1
|
Singhal S, Azari F, Caponetti GC, Kennedy GT. Novel intraoperative near-infrared imaging strategy to identify abnormalities in the anterior mediastinum. J Cardiothorac Surg 2022; 17:302. [PMID: 36494869 PMCID: PMC9734605 DOI: 10.1186/s13019-022-02054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Thoracic surgeons are frequently asked to biopsy suspicious tissues in the anterior mediastinum to discriminate between a reactive versus malignant pathology such as lymph nodes. The most common benign cause of a mediastinal lymph node is a reactive lymph node from a prior infection or inflammatory process such as post-COVID or granulomatous disease. The most common malignant cause is a lymphoproliferative disorder but also metastatic disease from neck, breast and other regional cancers. Biopsies in this location are challenging because they are far from the trachea and the sternum is a barrier to most diagnostic procedures. Thus, a surgical biopsy is frequently required and a common procedure for Thoracic surgeons. Technically, identifying these lesions can be challenging, particularly for small lesions or those in patients with high body mass index. In order to improve contrast between diseased tissue in the anterior mediastinum and surrounding adipose tissue, we have been studying near-infrared imaging during surgery using indocyanine green (ICG) to give contrast to the abnormal tissues and to avoid an unnecessary extended resection. We developed a modified technique to give ICG to a patient during a biopsy in the anterior mediastinum to specifically highlight abnormal tissues. As a proof-of-principle, we present a case of a young woman with a suspicious 2 cm mediastinal lymph node that required surgical biopsy.
Collapse
Affiliation(s)
- Sonia Singhal
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA USA
| | - Feredun Azari
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA USA
| | - Gabriel C. Caponetti
- grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA USA
| | - Gregory T. Kennedy
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA USA ,grid.411115.10000 0004 0435 0884Department of Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| |
Collapse
|
2
|
Chiarpotti MV, Longo GS, Del Pópolo MG. Voltage-Induced Adsorption of Cationic Nanoparticles on Lipid Membranes. J Phys Chem B 2022; 126:2230-2240. [PMID: 35293749 DOI: 10.1021/acs.jpcb.1c10499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We evaluate the effects of an applied electric potential on the adsorption/desorption mechanism of cationic nanoparticles on lipid membranes. By applying a molecular theory that allows calculating nanoparticle adsorption isotherms and free-energy profiles, we identify the conditions under which the external voltage promotes the adsorption of nanoparticles coated with cell penetrating peptides. We consider symmetric and asymmetric membranes made of neutral and acidic lipids and cover a wide range of environmental conditions (external voltage, pH, salt, and nanoparticles concentration) relevant to both electrochemical experiments and biological systems. For neutral membranes at low concentration of salt, a moderate external voltage (<100 mV) induces spontaneous adsorption of nanoparticles. For membranes containing a small fraction of anionic lipids, the external potential has little effect on the interfacial concentration of nanoparticles, and the membrane surface charge dominates the adsorption behavior. In all cases, the membrane-particle effective interactions, and its dependence on the external bias, are strongly modulated by the concentration of salt. At 100 mM NaCl, the external potential has almost no effect on the adsorption free energy profiles. In general, we provide a theoretical framework to evaluate the conditions under which nanoparticles are thermodynamically adsorbed or kinetically restrained to the vicinity of the membrane, and to assess the impact of the nanoparticles on the interfacial electrostatic properties.
Collapse
Affiliation(s)
- María V Chiarpotti
- Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET & Facultad de Ciencias Exactas y Naturales, UNCUYO, Padre Contreras 1300, Mendoza, Argentina, C.P. 5500
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) UNLP-CONICET, Diagonal 113 & 64 S/N, La Plata, Argentina, C.P. B1904DPI
| | - Mario G Del Pópolo
- Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET & Facultad de Ciencias Exactas y Naturales, UNCUYO, Padre Contreras 1300, Mendoza, Argentina, C.P. 5500
| |
Collapse
|
3
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
4
|
Sun X, Sheng Y, Li K, Sai S, Feng J, Li Y, Zhang J, Han J, Tian B. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: Synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater 2022; 138:193-207. [PMID: 34757228 DOI: 10.1016/j.actbio.2021.10.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Topical eye drops still face challenges of low-drug treatment effects and frequent dosing in ophthalmic applications due to the low preocular retention rate and low transcorneal permeability. Thus, we designed and synthesized a phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer (PBA-CS-VE) for use in mucoadhesive voriconazole (VRC)-loaded nanomicelles for fungal keratitis. In vitro mucin binding and ex vivo eyeball adhesion tests show that the copolymer has strong mucoadhesion. The transportation of coumarin-6 (C6) across a monolayer of HCE-T cells and 3D cell spheroids confirm the strong corneal penetration ability of PBA-CS-VE. The mechanism of promoting corneal penetration was studied in terms of intracellular calcium-ion concentration, cell membrane potential, cell membrane fluidity, and the tight junctions of cells. The pharmacokinetics in the aqueous humor were examined to evaluate the ability of nanomicelles in promoting corneal penetration and prolonging ocular retention. VRC-loaded PBA-CS-VE nanomicelles (PBA-CS-VE-VRC) yielded a very favorable therapeutic effect on a rabbit model of fungal keratitis in vivo as compared to the free drug. Overall, the results indicate that PBA-CS-VE nanomicelles are a mucoadhesive candidate with enhanced transcorneal permeability and prolonged preocular retention for efficient delivery of topical ocular drugs. STATEMENT OF SIGNIFICANCE: Although eye drops are widely used in ocular drug delivery, the disadvantages such as short retention time and weak corneal penetrating ability still seriously affect the therapeutic effect of the drug. Therefore, the mucoadhesive carrier seems to be an interesting strategy for ocular drug delivery. Herein, a novel phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer was designed and constructed as mucoadhesive nanomicelles loaded with voriconazole for fungal keratitis. These nanomicelles were able to improve the in vitro mucin binding and to prolong the residence time of the drug on the surface of the eyeball. Moreover, the nanomicelles exhibited an enhanced drug permeability in cell monolayer models and 3D cell culture models. This work provides a promising ocular drug delivery system.
Collapse
|
5
|
Yen PL, Hsu CH, Huang ML, Liao VHC. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds. CHEMOSPHERE 2022; 286:131863. [PMID: 34411928 DOI: 10.1016/j.chemosphere.2021.131863] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 05/26/2023]
Abstract
Nanoplastic (NP) pollution is an emerging global concern due to its adverse impact on aquatic ecosystems. Nevertheless, the removal of aqueous NPs from aquatic environments remains a significant challenge. This study aims to investigate whether polystyrene NP in aqueous solutions can be removed using coffee grounds. Due to the difficulty associated with directly measuring NP levels and monitoring the biosorption process, we used fluorescent-orange amine-modified polystyrene beads (fluo-NP, 100 nm) to evaluate the efficacy of the biosorption process. The factors including pH, coffee grounds concentration, initial fluo-NP concentration, and contact time were optimized on batch experiments. In addition, the isotherm and kinetic models were employed to clarify the adsorption behaviors and mechanisms. It was found that aqueous fluo-NP particles were effectively adsorbed onto the coffee grounds over a wide pH range (pH 2-12), with a coffee ground concentration of 25 g/L leading to the maximum adsorption efficiency (74%). The equilibrium adsorption capacity of the coffee grounds was 4 mg/g for a reaction time of 40 min. Coffee grounds demonstrated the highest removal efficiency when the initial fluo-NP concentration was 100-125 mg/L. The Dubinin-Radushkevich model and pseudo-second-order model described the adsorption isotherm and kinetics well, respectively, and the adsorption at high fluo-NP concentration range was favorable. Moreover, the results suggest that the mechanism lies in the electrostatic interactions and hydrogen bonding between surface functional groups of the coffee grounds and the fluo-NP particles. Given that there is an urgent need to remove NPs from aqueous systems, this study illustrates that it is possible to use coffee ground biowaste for this purpose.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Ching-Hsuan Hsu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Mei-Lun Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
6
|
Teunissen AJP, Burnett ME, Prévot G, Klein ED, Bivona D, Mulder WJM. Embracing nanomaterials' interactions with the innate immune system. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1719. [PMID: 33847441 PMCID: PMC8511354 DOI: 10.1002/wnan.1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has firmly established itself as a compelling avenue for treating disease. Although many clinically approved immunotherapeutics engage the adaptive immune system, therapeutically targeting the innate immune system remains much less explored. Nanomedicine offers a compelling opportunity for innate immune system engagement, as many nanomaterials inherently interact with myeloid cells (e.g., monocytes, macrophages, neutrophils, and dendritic cells) or can be functionalized to target their cell-surface receptors. Here, we provide a perspective on exploiting nanomaterials for innate immune system regulation. We focus on specific nanomaterial design parameters, including size, form, rigidity, charge, and surface decoration. Furthermore, we examine the potential of high-throughput screening and machine learning, while also providing recommendations for advancing the field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianne E. Burnett
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geoffrey Prévot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma D. Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Bivona
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willem J. M. Mulder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Ikeda Y, Nakamura H, Ohsaki S, Watano S. Direct translocation of a negatively charged nanoparticle across a negatively charged model cell membrane. Phys Chem Chem Phys 2021; 23:10591-10599. [PMID: 33903858 DOI: 10.1039/d0cp06278b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles have attracted much attention as a carrier for drug, gene, and macromolecule delivery in next-generation biomedical and therapeutic technologies. In delivery applications, nanoparticles tend to have negative charge due to the negative charge of biomolecules used as delivery cargo, while biological cell membranes are also negatively charged. This means that negatively charged nanoparticles (NC-NPs) are required to translocate across these negatively charged cell membranes (NC-CMs). However, this translocation is unlikely to occur because of electrostatic interactions. Here, we investigated the translocation of a NC-NP across a NC-CM under a transmembrane electric potential through coarse-grained molecular dynamics simulations. To model the transmembrane potential, two approaches were adopted: externally applied electric field and ionic charge imbalance. We showed that a NC-NP can directly translocate across a NC-CM via a non-disruptive pathway under a weak external electric field with an ionic charge imbalance. It was also found that the ionic charge imbalance contributes to the membrane crossing of a NC-NP as well as the self-resealing of the cell membrane after a NC-NP translocation. Our findings imply that NC-NPs can be delivered into a cell by combining applied electric field with membrane hyperpolarization/depolarization induced by an external stimulus.
Collapse
Affiliation(s)
- Yoko Ikeda
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
8
|
Wu B, Li M, Li K, Hong W, Lv Q, Li Y, Xie S, Han J, Tian B. Cell penetrating peptide TAT-functionalized liposomes for efficient ophthalmic delivery of flurbiprofen: Penetration and its underlying mechanism, retention, anti-inflammation and biocompatibility. Int J Pharm 2021; 598:120405. [PMID: 33647409 DOI: 10.1016/j.ijpharm.2021.120405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 11/15/2022]
Abstract
In treating eye diseases, topical administration on the ocular surface is the most convenient and acceptable route. However, the intraocular efficiency of non-invasive drug delivery systems is still considerably hampered by the eye's defense barriers. In this work, cell-penetrating peptide TAT-functionalized, flurbiprofen-loaded liposomes (TAT-FB-Lip) were designed to enable transcorneal drug delivery and prolong ocular surface retention. The corneal penetration-promoting properties of TAT-functionalized liposomes (TAT-Lip) were confirmed in vitro using a corneal permeability assay and the HCE-T cell sphere model and in vivo by aqueous humor pharmacokinetics assessment. TAT-Lip induced an increase in intracellular calcium ion concentration and membrane potential depolarization. F-actin images of HCE-T cells treated with TAT-Lip show the tight junctions between cells partly opened. The cellular internalization pathway mainly depended on the electrostatic interaction between TAT-Lip and the cell membrane, and there is a certain degree of energy dependence. The pharmacokinetics of flurbiprofen in tears demonstrated TAT-Lip could reduce the drug loss rate. Moreover, the anti-inflammatory effect of TAT-FB-Lip was enhanced by markedly suppressing PGE2, IL-6, and TNF-α production in tears and aqueous humor in a rabbit conjunctivitis model. In conclusion, this work demonstrates that TAT-Lip is an effective ocular drug carrier system that facilitates transcorneal delivery.
Collapse
Affiliation(s)
- Baohuan Wu
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Mengshun Li
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Keke Li
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Wei Hong
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, PR China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, PR China
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China.
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, PR China.
| |
Collapse
|
9
|
Gu C, Geng Y, Zheng F, Rotello VM. Rapid evaluation of gold nanoparticle-lipid membrane interactions using a lipid/polydiacetylene vesicle sensor. Analyst 2020; 145:3049-3055. [PMID: 32140698 PMCID: PMC7158861 DOI: 10.1039/d0an00226g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Surface modification of gold nanoparticles (AuNPs) has significant and complicated effects on their interactions with cell membranes. In this study, we used a lipid/polyacetylene (PDA) vesicle sensor as the lipid membrane model to evaluate AuNP-lipid membrane interactions. Based on the colorimetric response (CR) of PDA vesicles before and after incubation with AuNPs, it was found that the interaction was highly dependent on the surface charge of AuNPs. As compared to the positively charged NPs, neutral and zwitterionic NPs adsorbed much less on the lipid membrane. Negatively charged NPs did not induce any noticeable color changes even at high concentrations. A class of cationic AuNPs with different degrees of surface hydrophobicity was further selected to investigate the role of hydrophobicity in interacting with lipid/PDA vesicles, and log(EC50) was employed as the evaluation index. According to the log(EC50)-NP concentration curve, the hydrophobicity of NPs enhanced the lipid membrane affinity, but electrostatic interactions weakened this effect. Finally, different concentrations of bovine serum albumin (BSA) were used to study the effect of the protein corona on NP-lipid membrane interactions. The formation of a NP-protein corona was found to mask the electrostatic interactions, leading to the decrease of the CR values of cationic NPs, and highly hydrophobic NPs were less affected by a low concentration of BSA due to the strong hydrophobic interactions. Although the effect of NP surface properties on their interactions with cells is far more complicated, our study provides a rapid and effective method for the evaluation of the interactions between surface modified AuNPs and lipid membranes.
Collapse
Affiliation(s)
- Congcong Gu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China. and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China. and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
10
|
Zhang HT, Yu M, Niu YJ, Liu WZ, Pang WH, Ding J, Wang JC. Polyarginine-Mediated siRNA Delivery: A Mechanistic Study of Intracellular Trafficking of PCL-R15/siRNA Nanoplexes. Mol Pharm 2020; 17:1685-1696. [PMID: 32191042 DOI: 10.1021/acs.molpharmaceut.0c00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
As a cell-penetrating peptide, polyarginine is widely used in drug delivery systems based on its membrane permeation ability. Previously, we developed the mPEG-PLA-b-polyarginine(R15) triblock copolymer, which exhibited a high siRNA delivery efficiency both in vitro and in vivo. As a continued effort, here the amphiphilic diblock polymer PCL-R15 was synthesized as a simplified model to further elucidate the structure-activity relationship of arginine-based amphiphilic polymers as siRNA delivery systems, and the cellular trafficking mechanisms of the PCL-R15/siRNA nanoplexes were investigated to understand the interaction patterns between the nanoplexes and cells. Compared to the R15/siRNA complexes, the introduction of PCL moiety was found to result in the stronger interactions with cells and the enhanced transfection efficiency after the formation of condensed nanoplexes. Caveolae-mediated endocytosis and clathrin-mediated endocytosis were major routes for the internalization of PCL-R15/siRNA nanoplexes. The intracellular release of siRNA from nanoplexes was confirmed by fluorescence resonance energy transfer assay. It was also noticed that the internalized PCL-R15/siRNA nanoplexes were transported through digestive routes and trapped in lysosomes, which may be the bottleneck for efficient siRNA delivery of PCL-R15/siRNA nanoplexes. This study investigated the relationship between the polymer structure of PCL-R15 and the cellular interaction patterns, which may render implications on the rational design of polyarginine-based siRNA delivery systems.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, P. R. China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changshen Road, Hengyang, Hunan 421001, P. R. China
| | - Minzhi Yu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| | - Yu-Jie Niu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| | - Wei-Zhong Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| | - Wen-Hao Pang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, XueYuan Rd 38, Haidian Dist, Beijing 100191, P. R. China
| |
Collapse
|
11
|
Nag OK, Muroski ME, Hastman DA, Almeida B, Medintz IL, Huston AL, Delehanty JB. Nanoparticle-Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS NANO 2020; 14:2659-2677. [PMID: 32078291 DOI: 10.1021/acsnano.9b10163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bethany Almeida
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Alan L Huston
- Division of Optical Sciences, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
12
|
Levin M, Selberg J, Rolandi M. Endogenous Bioelectrics in Development, Cancer, and Regeneration: Drugs and Bioelectronic Devices as Electroceuticals for Regenerative Medicine. iScience 2019; 22:519-533. [PMID: 31837520 PMCID: PMC6920204 DOI: 10.1016/j.isci.2019.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
A major frontier in the post-genomic era is the investigation of the control of coordinated growth and three-dimensional form. Dynamic remodeling of complex organs in regulative embryogenesis, regeneration, and cancer reveals that cells and tissues make decisions that implement complex anatomical outcomes. It is now essential to understand not only the genetics that specifies cellular hardware but also the physiological software that implements tissue-level plasticity and robust morphogenesis. Here, we review recent discoveries about the endogenous mechanisms of bioelectrical communication among non-neural cells that enables them to cooperate in vivo. We discuss important advances in bioelectronics, as well as computational and pharmacological tools that are enabling the taming of biophysical controls toward applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - John Selberg
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
13
|
Zanella D, Bossi E, Gornati R, Faria N, Powell J, Bernardini G. The direct permeation of nanoparticles through the plasma membrane transiently modifies its properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182997. [PMID: 31150635 DOI: 10.1016/j.bbamem.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
The exposure to metal nanoparticles (NPs) has increased with their widespread use in industry, research and medicine. It is well known that NPs may enter cells and that this mechanism is crucial to exert both the therapeutic and toxicity effects. The main cellular entrance route is endocytosis-based, however, recent experimental studies, have reported that NPs can also enter the cell crossing directly the plasma membrane, it is thus important to investigate this alternative internalization mechanism. Size, surface chemistry, solubility and shape play a role in NP ability of entering the cell, but it is still to be elucidated how these properties act on cell membrane. We have demonstrated that a direct permeation of metal oxide NPs through the lipid bilayer of the cell membrane can occur, giving direct access to the cytoplasm. In this paper, using the powerful tool of Xenopus laevis oocytes and two electrode Voltage Clamp, we have investigated several parameters that can influence the direct crossing. The most significant of them is the NP hydrodynamic size as clearly shown by the comparison of the behaviour between Co3O4 and NiO NPs. By collecting biophysical membrane parameters in different conditions, we have shown that NPs that are able to cross the membrane share the ability to maintain a hydrodynamic size lower than 200 nm. The presence of this route of entrance must be considered for a better comprehension of the effect at intracellular level considering possible mechanism in order to a safer design of engineered NPs.
Collapse
Affiliation(s)
- Daniele Zanella
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Nuno Faria
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Jonathan Powell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy.
| |
Collapse
|
14
|
Cervera J, Manzanares JA, Mafe S, Levin M. Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States. J Phys Chem B 2019; 123:3924-3934. [PMID: 31003574 DOI: 10.1021/acs.jpcb.9b01717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological networks use collective oscillations for information processing tasks. In particular, oscillatory membrane potentials have been observed in nonexcitable cells and bacterial communities where specific ion channel proteins contribute to the bioelectric coordination of large populations. We aim at describing theoretically the oscillatory spatiotemporal patterns that emerge at the multicellular level from the single-cell bioelectric dynamics. To this end, we focus on two key questions: (i) What single-cell properties are relevant to multicellular behavior? (ii) What properties defined at the multicellular level can allow an external control of the bioelectric dynamics? In particular, we explore the interplay between transcriptional and translational dynamics and membrane potential dynamics in a model multicellular ensemble, describe the spatiotemporal patterns that arise when the average electric potential allows groups of cells to act as a coordinated multicellular patch, and characterize the resulting synchronization phenomena. The simulations concern bioelectric networks and collective communication across different scales based on oscillatory and synchronization phenomena, thus shedding light on the physiological dynamics of a wide range of endogenous contexts across embryogenesis and regeneration.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - José Antonio Manzanares
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Salvador Mafe
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology , Tufts University Medford , Massachusetts 02155-4243 , United States
| |
Collapse
|
15
|
Sun H, Wang J, Jiang Y, Shen W, Jia F, Wang S, Liao X, Zhang L. Rapid Aerobic Inactivation and Facile Removal of Escherichia coli with Amorphous Zero-Valent Iron Microspheres: Indispensable Roles of Reactive Oxygen Species and Iron Corrosion Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3707-3717. [PMID: 30817131 DOI: 10.1021/acs.est.8b06499] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Zero valent iron (ZVI) is recently regarded as a promising alternative for water disinfection, but still suffers from low efficiency. Herein we demonstrate that amorphous zerovalent iron microspheres (A-mZVI) exhibit both higher inactivation rate and physical removal efficiency for the disinfection of Escherichia coli than conventional crystalline nanoscale ZVI (C-nZVI) under aerobic condition. The enhanced E. coli inactivation performance of A-mZVI was mainly attributed to more reactive oxygen species (ROSs), especially free •OH, generated by the accelerated iron dissolution and molecular oxygen activation in bulk solution. In contrast, C-nZVI preferred to produce surface bound •OH, and its bactericidal ability was thus hampered by the limited physical contact between C-nZVI and E. coli. More importantly, hydrolysis of dissolved iron released from A-mZVI produced plenty of loose FeOOH to wrap E. coli, increasing the dysfunction of E. coli membrane. Meanwhile, this hydrolysis process lowered the stability of E. coli colloid and caused its rapid coagulation and sedimentation, favoring its physical removal. These findings clarify the indispensable roles of ROSs and iron corrosion products during the ZVI disinfection, and also provide a promising disinfection material for water treatment.
Collapse
Affiliation(s)
- Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Jian Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan 430079 , P. R. China
| | - Yao Jiang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan 430079 , P. R. China
| | - Wenjuan Shen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Shaohui Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan 430079 , P. R. China
| | - Xiaomei Liao
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan 430079 , P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| |
Collapse
|
16
|
Cervera J, Manzanares JA, Mafe S. Cell-cell bioelectrical interactions and local heterogeneities in genetic networks: a model for the stabilization of single-cell states and multicellular oscillations. Phys Chem Chem Phys 2019; 20:9343-9354. [PMID: 29564429 DOI: 10.1039/c8cp00648b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic networks operate in the presence of local heterogeneities in single-cell transcription and translation rates. Bioelectrical networks and spatio-temporal maps of cell electric potentials can influence multicellular ensembles. Could cell-cell bioelectrical interactions mediated by intercellular gap junctions contribute to the stabilization of multicellular states against local genetic heterogeneities? We theoretically analyze this question on the basis of two well-established experimental facts: (i) the membrane potential is a reliable read-out of the single-cell electrical state and (ii) when the cells are coupled together, their individual cell potentials can be influenced by ensemble-averaged electrical potentials. We propose a minimal biophysical model for the coupling between genetic and bioelectrical networks that associates the local changes occurring in the transcription and translation rates of an ion channel protein with abnormally low (depolarized) cell potentials. We then analyze the conditions under which the depolarization of a small region (patch) in a multicellular ensemble can be reverted by its bioelectrical coupling with the (normally polarized) neighboring cells. We show also that the coupling between genetic and bioelectric networks of non-excitable cells, modulated by average electric potentials at the multicellular ensemble level, can produce oscillatory phenomena. The simulations show the importance of single-cell potentials characteristic of polarized and depolarized states, the relative sizes of the abnormally polarized patch and the rest of the normally polarized ensemble, and intercellular coupling.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - Salvador Mafe
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
17
|
Nakamura H, Sezawa K, Hata M, Ohsaki S, Watano S. Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential. Phys Chem Chem Phys 2019; 21:18830-18838. [DOI: 10.1039/c9cp02935d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles directly translocate across a cell membrane by a locally enhanced membrane potential at the NP/cell-membrane contact interface.
Collapse
Affiliation(s)
- Hideya Nakamura
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Kyohei Sezawa
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Masataka Hata
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Satoru Watano
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| |
Collapse
|
18
|
Cervera J, Meseguer S, Mafe S. Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model. ACS OMEGA 2018; 3:13567-13575. [PMID: 30411043 PMCID: PMC6217649 DOI: 10.1021/acsomega.8b01514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 05/28/2023]
Abstract
Bioelectricity is emerging as a crucial mechanism for signal transmission and processing from the single-cell level to multicellular domains. We explore theoretically the oscillatory dynamics that result from the coupling between the genetic and bioelectric descriptions of nonexcitable cells in multicellular ensembles, connecting the genetic prepatterns defined over the ensemble with the resulting spatio-temporal map of cell potentials. These prepatterns assume the existence of a small patch in the ensemble with locally low values of the genetic rate constants that produce a specific ion channel protein whose conductance promotes the cell-polarized state (inward-rectifying channel). In this way, the short-range interactions of the cells within the patch favor the depolarized membrane potential state, whereas the long-range interaction of the patch with the rest of the ensemble promotes the polarized state. The coupling between the local and long-range bioelectric signals allows a binary control of the patch membrane potentials, and alternating cell polarization and depolarization states can be maintained for optimal windows of the number of cells and the intercellular connectivity in the patch. The oscillatory phenomena emerge when the feedback between the single-cell bioelectric and genetic dynamics is coupled at the multicellular level. In this way, the intercellular connectivity acts as a regulatory mechanism for the bioelectrical oscillations. The simulation results are qualitatively discussed in the context of recent experimental studies.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Salvador Mafe
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
19
|
Shi X, Tian F. Multiscale Modeling and Simulation of Nano‐Carriers Delivery through Biological Barriers—A Review. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinghua Shi
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| | - Falin Tian
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
20
|
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach. Bioelectrochemistry 2018; 123:45-61. [DOI: 10.1016/j.bioelechem.2018.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
21
|
Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B 2018; 8:862-880. [PMID: 30505656 PMCID: PMC6251809 DOI: 10.1016/j.apsb.2018.05.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial targeting is a promising approach for solving current issues in clinical application of chemotherapy and diagnosis of several disorders. Here, we discuss direct conjugation of mitochondrial-targeting moieties to anticancer drugs, antioxidants and sensor molecules. Among them, the most widely applied mitochondrial targeting moiety is triphenylphosphonium (TPP), which is a delocalized cationic lipid that readily accumulates and penetrates through the mitochondrial membrane due to the highly negative mitochondrial membrane potential. Other moieties, including short peptides, dequalinium, guanidine, rhodamine, and F16, are also known to be promising mitochondrial targeting agents. Direct conjugation of mitochondrial targeting moieties to anticancer drugs, antioxidants and sensors results in increased cytotoxicity, anti-oxidizing activity and sensing activity, respectively, compared with their non-targeting counterparts, especially in drug-resistant cells. Although many mitochondria-targeted anticancer drug conjugates have been investigated in vitro and in vivo, further clinical studies are still needed. On the other hand, several mitochondria-targeting antioxidants have been analyzed in clinical phases I, II and III trials, and one conjugate has been approved for treating eye disease in Russia. There are numerous ongoing studies of mitochondria-targeted sensors.
Collapse
Key Words
- (Fx, r)3, (l-cyclohexyl alanine-d-arginine)3
- 4-AT, 4-amino-TEMPO
- 5-FU, 5-Fluorouracil
- AD, Alzheimer׳s disease
- AIE, aggregation-induced emission
- ATP, adenosine triphosphate
- Anticancer agents
- Antioxidants
- Arg, arginine
- Aβ, beta amyloid
- BODIPY, boron-dipyrromethene
- C-dots, carbon dots
- CAT, catalase
- COX, cytochrome c oxidase
- CZBI, carbazole and benzo[e]indolium
- CoA, coenzyme A
- DDS, drug delivery system
- DEPMPO, 5-(diethylphosphono)-5-methyl-1-pyrroline N-oxide
- DIPPMPO, 5-(diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide
- DQA, dequalinium
- Direct conjugation
- Dmt, dimethyltyrosine
- EPR, enhanced permeability and retention
- F16, (E)-4-(1H-indol-3-ylvinyl)-N-methylpyridinium iodide
- GPX, glutathione peroxidase
- GS, gramicidin S
- HTPP, 5-(4-hydroxy-phenyl)-10,15,20-triphenylporphyrin
- IMM, inner mitochondrial membrane
- IMS, intermembrane space
- IOA, imidazole-substituted oleic acid
- LA, lipoic acid
- LAH2, dihydrolipoic acid
- Lys, lysine
- MET, mesenchymal-epithelial transition
- MLS, mitochondria localization sequences
- MPO, myeloperoxidase
- MPP, mitochondria-penetrating peptides
- MitoChlor, TPP-chlorambucil
- MitoE, TPP-vitamin E
- MitoLA, TPP-lipoic acid
- MitoQ, TPP-ubiquinone
- MitoVES, TPP-vitamin E succinate
- Mitochondria-targeting
- Nit, nitrooxy
- NitDOX, nitrooxy-DOX
- OMM, outer mitochondrial membrane
- OXPHOS, oxidative phosphorylation
- PD, Parkinson׳s disease
- PDT, photodynamic therapy
- PET, photoinduced electron transfer
- PS, photosensitizer
- PTPC, permeability transition pore complex
- Phe, phenylalanine
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- SS peptide, Szeto-Schiller peptides
- Sensing agents
- SkQ1, Skulachev ion-quinone
- TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl
- TPEY-TEMPO, [2-(1-oxyl-2,2,6,6-tetramethylpiperidin-4-ylimino)-ethyl]-triphenyl-phosphonium
- TPP, triphenylphosphonium
- Tyr, tyrosine
- VDAC/ANT, voltage-dependent anion channel/adenine nucleotide translocase
- VES, vitamin E succinate
- XO, xanthine oxidase
- mitoTEMPO, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium)
- mtCbl, (Fx,r)3-chlorambucil
- mtDNA, mitochondrial DNA
- mtPt, mitochondria-targeting (Fx,r)3-platinum(II)
- nDNA, nuclear DNA
- αTOS, alpha-tocopheryl succinate.
Collapse
Affiliation(s)
- Gantumur Battogtokh
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Yeon Su Choi
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Dong Seop Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Sang Jun Park
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
22
|
Xiao Q, Chen T, Chen S. Fluorescent contrast agents for tumor surgery. Exp Ther Med 2018; 16:1577-1585. [PMID: 30186374 PMCID: PMC6122374 DOI: 10.3892/etm.2018.6401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of cases of mortality worldwide. The most effective method to cure solid tumors is surgery. Every year, >50% of cancer patients receive surgery to remove solid tumors. Surgery may increase the cure rate of most solid tumors by 4–11 fold. Surgery has many challenges, including identifying small lesions, locating metastases and confirming complete tumor removal. Fluorescence guidance describes a new approach to improve surgical accuracy. Near-infrared fluorescence imaging allows for real-time early diagnosis and intraoperative imaging of lesion tissue. The results of previous preclinical studies in the field of near-infrared fluorescence imaging are promising. This review provides examples introducing the three kinds of fluorescent dyes: The passive fluorescent dye indocyanine green, which has been approved by the Food and Drug Administration for clinical use in the USA, the fluorescent prodrug 5-aminolevulinic acid, a porphyrin precursor in the heme synthesis, and biomarker-targeted fluorescent dyes, which allow conjugation to different target sites.
Collapse
Affiliation(s)
- Qi Xiao
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| | - Tianming Chen
- Department of Surgery, Nanjing Medical University Third Affiliated Hospital, Nanjing, Jiangsu 211166, P.R. China
| | - Shilin Chen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
23
|
Identification and Evaluation of the Minimum Unit of a KALA Peptide Required for Gene Delivery and Immune Activation. J Pharm Sci 2017; 106:3113-3119. [DOI: 10.1016/j.xphs.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/26/2017] [Accepted: 05/16/2017] [Indexed: 01/27/2023]
|
24
|
Cervera J, Meseguer S, Mafe S. MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity. J Phys Chem B 2017; 121:7602-7613. [DOI: 10.1021/acs.jpcb.7b04774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Javier Cervera
- Dept.
de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Salvador Mafe
- Dept.
de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
25
|
Singh S. Glucose decorated gold nanoclusters: A membrane potential independent fluorescence probe for rapid identification of cancer cells expressing Glut receptors. Colloids Surf B Biointerfaces 2017; 155:25-34. [DOI: 10.1016/j.colsurfb.2017.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
|
26
|
Miura N, Akita H, Tateshita N, Nakamura T, Harashima H. Modifying Antigen-Encapsulating Liposomes with KALA Facilitates MHC Class I Antigen Presentation and Enhances Anti-tumor Effects. Mol Ther 2017; 25:1003-1013. [PMID: 28236573 DOI: 10.1016/j.ymthe.2017.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
For a successful anti-cancer vaccine, antigen presentation on the major histocompatibility complex (MHC) class I is a requirement. To accomplish this, an antigen must be delivered to the cytoplasm by overcoming the endosome/lysosome. We previously reported that a lipid nanoparticle modified with a KALA peptide (WEAKLAKALAKALAKHLAKALAKALKA), an α-helical cationic peptide, permits the encapsulated pDNA to be efficiently delivered to the cytoplasm in bone marrow-derived dendritic cells (BMDCs). Herein, we report on the use of KALA-modified liposomes as an antigen carrier, in an attempt to induce potent antigen-specific cellular immunity. The subcutaneous injection of KALA-modified ovalbumin (OVA)-encapsulating liposomes (KALA-OVA-LPs) elicited a much more potent OVA-specific cytotoxic T lymphocyte activity and anti-tumor effect in comparison with particles that were modified with octa-arginine (R8), a cell-penetrating peptide (R8-OVA-LPs). In addition, the numbers of OVA-specific CD8+ T cells were increased by immunization the KALA-OVA-LPs. The treatment of BMDCs with KALA-OVA-LPs induced a substantial MHC class I antigen presentation. Furthermore, the acidic pH-dependent membrane destabilization activity of KALA-OVA-LPs strongly suggests that they are able to escape from endosomes/lysosomes and thereby deliver their cargos to the cytoplasm. Collectively, the KALA-modified liposome is a potential antigen delivery platform for use as a protein vaccine.
Collapse
Affiliation(s)
- Naoya Miura
- Department of Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo City, Hokkaido 060-0812, Japan
| | - Hidetaka Akita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 263-8675, Japan.
| | - Naho Tateshita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 263-8675, Japan
| | - Takashi Nakamura
- Department of Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo City, Hokkaido 060-0812, Japan
| | - Hideyoshi Harashima
- Department of Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo City, Hokkaido 060-0812, Japan.
| |
Collapse
|
27
|
Gavrilov AA, Chertovich AV, Kramarenko EY. Dissipative particle dynamics for systems with high density of charges: Implementation of electrostatic interactions. J Chem Phys 2016; 145:174101. [DOI: 10.1063/1.4966149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- A. A. Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - A. V. Chertovich
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - E. Yu. Kramarenko
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
28
|
Gao J, Zhang O, Ren J, Wu C, Zhao Y. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1601-1610. [PMID: 26794292 DOI: 10.1021/acs.langmuir.6b00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The presence of large hydrophobic aromatic residues in cell-penetrating peptides or proteins has been demonstrated to be advantageous for their cell penetration. This phenomenon has also been observed when AuNPs were modified with peptides containing aromatic amino acids. However, it is still not clear how the presence of hydrophobic and aromatic groups on the surface of anionic AuNPs affects their interaction with lipid bilayers. Here, we studied the interaction of a range of anionic amphiphilic AuNPs coated by different combinations of hydrophobic and anionic ligands with four different types of synthetic lipid vesicles. Our results demonstrated the important role of the surface aromatic or bulky groups, relative to the hydrocarbon chains, in the interaction of anionic AuNPs with lipid bilayers. Hydrophobic interaction itself arising from the insertion of aromatic/bulky ligands on the surface of AuNPs into lipid bilayers is sufficiently strong to cause overt disruption of lipid vesicles and cell membranes. Moreover, by comparing the results obtained from AuNPs coated with aromatic ligands and cyclohexyl ligands lacking aromaticity respectively, we demonstrated that the bulkiness of the terminal groups in hydrophobic ligands instead of the aromatic character might be more important to the interaction of AuNPs with lipid bilayers. Finally, we further correlated the observation on model liposomes with that on cell membranes, demonstrating that AuNPs that are more disruptive to the more negatively charged liposomes are also substantially more disruptive to cell membranes. In addition, our results revealed that certain cellular membrane domains that are more susceptible to disruption caused by hydrophobic interactions with nanoparticle surfaces might determine the threshold of AuNP-mediated cytotoxicity.
Collapse
Affiliation(s)
- Jinhong Gao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Ouyang Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Jing Ren
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| |
Collapse
|
29
|
Cervera J, Alcaraz A, Mafe S. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics. Sci Rep 2016; 6:20403. [PMID: 26841954 PMCID: PMC4740742 DOI: 10.1038/srep20403] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023] Open
Abstract
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Antonio Alcaraz
- Dept. de Física, Laboratori de Biofísica Molecular, Universitat “Jaume I”, E-12080 Castelló, Spain
| | - Salvador Mafe
- Dept. de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
30
|
Quantification of tumor fluorescence during intraoperative optical cancer imaging. Sci Rep 2015; 5:16208. [PMID: 26563091 PMCID: PMC4643322 DOI: 10.1038/srep16208] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR] = 6.8 ± 0.6, 2.4 ± 0.3, 2.6 ± 0.1, p = 0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1 ± 0.2 vs. 4.3 ± 0.4, p = 0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR = 41.7 ± 11.5, 5.1 ± 1.8, 4.1 ± 0.9, p = 0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR = 7.0 ± 3.4 vs. 2.4 ± 0.5, p = 0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth.
Collapse
|
31
|
Lou B, Zhou Z, Du Y, Dong S. Resistance-based logic aptamer sensor for CCRF-CEM and Ramos cells integrated on microfluidic chip. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Jiang JX, Keating JJ, Jesus EMD, Judy RP, Madajewski B, Venegas O, Okusanya OT, Singhal S. Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2015; 5:390-400. [PMID: 26269776 PMCID: PMC4529592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Surgery is the most effective method to cure patients with solid tumors. New techniques in near-infrared (NIR) cancer imaging are being used to identify surgical margins and residual tumor cells in the wound. Our goal was to determine the optimal time and dose for imaging solid tumors using Indocyanine Green. Syngeneic murine flank tumor models were used to test NIR imaging of ICG at various doses ranging from 0 to 10 mg/kg. Imaging was performed immediately after injection and up to 72 hours later. Biodistribution in the blood and murine organs were quantified by spectroscopy and fluorescence microscopy. Based on these results, a six patient dose titration study was performed. In murine flank tumors, the tumor-to-background ratio (TBR) for ICG at doses less than 5 mg/kg were less than 2 fold at all time points, and the surgeons could not subjectively identify tissue contrast. However, for doses ranging from 5 mg/kg to 10 mg/kg, the TBR ranged from 2.1 to 8.0. The tumor signal was best appreciated at 24 hours and the background was least pronounced after 24 hours. Biodistribution studies in the blood and murine organs revealed excretion through the biliary tree and gastrointestinal tract, with minimal blood fluorescence at the higher doses. A follow up pilot study confirmed that these findings were applicable to lung cancer patients, and tumor was clearly delineated from surrounding normal tissue by NIR imaging. For non-hepatic solid tumors, we found ICG was optimal when dosed at 5 mg/kg and 24 hours before surgery.
Collapse
Affiliation(s)
- Jack X Jiang
- Department of Surgery, Division of Thoracic Surgery, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania
| | - Jane J Keating
- Department of Surgery, Division of Thoracic Surgery, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania
| | - Elizabeth M De Jesus
- Department of Surgery, Division of Thoracic Surgery, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania
| | - Ryan P Judy
- Department of Surgery, Division of Thoracic Surgery, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania
| | - Brian Madajewski
- Department of Surgery, Division of Thoracic Surgery, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania
| | - Ollin Venegas
- Department of Surgery, Division of Thoracic Surgery, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania
| | - Olugbenga T Okusanya
- Department of Surgery, Division of Thoracic Surgery, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, Division of Thoracic Surgery, University of Pennsylvania School of Medicine Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Sanghamitra NJM, Inaba H, Arisaka F, Ohtan Wang D, Kanamaru S, Kitagawa S, Ueno T. Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif. MOLECULAR BIOSYSTEMS 2015; 10:2677-83. [PMID: 25082560 DOI: 10.1039/c4mb00293h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasma membrane translocation is challenging due to the barrier of the cell membrane. Contrary to the synthetic cell-penetrating materials, tailed bacteriophages use cell-puncturing protein needles to puncture the cell membranes as an initial step of the DNA injection process. Cell-puncturing protein needles are thought to remain functional in the native phages. In this paper, we found that a bacteriophage T4 derived protein needle of 16 nm length spontaneously translocates through the living cell membrane. The β-helical protein needle (β-PN) internalizes into human red blood cells that lack endocytic machinery. By comparing the cellular uptake of β-PNs with modified surface charge, it is shown that the uptake efficiency is maximum when it has a negative charge corresponding to a zeta potential value of -16 mV. In HeLa cells, uptake of β-PN incorporates endocytosis independent mechanisms with partial macropinocytosis dependence. The endocytosis dependence of the uptake increases when the surface charges of β-PNs are modified to positive or negative. Thus, these results suggest that natural DNA injecting machinery can serve as an inspiration to design new class of cell-penetrating materials with a tailored mechanism.
Collapse
Affiliation(s)
- Nusrat J M Sanghamitra
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Li Y, Zhang X, Cao D. Nanoparticle hardness controls the internalization pathway for drug delivery. NANOSCALE 2015; 7:2758-2769. [PMID: 25585060 DOI: 10.1039/c4nr05575f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoparticle (NP)-based drug delivery systems offer fundamental advantages over current therapeutic agents that commonly display a longer circulation time, lower toxicity, specific targeted release, and greater bioavailability. For successful NP-based drug delivery it is essential that the drug-carrying nanocarriers can be internalized by the target cells and transported to specific sites, and the inefficient internalization of nanocarriers is often one of the major sources for drug resistance. In this work, we use the dissipative particle dynamics simulation to investigate the effect of NP hardness on their internalization efficiency. Three simplified models of NP platforms for drug delivery, including polymeric NP, liposome and solid NP, are designed here to represent increasing nanocarrier hardness. Simulation results indicate that NP hardness controls the internalization pathway for drug delivery. Rigid NPs can enter the cell by a pathway of endocytosis, whereas for soft NPs the endocytosis process can be inhibited or frustrated due to wrapping-induced shape deformation and non-uniform ligand distribution. Instead, soft NPs tend to find one of three penetration pathways to enter the cell membrane via rearranging their hydrophobic and hydrophilic segments. Finally, we show that the interaction between nanocarriers and drug molecules is also essential for effective drug delivery.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | |
Collapse
|
35
|
Cervera J, Manzanares JA, Mafe S. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials. J Phys Chem B 2015; 119:2968-78. [PMID: 25622192 DOI: 10.1021/jp512900x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Universitat de València , E-46100 Burjassot, Spain
| | | | | |
Collapse
|
36
|
Zhang L, Liu W, Huang X, Zhang G, Wang X, Wang Z, Zhang D, Jiang X. Old is new again: a chemical probe for targeting mitochondria and monitoring mitochondrial membrane potential in cells. Analyst 2015; 140:5849-54. [DOI: 10.1039/c5an00918a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tetraphenylethene-indolium molecule (TPE-indo) can both image the mitochondria and indicate mitochondrial activity by the fluorescence change of TPE-indo.
Collapse
Affiliation(s)
- Lu Zhang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- 100190 Beijing
- China
| | - Wenwen Liu
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- 100190 Beijing
- China
| | - Xianhong Huang
- Beijing National Laboratory for Molecular Science
- Organic Solids Laboratory
- Institute of Chemistry
- Chinese Academy of Science
- 100190 Beijing
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Science
- Organic Solids Laboratory
- Institute of Chemistry
- Chinese Academy of Science
- 100190 Beijing
| | - Xuefei Wang
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhuo Wang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- 100190 Beijing
- China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Science
- Organic Solids Laboratory
- Institute of Chemistry
- Chinese Academy of Science
- 100190 Beijing
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety
- National Center for NanoScience and Technology
- 100190 Beijing
- China
| |
Collapse
|
37
|
Warren EA, Payne CK. Cellular binding of nanoparticles disrupts the membrane potential. RSC Adv 2015; 5:13660-13666. [PMID: 25685328 PMCID: PMC4326017 DOI: 10.1039/c4ra15727c] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All cells generate an electrical potential across their plasma membrane driven by a concentration gradient of charged ions. A typical resting membrane potential ranges from -40 to -70 mV, with a net negative charge on the cytosolic side of the membrane. Maintenance of the resting membrane potential depends on the presence of two-pore-domain potassium "leak" channels, which allow for outward diffusion of potassium ions along their concentration gradient. Disruption of the ion gradient causes the membrane potential to become more positive or more negative relative to the resting state, referred to as "depolarization" or "hyperpolarization," respectively. Changes in membrane potential have proven to be pivotal, not only in normal cell cycle progression but also in malignant transformation and tissue regeneration. Using polystyrene nanoparticles as a model system, we use flow cytometry and fluorescence microscopy to measure changes in membrane potential in response to nanoparticle binding to the plasma membrane. We find that nanoparticles with amine-modified surfaces lead to significant depolarization of both CHO and HeLa cells. In comparison, carboxylate-modified nanoparticles do not cause depolarization. Mechanistic studies suggest that this nanoparticle-induced depolarization is the result of a physical blockage of the ion channels. These experiments show that nanoparticles can alter the biological system of interest in subtle, yet important, ways.
Collapse
Affiliation(s)
- Emilie A.K. Warren
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia, 30332; Tel: 404-385-3125
| | - Christine K. Payne
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia, 30332; Tel: 404-385-3125
| |
Collapse
|
38
|
Tian F, Yue T, Li Y, Zhang X. Computer simulation studies on the interactions between nanoparticles and cell membrane. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5231-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Cao X, Chen C, Yu H, Wang P. Horseradish peroxidase-encapsulated chitosan nanoparticles for enzyme-prodrug cancer therapy. Biotechnol Lett 2014; 37:81-8. [DOI: 10.1007/s10529-014-1664-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022]
|
40
|
Hagenfeld D, Kathagen N, Prehm P. Adsorption of Glycosaminoglycans to the Cell Surface Is Responsible for Cellular Donnan Effects. J Cell Biochem 2014; 115:1334-41. [DOI: 10.1002/jcb.24791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/17/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Daniel Hagenfeld
- Section of Periodontology; Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg; Heidelberg Germany
| | - Nadine Kathagen
- Muenster University Hospital; Institute of Physiological Chemistry and Pathobiochemistry; Waldeyerstr. 15 D-48129 Muenster Germany
| | - Peter Prehm
- Muenster University Hospital; Institute of Physiological Chemistry and Pathobiochemistry; Waldeyerstr. 15 D-48129 Muenster Germany
- Hylitis; Rudolf-Harbig-Str. 5 D-48301 Nottuln Germany
| |
Collapse
|
41
|
Townson JL, Lin YS, Agola JO, Carnes EC, Leong HS, Lewis JD, Haynes CL, Brinker CJ. Re-examining the size/charge paradigm: differing in vivo characteristics of size- and charge-matched mesoporous silica nanoparticles. J Am Chem Soc 2013; 135:16030-3. [PMID: 24107191 DOI: 10.1021/ja4082414] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The combination of nanoparticle (NP) size, charge, and surface chemistry (e.g., extent of modification with polyethylene glycol (PEG)) is accepted as a key determinant of NP/cellular interactions. However, the influence of spatial arrangement and accessibility of the charged molecules on the NP surface vis-à-vis the average surface charge (zeta (ζ) potential) is incompletely understood. Here we demonstrate that two types of mesoporous silica nanoparticles (MSNP) that are matched in terms of primary and hydrodynamic particle size, shape, pore structure, colloidal stability, and ζ potential, but differ in surface chemistry, viz. the spatial arrangement and relative exposure of surface amines, have profoundly different interactions with cells and tissues when evaluated in vitro and in vivo. While both particles are ∼50 nm in diameter, PEGylated, and positively charged (ζ = +40 mV), PEG-PEI (MSNPs modified with exposed polyamines), but not PEG-NMe3(+) (MSNP modified with distributed, obstructed amines) rapidly bind serum proteins, diverse cells types in vitro, and endothelial and white blood cells in vivo (ex ovo chick embryo model). This finding helps elucidate the relative role of surface exposure of charged molecules vs ζ potential in otherwise physicochemically matched MSNP and highlights protein corona neutrality as an important design consideration when synthesizing cationic NPs for biological applications.
Collapse
Affiliation(s)
- Jason L Townson
- Center for Micro-Engineered Materials, §Department of Chemical Engineering, the University of New Mexico , Albuquerque, New Mexico 87131, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chernet B, Levin M. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer. JOURNAL OF CLINICAL & EXPERIMENTAL ONCOLOGY 2013; Suppl 1:S1-002. [PMID: 25525610 PMCID: PMC4267524 DOI: 10.4172/2324-9110.s1-002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cancer may be a disease of geometry: a misregulation of the field of information that orchestrates individual cells' activities towards normal anatomy. Recent work identified molecular mechanisms underlying a novel system of developmental control: bioelectric gradients. Endogenous spatio-temporal differences in resting potential of non-neural cells provide instructive cues for cell regulation and complex patterning during embryogenesis and regeneration. It is now appreciated that these cues are an important layer of the dysregulation of cell: cell interactions that leads to cancer. Abnormal depolarization of resting potential (Vmem) is a convenient marker for neoplasia and activates a metastatic phenotype in genetically-normal cells in vivo. Moreover, oncogene expression depolarizes cells that form tumor-like structures, but is unable to form tumors if this depolarization is artificially prevented by misexpression of hyperpolarizing ion channels. Vmem triggers metastatic behaviors at considerable distance, mediated by transcriptional and epigenetic effects of electrically-modulated flows of serotonin and butyrate. While in vivo data on voltages in carcinogenesis comes mainly from the amphibian model, unbiased genetic screens and network profiling in rodents and human tissues reveal several ion channel proteins as bona fide oncogene and promising targets for cancer drug development. However, we propose that a focus on specific channel genes is just the tip of the iceberg. Bioelectric state is determined by post-translational gating of ion channels, not only from genetically-specified complements of ion translocators. A better model is a statistical dynamics view of spatial Vmem gradients. Cancer may not originate at the single cell level, since gap junctional coupling results in multi-cellular physiological networks with multiple stable attractors in bioelectrical state space. New medical applications await a detailed understanding of the mechanisms by which organ target morphology stored in real-time patterns of ion flows is perceived or mis-perceived by cells. Mastery of somatic voltage gradients will lead to cancer normalization or rebooting strategies, such as those that occur in regenerating and embryonic organs, resulting in transformative advances in basic biology and oncology.
Collapse
Affiliation(s)
| | - Michael Levin
- Corresponding author: Michael Levin, Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA, Tel: (617) 627-6161; Fax:(617) 627- 6121;
| |
Collapse
|