimen EE, Esin S, Sahin FI. Vitamin D receptor gene TaqI single nucleotide polymorphism is not associated with lead levels in maternal and umbilical cord blood. J Matern Fetal Neonatal Med 2018; 32:2506-2511. [PMID: 29463156 DOI: 10.1080/14767058.2018.1439011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE We aimed to investigate the association of vitamin D receptor (VDR) gene TaqI single nucleotide polymorphism (SNPs) with serum lead (Pb) levels in maternal and umbilical cord blood. MATERIALS AND METHODS Eighty-one patients who lived in Konya, Turkey for the last 3 years and had delivery at Başkent University Konya Hospital in 2016 were included in this study. Venous blood samples were drawn from each volunteer immediately before giving birth to determine the maternal Pb levels and VDR SNPs. Additionally, umbilical cord blood samples were collected from the umbilical vein into tube with EDTA as an anticoagulant immediately after birth to determine Pb levels of the fetus. RESULTS The median level of Pb in the maternal blood was 29.00 (Interquartile Range (IQR) = 16.35) μg/L and the median Pb level in the cord blood was 22.50 (IQR = 9.75) μg/L. Blood Pb level of women living in the urban area was significantly higher than in those living in the rural area (Z = 2.118; p = .034). There was a very strong positive correlation between the Pb levels in the maternal blood and in the umbilical cord blood (ρ = 0.825, p < .001, respectively). Regarding VDR SNPs, "TT", "TC", and "CC" VDR TaqI genotypes were observed in 28 (34.6%), 45 (55.5%), and eight samples (9.9%), respectively. Pb levels in maternal and cord blood were higher in women with the "CC" VDR TaqI genotype; however, there was no statistically significant difference (p > .05). CONCLUSIONS Although women with the "CC" VDR TaqI genotype had higher maternal and cord blood Pb levels, this was statistically insignificant and therefore, VDR TaqI SNPs did not significantly affect maternal and umbilical cord blood Pb levels.
Collapse
Affiliation(s)
- Yusuf Aytac Tohma
- a Department of Obstetrics and Gynecology , Baskent University School of Medicine , Ankara , Turkey
| | - Selin Akad
- b Department of Medical Genetics , Baskent University School of Medicine , Ankara , Turkey
| | - Eser Colak
- c Department of Obstetrics and Gynecology , Baskent University School of Medicine , Konya , Turkey
| | - Sevsen Kulaksizoglu
- d Department of Biochemistry , Baskent University School of Medicine , Konya , Turkey
| | - Mesut Akyol
- e Department of Biostatistics , Ankara Yıldırım Beyazıt University School of Medicine , Ankara , Turkey
| | - Yunus Kasim Terzi
- b Department of Medical Genetics , Baskent University School of Medicine , Ankara , Turkey
| | - Emel Ebru Ozcimen
- c Department of Obstetrics and Gynecology , Baskent University School of Medicine , Konya , Turkey
| | - Sertac Esin
- a Department of Obstetrics and Gynecology , Baskent University School of Medicine , Ankara , Turkey
| | - Feride Iffet Sahin
- b Department of Medical Genetics , Baskent University School of Medicine , Ankara , Turkey
| |
Collapse
|
38
|
Sekovanić A, Jurasović J, Piasek M, Pašalić D, Orct T, Grgec AS, Stasenko S, Čakanić KB, Jazbec A. Metallothionein 2A gene polymorphism and trace elements in mother-newborn pairs in the Croatian population. J Trace Elem Med Biol 2018; 45:163-170. [PMID: 29173474 DOI: 10.1016/j.jtemb.2017.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/02/2023]
Abstract
The main source of exposure for all essential and toxic elements in the general population is diet. In smokers, the main route for cadmium (Cd) and lead (Pb) intake is the inhalation of tobacco smoke. Besides gender, age, nutrition, lifestyle, and physiological conditions such as pregnancy, specific genetic characteristics also influence individual element uptake. Metallothionein MT2 is a cysteine-rich low-weight protein found ubiquitously throughout the body. Specific gene polymorphism may influence MT2 expression and subsequent binding, transfer and organ accumulation of metals, though data on these influences are lacking, especially in human mother-newborn pairs. The objective of this study was to determine selected toxic (Cd, Pb, Hg) and essential (Fe, Zn, Cu, Se) elements in maternal blood, placenta, and cord blood (by ICP-MS), and MT2 levels in maternal serum (by ELISA) in relation to maternal MT2A -5A/G (rs28366003) polymorphism (by RFLP-PCR and electrophoresis). Study participants were healthy postpartum women in Croatia (n=268, mean age 29 years) with term vaginal childbirth in a maternity ward assigned into two study groups by self-reporting about their smoking habit (by questionnaire). Smokers vs. non-smokers had increased levels of Cd and Pb in all measured samples, Fe and Cu in cord blood, Zn in placenta, and MT2 in maternal serum. Among subjects with AG/GG genotype, placental Fe was significantly lower only among non-smokers, while MT2 levels in serum were lower, though not significantly, regardless of maternal smoking habit. There was no impact of MT2A -5A/G SNP on any element in maternal or cord blood. In conclusion, the results confirmed maternal smoking-related increases in Cd and Pb levels in the maternal-placental-foetal unit. They also provided additional data on concomitant metal concentrations in representative samples of maternal blood, placenta, and cord blood, as well as increased cord blood Fe and Cu, placental Zn, and maternal serum MT2 in smokers. New evidence is that MT2A -5A/G SNP was associated with decreased placental Fe levels in non-smokers. For a final conclusion on the influence of the MT2A -5A/G polymorphism on toxic and essential element levels in mother-newborn pairs, further research would require a larger number of participants divided across subgroups defined by the main source of particular toxic metal exposure (such as specific food intake, cigarette smoking, air pollution and/or occupational exposure).
Collapse
Affiliation(s)
- Ankica Sekovanić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Jasna Jurasović
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Martina Piasek
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Daria Pašalić
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
39
|
Ziller A, Fraissinet-Tachet L. Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 2018; 10:1549-1559. [DOI: 10.1039/c8mt00165k] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallothioneins are diverse, but not represented yet in all phyla. Moreover, they play a central role as a [MT:T:TO] protein system.
Collapse
Affiliation(s)
- Antoine Ziller
- Microbial Ecology
- CNRS UMR 5557
- UMR INRA 1418
- Université Lyon1
- Université de Lyon
| | | |
Collapse
|
40
|
Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front Genet 2017; 8:223. [PMID: 29312444 PMCID: PMC5743009 DOI: 10.3389/fgene.2017.00223] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of metal homeostasis is crucial for many different enzymatic activities and in turn for cell function and survival. In addition, cells display detoxification and protective mechanisms against toxic accumulation of metals. Perturbation of any of these processes normally leads to cellular dysfunction and finally to cell death. In the last years, loss of metal regulation has been described as a common pathological feature in many human neurodegenerative diseases. However, in most cases, it is still a matter of debate whether such dyshomeostasis is a primary or a secondary downstream defect. In this review, we will summarize and critically evaluate the contribution of Drosophila to model human diseases that involve altered metabolism of metals or in which metal dyshomeostasis influence their pathobiology. As a prerequisite to use Drosophila as a model, we will recapitulate and describe the main features of core genes involved in copper and zinc metabolism that are conserved between mammals and flies. Drosophila presents some unique strengths to be at the forefront of neurobiological studies. The number of genetic tools, the possibility to easily test genetic interactions in vivo and the feasibility to perform unbiased genetic and pharmacological screens are some of the most prominent advantages of the fruitfly. In this work, we will pay special attention to the most important results reported in fly models to unveil the role of copper and zinc in cellular degeneration and their influence in the development and progression of human neurodegenerative pathologies such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Friedreich's Ataxia or Menkes, and Wilson's diseases. Finally, we show how these studies performed in the fly have allowed to give further insight into the influence of copper and zinc in the molecular and cellular causes and consequences underlying these diseases as well as the discovery of new therapeutic strategies, which had not yet been described in other model systems.
Collapse
Affiliation(s)
- Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
41
|
Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit Rev Clin Lab Sci 2017; 54:506-528. [DOI: 10.1080/10408363.2017.1408562] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
42
|
Lin Z, Lai S, He X, Zhuo W, Wang L, Si J, Chen S. Decreased long non-coding RNA MTM contributes to gastric cancer cell migration and invasion via modulating MT1F. Oncotarget 2017; 8:97371-97383. [PMID: 29228617 PMCID: PMC5722569 DOI: 10.18632/oncotarget.22126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
The role of long non-coding RNAs (lncRNA) on gastric cancer (GC) are an emerging field. Here, we focused on a cancer-related lncRNA MTM and tried to explore its correlation with the development of GC. The expression of MTM was detected by qRT-PCR in GC cell lines and tissues. The relationship between MTM level and clinicopathological factors was then analyzed. Cell biological assays with overexpression or co-transfection approaches were examined to probe the functional relevance of this lncRNA and its potential targets. The results showed that MTM expression was significantly lower in GC cell lines and tissues, and closely correlated with lymphatic metastasis, invasive depth, tumor staging and overall survival. Overexpression of MTM significantly inhibited GC cell migration and invasion, suppressed cell proliferation and induced cell apoptosis. In addition, we found a positive correlation between the expression level of MTM and MT1F both in cell and tissue samples. MT1F overexpression decreased GC cell migration and invasion, while knockdown of MT1F restored cell migration and invasion in MTM-overexpressing GC cells, suggesting MT1F as a key target of MTM. Conclusively, abnormal decreased expression of MTM was observed in human GC, which might contribute to gastric carcinogenesis by modulating MT1F expression.
Collapse
Affiliation(s)
- Zhenghua Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Sanchuan Lai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Xingkang He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Wei Zhuo
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, Zhejiang Province, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
43
|
Zhou S, Luoma SE, St. Armour GE, Thakkar E, Mackay TFC, Anholt RRH. A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure. PLoS Genet 2017; 13:e1006907. [PMID: 28732062 PMCID: PMC5544243 DOI: 10.1371/journal.pgen.1006907] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/04/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs) associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system. Although physiological effects of environmental toxins are well documented, we know little about the genetic factors that determine individual variation in susceptibility to toxins. Such information is difficult to obtain in human populations due to heterogeneity in genetic background and environmental exposure, and the diversity of symptoms and time lag with which they appear after toxic exposure. Here, we show that the fruit fly, Drosophila, can serve as a powerful genetic model system to elucidate the genetic underpinnings that contribute to individual variation in resistance to toxicity, using lead and cadmium exposure as an experimental paradigm. We identified genes that harbor genetic variants that contribute to individual variation in resistance to heavy metal exposure. Furthermore, we constructed genetic networks on which we could superimpose human counterparts of Drosophila genes. We were able to place human genes previously implicated in heavy metal toxicity in biological context and identify novel targets for heavy metal toxicity. Thus, we demonstrate that based on evolutionary conservation of fundamental biological processes, we can use Drosophila as a powerful translational model for toxicogenomics studies.
Collapse
Affiliation(s)
- Shanshan Zhou
- Program in Genetics, W. M. Keck Center for Behavioral Biology, and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sarah E. Luoma
- Program in Genetics, W. M. Keck Center for Behavioral Biology, and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Genevieve E. St. Armour
- Program in Genetics, W. M. Keck Center for Behavioral Biology, and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Esha Thakkar
- Enloe Magnet High School, Raleigh, North Carolina, United States of America
| | - Trudy F. C. Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology, and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert R. H. Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology, and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
44
|
The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism. Int J Mol Sci 2017; 18:ijms18061237. [PMID: 28598392 PMCID: PMC5486060 DOI: 10.3390/ijms18061237] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 12/15/2022] Open
Abstract
Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.
Collapse
|
45
|
Kratochvilova M, Raudenska M, Heger Z, Richtera L, Cernei N, Adam V, Babula P, Novakova M, Masarik M, Gumulec J. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression. Prostate 2017; 77:604-616. [PMID: 28101932 DOI: 10.1002/pros.23304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Failure in intracellular zinc accumulation is a key process in prostate carcinogenesis. Nevertheless, epidemiological studies of zinc administration have provided contradicting results. In order to examine the impact of the artificial intracellular increase of zinc(II) ions on prostate cancer metabolism, PNT1A, 22Rv1, and PC-3 prostatic cell lines-depicting different stages of cancer progression-and their zinc-resistant counterparts were used. To determine "benign" and "malignant" metabolic profiles, amino acid patterns, gene expression, and antioxidant capacity of these cell lines were assessed. METHODS Amino acid profiles were examined using an ion-exchange liquid chromatography. Intracellular zinc content was measured by atomic absorption spectrometry. Metallothionein was quantified using differential pulse voltammetry. The content of reduced glutathione was determined using high performance liquid chromatography coupled with an electrochemical detector. Cellular antioxidant capacity was determined by the ABTS test and gene expression analysis was performed by qRT-PCR. RESULTS AND CONCLUSIONS Long-term zinc treatment was shown to reroute cell metabolism from benign to more malignant type. Long-term application of high concentration of zinc(II) significantly enhanced cisplatin resistance, invasiveness, cellular antioxidant capacity, synthesis of glutathione, and expression of treatment resistance- and stemness-associated genes (SOX2, POU5F1, BIRC5). Tumorous cell lines universally displayed high accumulation of aspartate and sarcosine and depletion of essential amino acids. Increased aspartate/threonine, aspartate/methionine, and sarcosine/serine ratios were associated with cancer phenotype with high levels of sensitivity and specificity. Prostate 77: 604-616, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monika Kratochvilova
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Martina Raudenska
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Natalia Cernei
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Petr Babula
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
| | - Marie Novakova
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Jaromir Gumulec
- Faculty of Medicine, Department of Physiology, Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
46
|
Kadota Y, Toriuchi Y, Aki Y, Mizuno Y, Kawakami T, Nakaya T, Sato M, Suzuki S. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway. PLoS One 2017; 12:e0176070. [PMID: 28426713 PMCID: PMC5398611 DOI: 10.1371/journal.pone.0176070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuriko Toriuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuka Aki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuto Mizuno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Tomoko Nakaya
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
47
|
Metallothionein Gene Family in the Sea Urchin Paracentrotus lividus: Gene Structure, Differential Expression and Phylogenetic Analysis. Int J Mol Sci 2017; 18:ijms18040812. [PMID: 28417916 PMCID: PMC5412396 DOI: 10.3390/ijms18040812] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/11/2023] Open
Abstract
Metallothioneins (MT) are small and cysteine-rich proteins that bind metal ions such as zinc, copper, cadmium, and nickel. In order to shed some light on MT gene structure and evolution, we cloned seven Paracentrotus lividus MT genes, comparing them to Echinodermata and Chordata genes. Moreover, we performed a phylogenetic analysis of 32 MTs from different classes of echinoderms and 13 MTs from the most ancient chordates, highlighting the relationships between them. Since MTs have multiple roles in the cells, we performed RT-qPCR and in situ hybridization experiments to understand better MT functions in sea urchin embryos. Results showed that the expression of MTs is regulated throughout development in a cell type-specific manner and in response to various metals. The MT7 transcript is expressed in all tissues, especially in the stomach and in the intestine of the larva, but it is less metal-responsive. In contrast, MT8 is ectodermic and rises only at relatively high metal doses. MT5 and MT6 expression is highly stimulated by metals in the mesenchyme cells. Our results suggest that the P. lividus MT family originated after the speciation events by gene duplications, evolving developmental and environmental sub-functionalization.
Collapse
|
48
|
Maret W. Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes. Prev Nutr Food Sci 2017; 22:1-8. [PMID: 28401081 PMCID: PMC5383135 DOI: 10.3746/pnf.2017.22.1.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic β- and α-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the patho-biochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of β-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions.
Collapse
Affiliation(s)
- Wolfgang Maret
- Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
49
|
Coufalíková K, Benešová I, Vaculovič T, Kanický V, Preisler J. LC coupled to ESI, MALDI and ICP MS - A multiple hyphenation for metalloproteomic studies. Anal Chim Acta 2017; 968:58-65. [PMID: 28395775 DOI: 10.1016/j.aca.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS.
Collapse
Affiliation(s)
- Kateřina Coufalíková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Iva Benešová
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Viktor Kanický
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
50
|
García M, Álvarez L, Fernández Á, González-Iglesias H, Escribano J, Fernández-Vega B, Villota E, Fernández-Vega Cueto L, Fernández-Vega Á, Coca-Prados M. Metallothionein polymorphisms in a Northern Spanish population with neovascular and dry forms of age-related macular degeneration. Ophthalmic Genet 2017. [PMID: 28635422 DOI: 10.1080/13816810.2017.1288825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND To elucidate the potential role of single nucleotide polymorphisms (SNPs) in the metallothionein (MT) genes in Northern Spanish patients with age-related macular degeneration (AMD). METHODS A total of 130 unrelated Northern Spanish natives diagnosed with AMD (46 dry, 35 neovascular, and 49 mixed) and 96 healthy controls, matched by age and ethnicity, were enrolled in a case-control study. DNA was isolated from peripheral blood and genotyped for 14 SNPs located at 5 MT genes (MT1A: rs11076161, rs 11640851, rs8052394, and rs7196890; MT1B: rs8052334, rs964372, and rs7191779; MT1M: rs2270836 and rs9936741; MT2A: rs28366003, rs1610216, rs10636, and rs1580833; MT3: rs45570941) using TaqMan probes. The association study was performed using the HaploView 4.0 software. RESULTS The allelic and genotypic frequencies analysis revealed that rs28366003 at MT2A gene is significantly associated with dry AMD. The frequency of genotype AG was significantly higher in dry AMD than in control cases (p = 2.65 × 10-4; AG vs. AA) conferring more than ninefold increased risk to dry AMD (OR = 9.39, 95% CI: 2.11-41.72), whereas the genotype AA confers disease protection (OR = 0.82, 95% CI: 0.71-0.95). No statistically significant differences were observed between AMD subjects and controls in the rest of the 14 SNPs analyzed. CONCLUSIONS The present study is the first to investigate the potential association of SNPs at MT genes with susceptibility to AMD. We found a significant association of SNP rs28366003 at MT2A gene with susceptibility to the dry form of AMD in a Northern Spanish population.
Collapse
Affiliation(s)
- Montserrat García
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Lydia Álvarez
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain
| | - Ángela Fernández
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain
| | - Héctor González-Iglesias
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Julio Escribano
- c Laboratory of Human Molecular Genetics, Faculty of Medicine/Institute of Investigation in Neurological Disabilities (IDINE) , University of Castilla-La Mancha , Albacete , Spain
| | - Beatriz Fernández-Vega
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Eva Villota
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Luis Fernández-Vega Cueto
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Álvaro Fernández-Vega
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Miguel Coca-Prados
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain.,d Department of Ophthalmology and Visual Science , Yale University School of Medicine , New Haven , Connecticut , USA
| |
Collapse
|