1
|
Wu L, Xu W, Jiang H, Yang M, Cun D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm Sin B 2024; 14:5132-5160. [PMID: 39807330 PMCID: PMC11725141 DOI: 10.1016/j.apsb.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 01/16/2025] Open
Abstract
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high. Despite considerable attempts at the development of respiratory vaccines, the rational formulation design still warrants attention, i.e., how the formulation composition, particle properties, formulation type (liquid or solid), and devices would influence the immune outcome. This article reviews the recent advances in the formulation design and development of respiratory vaccines. The focus is on the state of the art of delivering antigenic compounds through the respiratory tract, overcoming the pulmonary bio-barriers, enhancing delivery efficiencies of respiratory vaccines as well as maintaining the stability of vaccines during storage and use. The choice of devices and the influence of deposition sites on vaccine efficiencies were also reviewed.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- School of Food and Drug, Shenzhen Polytechnic University, China, Shenzhen 518055, China
| |
Collapse
|
2
|
Svoboda J, Lusiani N, Sivkova R, Pop-Georgievski O, Sedlacek O. Antifouling Properties of Poly(2-Oxazoline)s and Poly(2-Oxazine)s: Direct Comparison of Polymer-Coated Surfaces with the Same Coating Parameters. Macromol Rapid Commun 2023; 44:e2300168. [PMID: 37220400 DOI: 10.1002/marc.202300168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Indexed: 05/25/2023]
Abstract
This study presents a systematic comparison of the antifouling properties of water-soluble poly(2-oxazoline) (PAOx) and poly(2-oxazine) (PAOzi) brushes grafted to gold surfaces. PAOx and PAOzi are emerging polymer classes in biomedical sciences and are being considered superior alternatives to widely used polyethylene glycol (PEG). Four different polymers, poly(2-methyl-2-oxazoline) (PMeOx), poly(2-ethyl-2-oxazoline) (PEtOx), poly(2-methyl-2-oxazine) (PMeOzi), and poly(2-ethyl-2-oxazine) (PEtOzi), each of them in three different chain lengths, are synthesized and characterized for their antifouling properties. Results show that all polymer-modified surfaces display better antifouling properties than bare gold surfaces as well as analogous PEG coatings. The antifouling properties increase in the following order: PEtOx < PMeOx ≈ PMeOzi < PEtOzi. The study suggests that the resistance to protein fouling derives from both surface hydrophilicity and the molecular structural flexibility of the polymer brushes. PEtOzi brushes with moderate hydrophilicity show the best antifouling performance, possibly due to their highest chain flexibility. Overall, the research contributes to the understanding of antifouling properties in PAOx and PAOzi polymers, with potential applications in various biomaterials.
Collapse
Affiliation(s)
- Jan Svoboda
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Prague 6, 162 00, Czech Republic
| | - Niccolo Lusiani
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2, 128 00, Czech Republic
| | - Radoslava Sivkova
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Prague 6, 162 00, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Prague 6, 162 00, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2, 128 00, Czech Republic
| |
Collapse
|
3
|
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16030433. [PMID: 36986532 PMCID: PMC10052155 DOI: 10.3390/ph16030433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Keerthi Atluri
- Product Development Department, Alcami Corporation, Morrisville, NC 27560, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
4
|
Geyik G, Işıklan N. Chemical modification of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) through microwave induced graft copolymerization: Characterization and swelling features. Int J Biol Macromol 2023; 235:123888. [PMID: 36870636 DOI: 10.1016/j.ijbiomac.2023.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
In the last decade, interest in the development of new graft copolymers based on natural polysaccharides has grown remarkably due to their potential applications in the wastewater treatment, biomedical, nanomedicine, and pharmaceutical fields. Herein, a novel graft copolymer of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) (κ-Crg-g-PHPMA) was synthesized using a 'microwave induced' technique. The synthesized novel graft copolymer has been well characterized in terms of FTIR, 13C NMR, molecular weight determination, TG, DSC, XRD, SEM, and elemental analyses, taking κ-carrageenan as a reference. The graft copolymers' swelling characteristics were investigated at pH 1.2 and 7.4. The results of swelling studies displayed that the incorporation of PHPMA groups on κ-Crg provides increasing hydrophilicity. The effect of PHPMA percentage in the graft copolymers and pH of the medium on the swelling percentage was studied and the findings exhibited that swelling ability increased with the increment in PHPMA percentage and pH of the medium. The best swelling percentage was attained at pH = 7.4 and a grafting percentage of 81 % reaching 1007 % at the end of 240 min. Moreover, cytotoxicity of the synthesized κ-Crg-g-PHPMA copolymer was assessed on the L929 fibroblast cell line and obtained to be non-toxic.
Collapse
Affiliation(s)
- Gülcan Geyik
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan 71450, Kırıkkale, Turkey; Alaca Avni Çelik Vocational School, Hitit University, Çorum, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan 71450, Kırıkkale, Turkey.
| |
Collapse
|
5
|
Chea S, Schade K, Reinicke S, Bleul R, Rosencrantz RR. Synthesis and self-assembly of cytidine- and guanosine-based copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00615d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The base pairing property and the “melting” behavior of oligonucleotides can take advantage to develop new smart thermoresponsive and programmable materials.
Collapse
Affiliation(s)
- Sany Chea
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, 14476 Potsdam, Germany
- University of Potsdam, Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Kristin Schade
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Stefan Reinicke
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Nanomaterials for Cancer Therapy, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany
| | - Ruben R. Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Biofunctionalized Materials and (Glyco)Biotechnology, Geiselbergstr. 69, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Babuka D, Kolouchova K, Loukotova L, Sedlacek O, Groborz O, Skarkova A, Zhigunov A, Pavlova E, Hoogenboom R, Hruby M, Stepanek P. Self-Assembly, Drug Encapsulation, and Cellular Uptake of Block and Gradient Copolymers of 2-Methyl-2-oxazine and 2- n-Propyl/butyl-2-oxazoline. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Babuka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Department of Biophysics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2 121 16, Czech Republic
| | - Kristyna Kolouchova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Lenka Loukotova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Ondrej Groborz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo sq. 542, Prague 6 162 06, Czech Republic
- Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, Prague 2 120 00, Czech Republic
| | - Aneta Skarkova
- Department of Cell Biology, Charles University, Vinicna 7, Prague 12843, Czech Republic
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Prumyslova 595, Vestec u Prahy 25242, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
7
|
RGDS- and doxorubicin-modified poly[N-(2-hydroxypropyl)methacrylamide]-coated γ-Fe2O3 nanoparticles for treatment of glioblastoma. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04895-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Korpusik AB, Tan Y, Garrison JB, Tan W, Sumerlin BS. Aptamer-Conjugated Micelles for Targeted Photodynamic Therapy Via Photoinitiated Polymerization-Induced Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Angie B. Korpusik
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yan Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Sugumar K, Vignesh G, Arunachalam (Retired) S. A Comparative Study on Interactions of Ternary Copper(II) Complexes and Their Analogues Anchored Polymer (BPEI) with Serum Albumins. ChemistrySelect 2021. [DOI: 10.1002/slct.202100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kannan Sugumar
- School of Chemistry Bharathidasan University Tiruchirappalli 620024 India
- Department of Chemistry Bishop Heber College (Autonomous) Tiruchirappalli 620017 India
| | - Gopalsamy Vignesh
- Department of Chemistry Einstein College of Arts and Science Tirunelveli 627012 India
| | | |
Collapse
|
10
|
Sincari V, Petrova SL, Konefał R, Hruby M, Jäger E. Microwave-assisted RAFT polymerization of N-(2-hydroxypropyl) methacrylamide and its relevant copolymers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Advanced materials for drug delivery across mucosal barriers. Acta Biomater 2021; 119:13-29. [PMID: 33141051 DOI: 10.1016/j.actbio.2020.10.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Mucus is a viscoelastic gel that traps pathogens and other foreign particles to limit their penetration into the underlying epithelium. Dosage forms containing particle-based drug delivery systems are trapped in mucosal layers and will be removed by mucus turnover. Mucoadhesion avoids premature wash-off and prolongs the residence time of drugs on mucus. Moreover, mucus penetration is essential for molecules to access the underlying epithelial tissues. Various strategies have been investigated to achieve mucoadhesion and mucus penetration of drug carriers. Innovations in materials used for the construction of drug-carrier systems allowed the development of different mucoadhesion and mucus penetration delivery systems. Over the last decade, advances in the field of materials chemistry, with a focus on biocompatibility, have led to the expansion of the pool of materials available for drug delivery applications. The choice of materials in mucosal delivery is generally dependent on the intended therapeutic target and nature of the mucosa at the site of absorption. This review presents an up-to-date account of materials including synthesis, physical and chemical modifications of mucoadhesive materials, nanocarriers, viral mimics used for the construction of mucosal drug delivery systems.
Collapse
|
12
|
Fereig SA, El-Zaafarany GM, Arafa MG, Abdel-Mottaleb MMA. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis. Drug Deliv 2020; 27:662-680. [PMID: 32393082 PMCID: PMC7269080 DOI: 10.1080/10717544.2020.1754527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a dermatological chronic skin condition with underlying autoimmune etiology. It deeply affects patients' quality of life. Therefore, it was an interesting target for researchers throughout the past years. Conventionally, the treatment options include anti-inflammatory agents, immune suppressants, biologic treatment, and phototherapy. Nanotechnology offers promising characteristics that allow for tailoring a drug carrier to achieve dermal targeting, improved efficacy and minimize undesirable effects. Being the safest route, the first line of treatment and a targeted approach, we solely discussed the use of the topical route, combined with advanced drug delivery systems for the management of psoriasis in this article. Advanced systems include polymeric, metallic, lipidic and hybrid nanocarriers incorporating different active agents. All formerly mentioned types of drug delivery systems were investigated through the past decades for the purpose of topical application on psoriatic plaques. Scientists' efforts are promising to reach an optimized formula with a convenient dosage form to improve efficacy, safety, and compliance for the treatment of psoriasis. Accordingly, it will offer a better quality of life for patients.
Collapse
Affiliation(s)
- Salma A. Fereig
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Ghada M. El-Zaafarany
- Faculty of Pharmacy, Department of pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G. Arafa
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt (BUE), El Sherouk City, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
| | - Mona M. A. Abdel-Mottaleb
- Faculty of Pharmacy, Department of pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Internal Structure of Thermoresponsive Physically Crosslinked Nanogel of Poly[ N-(2-hydroxypropyl)methacrylamide]- Block-Poly[ N-(2,2-difluoroethyl)acrylamide], Prominent 19F MRI Tracer. NANOMATERIALS 2020; 10:nano10112231. [PMID: 33182714 PMCID: PMC7698257 DOI: 10.3390/nano10112231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
Fluorine-19 MRI is a promising noninvasive diagnostic method. However, the absence of a nontoxic fluorine-19 MRI tracer that does not suffer from poor biodistribution as a result of its strong fluorophilicity is a constant hurdle in the widespread applicability of this otherwise versatile diagnostic technique. The poly[N-(2-hydroxypropyl)methacrylamide]-block-poly[N-(2,2-difluoroethyl)acrylamide] thermoresponsive copolymer was proposed as an alternative fluorine-19 MRI tracer capable of overcoming such shortcomings. In this paper, the internal structure of self-assembled particles of this copolymer was investigated by various methods including 1D and 2D NMR, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The elucidated structure appears to be that of a nanogel with greatly swollen hydrophilic chains and tightly packed thermoresponsive chains forming a network within the nanogel particles, which become more hydrophobic with increasing temperature. Its capacity to provide a measurable fluorine-19 NMR signal in its aggregated state at human body temperature was also investigated and confirmed. This capacity stems from the different fluorine-19 nuclei relaxation properties compared to those of hydrogen-1 nuclei.
Collapse
|
14
|
Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1842766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahua Dhara (Ganguly)
- Department of Chemistry, Vivekananda Satavarshiki Mahavidyalaya, Jhargram, West Bengal, India
| |
Collapse
|
15
|
Bernhard Y, Sedlacek O, Van Guyse JFR, Bender J, Zhong Z, De Geest BG, Hoogenboom R. Poly(2-ethyl-2-oxazoline) Conjugates with Salicylic Acid via Degradable Modular Ester Linkages. Biomacromolecules 2020; 21:3207-3215. [PMID: 32639725 DOI: 10.1021/acs.biomac.0c00659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conjugation of drugs to polymers is a widely used approach to gain control over the release of therapeutics. In this contribution, salicylic acid, a multipurpose model drug, is conjugated to the biocompatible poly(2-ethyl-2-oxazoline) (PEtOx). The drug is attached to the side chains of a polymer carrier through a hydrolytically cleavable ester linker, via a sequential postpolymerization modification. The chemical modulation of this ester, i.e., by primary or secondary alcohols, is demonstrated to greatly influence the ester hydrolysis rate. This crucial parameter allows us to tune the in vitro kinetics of the sustained drug release for periods exceeding a month in phosphate-buffered saline (PBS). The synthetic accessibility of the cleavable linker, together with the modularity of the drug release rate offered by this approach, highlights the utility of this class of polymers in the field of long-lasting drug delivery systems for persistent and chronic disease treatment.
Collapse
Affiliation(s)
- Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Johan Bender
- Bender Analytical Holding BV, Oude Holleweg 6, 6572 AB Berg en Dal, The Netherlands
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, B-9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Liao X, Falcon ND, Mohammed AA, Paterson YZ, Mayes AG, Guest DJ, Saeed A. Synthesis and Formulation of Four-Arm PolyDMAEA-siRNA Polyplex for Transient Downregulation of Collagen Type III Gene Expression in TGF-β1 Stimulated Tenocyte Culture. ACS OMEGA 2020; 5:1496-1505. [PMID: 32010823 PMCID: PMC6990625 DOI: 10.1021/acsomega.9b03216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
The natural healing process for tendon repair is associated with high upregulation of collagen type III, leading to scar tissue and tendon adhesions with functionally deficient tendons. Gene delivery systems are widely reported as potential nanotherapeutics to treat diseases, providing a promising approach to modulate collagen type III synthesis. This work investigates a proof-of-concept four-arm cationic polymer-siRNA polyplex to mediate a transient downregulation of collagen type III expression in a tendon cell culture system. The tendon culture system was first supplemented with TGF-β1 to stimulate the upregulation of collagen type III prior to silencing experiments. The four-arm poly[2-(dimethylamino) ethyl acrylate] (PDMAEA) polymer was successfully synthesized via RAFT polymerization and then mixed with siRNA to formulate the PDMAEA-siRNA polyplexes. The formation of the polyplex was optimized for the N:P ratio (10:1) and confirmed by agarose gel electrophoresis. The size and solution behavior of the polyplex were analyzed by dynamic light scattering and zeta potential, showing a hydrodynamic diameter of 155 ± 21 nm and overall positive charge of +30 mV at physiological pH. All the polyplex concentrations used had a minimal effect on the metabolic activity of cultured cells, indicating good biocompatibility. The dose and time effects of the TGF-β1 on collagen type III gene expressions were analyzed by qPCR, showing an optimal dose of 10 ng mL-1 TGF-β1 and 3-fold increase of COL3α1 expression at 48 h in cultured tenocytes. The PDMAEA-siRNA polyplex concept observed a limited yet successful and promising efficiency in silencing collagen type III at 48 h compared to PEI-siRNA. Therefore, this concept is a promising approach to reduce tissue scarring and adhesion following injuries.
Collapse
Affiliation(s)
- Xin Liao
- School
of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, U.K.
| | - Noelia D Falcon
- School
of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, U.K.
| | - Ali A Mohammed
- School
of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, U.K.
| | - Yasmin Z. Paterson
- Animal
Health Trust, Lanwades Park,
Kentford, Newmarket, Suffolk CB8 7UU, U.K.
- Department
of Veterinary Medicine, University of Cambridge, Cambridgeshire CB3 0ES, U.K.
| | | | - Deborah J. Guest
- Animal
Health Trust, Lanwades Park,
Kentford, Newmarket, Suffolk CB8 7UU, U.K.
| | - Aram Saeed
- School
of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, U.K.
| |
Collapse
|
18
|
Ratcliffe LPD, Derry MJ, Ianiro A, Tuinier R, Armes SP. A Single Thermoresponsive Diblock Copolymer Can Form Spheres, Worms or Vesicles in Aqueous Solution. Angew Chem Int Ed Engl 2019; 58:18964-18970. [PMID: 31596541 PMCID: PMC6973111 DOI: 10.1002/anie.201909124] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/30/2019] [Indexed: 12/17/2022]
Abstract
It is well-known that the self-assembly of AB diblock copolymers in solution can produce various morphologies depending on the relative volume fraction of each block. Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a powerful platform technology for the rational design and efficient synthesis of a wide range of block copolymer nano-objects. In this study, PISA is used to prepare a new thermoresponsive poly(N-(2-hydroxypropyl) methacrylamide)-poly(2-hydroxypropyl methacrylate) [PHPMAC-PHPMA] diblock copolymer. Remarkably, TEM, rheology and SAXS studies indicate that a single copolymer composition can form well-defined spheres (4 °C), worms (22 °C) or vesicles (50 °C) in aqueous solution. Given that the two monomer repeat units have almost identical chemical structures, this system is particularly well-suited to theoretical analysis. Self-consistent mean field theory suggests this rich self-assembly behavior is the result of the greater degree of hydration of the PHPMA block at lower temperature, which is in agreement with variable temperature 1 H NMR studies.
Collapse
Affiliation(s)
- Liam P. D. Ratcliffe
- Department of Chemistry, Dainton BuildingUniversity of SheffieldBrook HillSouth YorkshireS3 7HFUK
- Present address: Unilever Research & DevelopmentColworth Laboratory, Colworth HouseSharnbrookBedfordMK44 1LQUK
| | - Matthew J. Derry
- Department of Chemistry, Dainton BuildingUniversity of SheffieldBrook HillSouth YorkshireS3 7HFUK
| | - Alessandro Ianiro
- Laboratory of Physical ChemistryDepartment of Chemical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Remco Tuinier
- Laboratory of Physical ChemistryDepartment of Chemical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Steven P. Armes
- Department of Chemistry, Dainton BuildingUniversity of SheffieldBrook HillSouth YorkshireS3 7HFUK
| |
Collapse
|
19
|
Georgiou PG, Baker AN, Richards SJ, Laezza A, Walker M, Gibson MI. "Tuning aggregative versus non-aggregative lectin binding with glycosylated nanoparticles by the nature of the polymer ligand". J Mater Chem B 2019; 8:136-145. [PMID: 31778137 DOI: 10.1039/c9tb02004g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycan-lectin interactions drive a diverse range of biological signaling and recognition processes. The display of glycans in multivalent format enables their intrinsically weak binding affinity to lectins to be overcome by the cluster glycoside effect, which results in a non-linear increase in binding affinity. As many lectins have multiple binding sites, upon interaction with glycosylated nanomaterials either aggregation or surface binding without aggregation can occur. Depending on the application area, either one of these responses are desirable (or undesirable) but methods to tune the aggregation state, independently from the overall extent/affinity of binding are currently missing. Herein, we use gold nanoparticles decorated with galactose-terminated polymer ligands, obtained by photo-initiated RAFT polymerization to ensure high end-group fidelity, to show the dramatic impact on agglutination behaviour due to the chemistry of the polymer linker. Poly(N-hydroxyethyl acrylamide) (PHEA)-coated gold nanoparticles, a polymer widely used as a non-ionic stabilizer, showed preference for aggregation with lectins compared to poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA)-coated nanoparticles which retained colloidal stability, across a wide range of polymer lengths and particle core sizes. Using biolayer interferometry, it was observed that both coatings gave rise to similar binding affinity and hence provided conclusive evidence that aggregation rate alone cannot be used to measure affinity between nanoparticle systems with different stabilizing linkers. This is significant, as turbidimetry is widely used to demonstrate glycomaterial activity, although this work shows the most aggregating may not be the most avid, when comparing different polymer backbones/coating. Overall, our findings underline the potential of PHPMA as the coating of choice for applications where aggregation upon lectin binding would be problematic, such as in vivo imaging or drug delivery.
Collapse
Affiliation(s)
- Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Antonio Laezza
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK. and Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
20
|
Ratcliffe LPD, Derry MJ, Ianiro A, Tuinier R, Armes SP. A Single Thermoresponsive Diblock Copolymer Can Form Spheres, Worms or Vesicles in Aqueous Solution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liam P. D. Ratcliffe
- Department of Chemistry, Dainton BuildingUniversity of Sheffield Brook Hill South Yorkshire S3 7HF UK
- Present address: Unilever Research & DevelopmentColworth Laboratory, Colworth House Sharnbrook Bedford MK44 1LQ UK
| | - Matthew J. Derry
- Department of Chemistry, Dainton BuildingUniversity of Sheffield Brook Hill South Yorkshire S3 7HF UK
| | - Alessandro Ianiro
- Laboratory of Physical ChemistryDepartment of Chemical Engineering & Institute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Remco Tuinier
- Laboratory of Physical ChemistryDepartment of Chemical Engineering & Institute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Steven P. Armes
- Department of Chemistry, Dainton BuildingUniversity of Sheffield Brook Hill South Yorkshire S3 7HF UK
| |
Collapse
|
21
|
Shah TV, Vasava DV. A glimpse of biodegradable polymers and their biomedical applications. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractOver the past two decades, biodegradable polymers (BPs) have been widely used in biomedical applications such as drug carrier, gene delivery, tissue engineering, diagnosis, medical devices, and antibacterial/antifouling biomaterials. This can be attributed to numerous factors such as chemical, mechanical and physiochemical properties of BPs, their improved processibility, functionality and sensitivity towards stimuli. The present review intended to highlight main results of research on advances and improvements in terms of synthesis, physical properties, stimuli response, and/or applicability of biodegradable plastics (BPs) during last two decades, and its biomedical applications. Recent literature relevant to this study has been cited and their developing trends and challenges of BPs have also been discussed.
Collapse
Affiliation(s)
- Tejas V. Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat- 380009, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat- 380009, India
| |
Collapse
|
22
|
Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1545. [PMID: 30411529 PMCID: PMC6461522 DOI: 10.1002/wnan.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces. Synthetic virology takes an engineering approach, modifying the virus capsid through rational, combinatorial, and bioinformatics-driven design strategies. Advances in these three subfields of virology aim to develop virus-based materials and tools that can be applied to solve critical problems in biomedicine and biotechnology, including applications in gene therapy and drug delivery, diagnostics, and immunotherapy. Examples discussed include mammalian viruses, such as adeno-associated virus (AAV), plant viruses, such as cowpea mosaic virus (CPMV), and bacterial viruses, such as Qβ bacteriophage. Importantly, research efforts in physical, chemical, and synthetic virology have further unraveled the design principles foundational to the form and function of viruses. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | - Susan S Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
23
|
Yang X, Ruan J, Ma C, Hao B, Huang X, Lu G, Feng C. Synthesis and self-seeding behavior of oligo(p-phenylene vinylene)-b-poly(N-(2-hydroxypropyl)methacrylamide). Polym Chem 2019. [DOI: 10.1039/c9py00816k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the preparation of uniform fiber- and ribbon-like nanostructures via the self-seeding of OPV5-b-PHPMA diblock copolymers.
Collapse
Affiliation(s)
- Xian Yang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Junyi Ruan
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Bingjie Hao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
24
|
Xu W, Li G, Long H, Fu G, Pu L. Glutathione responsive poly(HPMA) conjugate nanoparticles for efficient 6-MP delivery. NEW J CHEM 2019. [DOI: 10.1039/c9nj02582k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GSH-sensitive poly(HPMA)–PTA was developed and its antitumor effect on HepG2 cells was evaluated.
Collapse
Affiliation(s)
- Weibing Xu
- College of Science
- Gansu Agriculture University
- Lanzhou 730000
- P. R. China
| | - Guichen Li
- Gansu Provincial Key Laboratory of Aridland Crop Science
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Haitao Long
- College of Science
- Gansu Agriculture University
- Lanzhou 730000
- P. R. China
| | - Guorui Fu
- College of Science
- Gansu Agriculture University
- Lanzhou 730000
- P. R. China
| | - Lumei Pu
- College of Science
- Gansu Agriculture University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
25
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Casajus H, Saba S, Vlach M, Vène E, Ribault C, Tranchimand S, Nugier-Chauvin C, Dubreucq E, Loyer P, Cammas-Marion S, Lepareur N. Cell Uptake and Biocompatibility of Nanoparticles Prepared from Poly(benzyl malate) (Co)polymers Obtained through Chemical and Enzymatic Polymerization in Human HepaRG Cells and Primary Macrophages. Polymers (Basel) 2018; 10:E1244. [PMID: 30961169 PMCID: PMC6401887 DOI: 10.3390/polym10111244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
The design of drug-loaded nanoparticles (NPs) appears to be a suitable strategy for the prolonged plasma concentration of therapeutic payloads, higher bioavailability, and the reduction of side effects compared with classical chemotherapies. In most cases, NPs are prepared from (co)polymers obtained through chemical polymerization. However, procedures have been developed to synthesize some polymers via enzymatic polymerization in the absence of chemical initiators. The aim of this work was to compare the acute in vitro cytotoxicities and cell uptake of NPs prepared from poly(benzyl malate) (PMLABe) synthesized by chemical and enzymatic polymerization. Herein, we report the synthesis and characterization of eight PMLABe-based polymers. Corresponding NPs were produced, their cytotoxicity was studied in hepatoma HepaRG cells, and their uptake by primary macrophages and HepaRG cells was measured. In vitro cell viability evidenced a mild toxicity of the NPs only at high concentrations/densities of NPs in culture media. These data did not evidence a higher biocompatibility of the NPs prepared from enzymatic polymerization, and further demonstrated that chemical polymerization and the nanoprecipitation procedure led to biocompatible PMLABe-based NPs. In contrast, NPs produced from enzymatically synthesized polymers were more efficiently internalized than NPs produced from chemically synthesized polymers. The efficient uptake, combined with low cytotoxicity, indicate that PMLABe-based NPs are suitable nanovectors for drug delivery, deserving further evaluation in vivo to target either hepatocytes or resident liver macrophages.
Collapse
Affiliation(s)
- Hubert Casajus
- Ecole Nationale Supérieure de Chimie de Rennes, Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France.
| | - Saad Saba
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Manuel Vlach
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Elise Vène
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Catherine Ribault
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France.
| | - Caroline Nugier-Chauvin
- Ecole Nationale Supérieure de Chimie de Rennes, Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France.
| | - Eric Dubreucq
- Montpellier SupAgro, INRA, CIRAD, Univ Montpellier, UMR 1208 IATE, F-34060 Montpellier, France.
| | - Pascal Loyer
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France.
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Nicolas Lepareur
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
- Comprehensive Cancer Center Eugène Marquis, F-35000 Rennes, France.
| |
Collapse
|
27
|
Yang J, Li L, Kopeček J. Biorecognition: A key to drug-free macromolecular therapeutics. Biomaterials 2018; 190-191:11-23. [PMID: 30391799 DOI: 10.1016/j.biomaterials.2018.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
This review highlights a new paradigm in macromolecular nanomedicine - drug-free macromolecular therapeutics (DFMT). The effectiveness of the new system is based on biorecognition events without the participation of low molecular weight drugs. Apoptosis of cells can be initiated by the biorecognition of complementary peptide/oligonucleotide motifs at the cell surface resulting in the crosslinking of slowly internalizing receptors. B-cell CD20 receptors and Non-Hodgkin lymphoma (NHL) were chosen as the first target. Exposing cells to a conjugate of one motif with a targeting ligand decorates the cells with this motif. Further exposure of decorated cells to a macromolecule (synthetic polymer or human serum albumin) containing multiple copies of the complementary motif as grafts results in receptor crosslinking and apoptosis induction in vitro and in vivo. The review focuses on recent developments and explores the mechanism of action of DFMT. The altered molecular signaling pathways demonstrated the great potential of DFMT to overcome rituximab resistance resulting from either down-regulation of CD20 or endocytosis and trogocytosis of rituximab/CD20 complexes. The suitability of this approach for the treatment of blood borne cancers is confirmed. In addition, the widespread applicability of DFMT as a new concept in macromolecular therapeutics for numerous diseases is exposed.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA.
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Battistella C, Yang Y, Chen J, Klok HA. Synthesis and Postpolymerization Modification of Fluorine-End-Labeled Poly(Pentafluorophenyl Methacrylate) Obtained via RAFT Polymerization. ACS OMEGA 2018; 3:9710-9721. [PMID: 31459100 PMCID: PMC6644891 DOI: 10.1021/acsomega.8b01654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Chain-end-labeled polymers are interesting for a range of applications. In polymer nanomedicine, chain-end-labeled polymers are useful to study and help understand cellular internalization and intracellular trafficking processes. The recent advent of fluorescent label-free techniques, such as nanoscale secondary ion mass spectrometry (NanoSIMS), provides access to high-resolution intracellular mapping that can complement information obtained using fluorescent-labeled materials and confocal microscopy and flow cytometry. Using poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) as a prototypical polymer nanomedicine, this paper presents a synthetic strategy to polymers that contain trace element labels, such as fluorine, which can be used for NanoSIMS analysis. The strategy presented in this paper is based on reversible addition fragmentation chain transfer (RAFT) polymerization of pentafluorophenyl methacrylate (PFMA) mediated by two novel chain-transfer agents (CTAs), which contain either one (α) or two (α,ω) fluorine labels. In the first part of this study, via a number of polymerization experiments, the polymerization properties of the fluorinated RAFT CTAs were established. 19F NMR spectroscopy revealed that these fluorinated RAFT agents possess unique spectral signatures, which allow to directly monitor RAFT agent conversion and measure end-group fidelity. Comparison with 4-cyanopentanoic acid dithiobenzoate, which is a standard CTA for the RAFT polymerization of PFMA, revealed that the introduction of one or two fluorine labels does not significantly affect the polymerization properties of the CTA. In the last part of this paper, a proof-of-concept study is presented that demonstrates the feasibility of the fluorine-labeled poly(pentafluorophenyl methacrylate) polymers as platforms for the postpolymerization modification to generate PHPMA-based polymer nanomedicines.
Collapse
Affiliation(s)
- Claudia Battistella
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Yuejiao Yang
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Jie Chen
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Harm-Anton Klok
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Zhang J, Tang H, Shen Y, Yu Q, Gan Z. Shell-Sheddable Poly(N-2-hydroxypropyl methacrylamide) Polymeric Micelles for Dual-Sensitive Release of Doxorubicin. Macromol Rapid Commun 2018; 39:e1800139. [PMID: 29770519 DOI: 10.1002/marc.201800139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/31/2018] [Indexed: 01/28/2023]
Abstract
Poly(ethylene glycol) (PEG) shell-sheddable micelles are proved to be effective tools for rapid intracellular drug delivery. However, some adverse factors, such as the potential immunogenicity and the accelerated blood clearance, might be accompanied with the traditional PEG sheddable micelles. Here, a poly(N-2-hydroxypropyl methacrylamide) (PHPMA) sheddable block copolymer containing disulfide bonds on the main chain is prepared to form pH- and reduction-dual-responsive micelles. The most optimal synthetic route of the block copolymer is selected from three potential pathways. Doxorubicin is loaded via an acid-labile hydrazone bond to achieve high drug loading content and to prevent premature drug release. As expected, as-prepared shell-sheddable micelles exhibit faster intracellular drug release and more satisfactory in vitro anticancer efficacy than the nonsheddable counterpart did. This design provides a feasible guideline for the efficient synthesis of similar shell-sheddable micelles consisting of PHPMA coatings.
Collapse
Affiliation(s)
- Jiajing Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Chinese Ministry of Health, Beijing, 100730, China
| | - Hao Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingsong Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
30
|
Effects of processing parameters on the properties of amphiphilic block copolymer micelles prepared by supercritical carbon dioxide evaporation method. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2018. [DOI: 10.2478/pjct-2018-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The operation parameters for the supercritical carbon dioxide (ScCO2) evaporation method greatly affect the properties of the prepared drug-loaded micelles. In this study, the effects of those key parameters on the drug-loading content (LC) and drug entrapment efficiency (EE) are discussed. It is observed that EE and LC of the micelles are slightly increased with the enhancing temperature and the copolymer molecular ratio of hydrophilic/hydrophobic segment, while decreased with the enhancing ScCO2 evaporation rate. The pressure and volume ratio of ScCO2 to H2O are observed the optimum condition. In addition, the verification experiment is carried out under the obtained optimizing parameters. The prepared micelles exhibit relatively regular spherical shape and narrow size distribution with the EE and LC value of 70.7% and 14.1%, respectively.
Collapse
|
31
|
Truong NP, Zhang C, Nguyen TAH, Anastasaki A, Schulze MW, Quinn JF, Whittaker AK, Hawker CJ, Whittaker MR, Davis TP. Overcoming Surfactant-Induced Morphology Instability of Noncrosslinked Diblock Copolymer Nano-Objects Obtained by RAFT Emulsion Polymerization. ACS Macro Lett 2018; 7:159-165. [PMID: 35610912 DOI: 10.1021/acsmacrolett.7b00978] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RAFT emulsion polymerization techniques including polymerization-induced self-assembly (PISA) and temperature-induced morphological transformation (TIMT) are widely used to produce noncrosslinked nano-objects with various morphologies. However, the worm, vesicle and lamellar morphologies produced by these techniques typically cannot tolerate the presence of added surfactants, thus limiting their potential applications. Herein we report the surfactant tolerance of noncrosslinked worms, vesicles, and lamellae prepared by RAFT emulsion polymerizations using poly(di(ethylene glycol) ethyl ether methacrylate-co-N-(2-hydroxypropyl) methacrylamide) (P(DEGMA-co-HPMA)) as a macromolecular chain transfer agent (macro-CTA). Significantly, these P(DEGMA-co-HPMA) nanoparticles are highly stable in concentrated solutions of surfactants (e.g., sodium dodecyl sulfate (SDS)). We also demonstrate that the surfactant tolerance is related to the limited binding of SDS to the main-chain of the P(DEGMA-co-HPMA) macro-CTA constituting the particle shell. This work provides new insight into the interactions between surfactants and thermoresponsive copolymers and expands the scope of RAFT emulsion polymerization techniques for the preparation of noncrosslinked and surfactant-tolerant nanomaterials.
Collapse
Affiliation(s)
- Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | | | | | - Athina Anastasaki
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Morgan W Schulze
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | | | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
32
|
Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. Therapeutic applications of betulinic acid nanoformulations. Ann N Y Acad Sci 2018; 1421:5-18. [PMID: 29377164 DOI: 10.1111/nyas.13570] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
Betulinic acid (BA), a naturally occurring plant-derived pentacyclic triterpenoid, has gained attention in recent years owing to its broad-spectrum biological and medicinal properties. Despite the pharmacological activity of BA, it has been associated with some drawbacks, such as poor aqueous solubility and short half-life in vivo, which limit therapeutic application. To solve these problems, much work in recent years has focused on enhancing BA's aqueous solubility, half-life, and efficacy by using nanoscale drug delivery systems. Several different kinds of nanoscale delivery systems-including polymeric nanoparticles, magnetic nanoparticles, liposomes, polymeric conjugates, nanoemulsions, cyclodextrin complexes, and carbon nanotubes-have been developed for the delivery of BA. Here, we focus on the recent developments of novel nanoformulations used to deliver BA in order to improve its efficacy.
Collapse
Affiliation(s)
- Ankit Saneja
- Product Development Cell-II, National Institute of Immunology, New Delhi, India.,Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| | - Divya Arora
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| | - Robin Kumar
- Product Development Cell-II, National Institute of Immunology, New Delhi, India
| | - Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, New Delhi, India
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| |
Collapse
|
33
|
Khutoryanskiy VV. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv Drug Deliv Rev 2018; 124:140-149. [PMID: 28736302 DOI: 10.1016/j.addr.2017.07.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 11/17/2022]
Abstract
Mucus is a highly hydrated viscoelastic gel present on various moist surfaces in our body including the eyes, nasal cavity, mouth, gastrointestinal, respiratory and reproductive tracts. It serves as a very efficient barrier that prevents harmful particles, viruses and bacteria from entering the human body. However, the protective function of the mucus also hampers the diffusion of drugs and nanomedicines, which dramatically reduces their efficiency. Functionalisation of nanoparticles with low molecular weight poly(ethylene glycol) (PEGylation) is one of the strategies to enhance their penetration through mucus. Recently a number of other polymers were explored as alternatives to PEGylation. These alternatives include poly(2-alkyl-2-oxazolines), polysarcosine, poly(vinyl alcohol), other hydroxyl-containing non-ionic water-soluble polymers, zwitterionic polymers (polybetaines) and mucolytic enzymes. This review discusses the studies reporting the use of these polymers or potential application to facilitate mucus permeation of nanoparticles.
Collapse
Affiliation(s)
- Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, RG6 6AD Reading, United Kingdom.
| |
Collapse
|
34
|
Alfurhood JA, Sun H, Kabb CP, Tucker BS, Matthews JH, Luesch H, Sumerlin BS. Poly( N-(2-Hydroxypropyl) Methacrylamide)-Valproic Acid Conjugates as Block Copolymer Nanocarriers. Polym Chem 2017; 8:4983-4987. [PMID: 28959359 PMCID: PMC5612619 DOI: 10.1039/c7py00196g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report nanoassemblies based on block copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) in which drug cleavage enhances the biological compatibility of the original polymer carrier by regeneration of HPMA units. Drug release via ester hydrolysis suggests this approach offers potential for stimuli-responsive drug delivery under acidic conditions.
Collapse
Affiliation(s)
- Jawaher A Alfurhood
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Christopher P Kabb
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Bryan S Tucker
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - James H Matthews
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610-7200, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610-7200, USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| |
Collapse
|
35
|
Koziolová E, Goel S, Chytil P, Janoušková O, Barnhart TE, Cai W, Etrych T. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. NANOSCALE 2017; 9:10906-10918. [PMID: 28731080 PMCID: PMC5551419 DOI: 10.1039/c7nr03306k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Here, we describe a novel polymer platform suitable for efficient diagnostics and potential theranostics based on 89Zr-labeled N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymer conjugates. A set of polymers differing in molecular weight with either low dispersity or high dispersity were designed and synthesized and their biodistribution in vivo was successfully and precisely observed over 72 h. Moreover, the feasibility of two imaging techniques, fluorescence imaging (FI) and positron emission tomography (PET), was compared using labeled polymer conjugates. Both methods gave comparable results thus showing the enhanced diagnostic potential of the prepared polymer-dye or polymer-chelator-89Zr constructs. The in vivo and ex vivo PET/FI studies indicated that the dispersity and molecular weight of the linear HPMA polymers have a significant influence on the pharmacokinetics of the polymer conjugates. The higher molecular weight and narrower distribution of molecular weights of the polymer carriers improve their pharmacokinetic profile for highly prolonged blood circulation and enhanced tumor uptake. Moreover, the same polymer carrier with the anticancer drug doxorubicin bound by a pH-sensitive hydrazone bond showed higher cytotoxicity and cellular uptake in vitro. Therefore, HPMA copolymers with low dispersity and a molecular weight near the limit of renal filtration can be used as highly efficient polymer carriers of tumor-targeted therapeutics or for theranostics with minimal side effects.
Collapse
Affiliation(s)
- Eva Koziolová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.
| | - Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Weibo Cai
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, USA and Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA and University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.
| |
Collapse
|
36
|
Yang J, Zhang R, Pan H, Li Y, Fang Y, Zhang L, Kopeček J. Backbone Degradable N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates with Gemcitabine and Paclitaxel: Impact of Molecular Weight on Activity toward Human Ovarian Carcinoma Xenografts. Mol Pharm 2017; 14:1384-1394. [PMID: 28094954 PMCID: PMC8494043 DOI: 10.1021/acs.molpharmaceut.6b01005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Degradable diblock and multiblock (tetrablock and hexablock) N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-gemcitabine (GEM) and -paclitaxel (PTX) conjugates were synthesized by reversible addition-fragmentation chain-transter (RAFT) copolymerization followed by click reaction for preclinical investigation. The aim was to validate the hypothesis that long-circulating conjugates are needed to generate a sustained concentration gradient between vasculature and a solid tumor and result in significant anticancer effect. To evaluate the impact of molecular weight of the conjugates on treatment efficacy, diblock, tetrablock, and hexablock GEM and PTX conjugates were administered intravenously to nude mice bearing A2780 human ovarian xenografts. For GEM conjugates, triple doses with dosage 5 mg/kg were given on days 0, 7, and 14 (q7dx3), whereas a single dose regime with 20 mg/kg was applied on day 0 for PTX conjugates treatment. The most effective conjugates for each monotherapy were the diblock ones, 2P-GEM and 2P-PTX (Mw ≈ 100 kDa). Increasing the Mw to 200 or 300 kDa resulted in decrease of activity most probably due to changes in the conformation of the macromolecule because of interaction of hydrophobic residues at side chain termini and formation of "unimer micelles". In addition to monotherapy, a sequential combination treatment of diblock PTX conjugate followed by GEM conjugate (2P-PTX/2P-GEM) was also performed, which showed the best tumor growth inhibition due to synergistic effect: complete remission was achieved after the first treatment cycle. However, because of low dose applied, tumor recurrence was observed 2 weeks after cease of treatment. To assess optimal route of administration, intraperitoneal (i.p.) application of 2P-GEM, 2P-PTX, and their combination was examined. The fact that the highest anticancer efficiency was achieved with diblock conjugates that can be synthesized in one scalable step bodes well for the translation into clinics.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, United States
- TheraTarget, Inc., Salt Lake City, Utah 84112, United States
| | - Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, United States
| | - Huaizhong Pan
- TheraTarget, Inc., Salt Lake City, Utah 84112, United States
| | - Yuling Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, United States
| | - Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
37
|
Yan X, Ramos R, Hoibian E, Soulage C, Alcouffe P, Ganachaud F, Bernard J. Nanoprecipitation of PHPMA (Co)Polymers into Nanocapsules Displaying Tunable Compositions, Dimensions, and Surface Properties. ACS Macro Lett 2017; 6:447-451. [PMID: 35610850 DOI: 10.1021/acsmacrolett.7b00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of PHPMA homopolymers and of mannose- and dimethylamino-functionalized copolymers, were prepared by RAFT polymerization and engaged in the preparation of oil-loaded nanocapsules using the "Shift'N'Go" process. Playing with the phase diagrams of both oil and homo- or copolymers afforded the preparation of functional camptothecin-loaded nanocapsules displaying tunable dimensions (90-350 nm), compositions and surface properties.
Collapse
Affiliation(s)
- Xibo Yan
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Ricardo Ramos
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Elsa Hoibian
- Univ-Lyon,
CarMeN laboratory, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| | - Christophe Soulage
- Univ-Lyon,
CarMeN laboratory, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| | - Pierre Alcouffe
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - François Ganachaud
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Julien Bernard
- Université de Lyon, Lyon, F-69003, France
- INSA-Lyon, IMP, Villeurbanne, F-69621, France
- CNRS,
UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| |
Collapse
|
38
|
Truong NP, Quinn JF, Anastasaki A, Rolland M, Vu MN, Haddleton DM, Whittaker MR, Davis TP. Surfactant-free RAFT emulsion polymerization using a novel biocompatible thermoresponsive polymer. Polym Chem 2017. [DOI: 10.1039/c6py02158a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A facile, high-scale, and versatile technique to prepare biocompatible nanoparticles with tailorable properties from thermoresponsive macro-CTAs and macro-stabilizers.
Collapse
Affiliation(s)
- Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Athina Anastasaki
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Manon Rolland
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Mai N. Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - David M. Haddleton
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
39
|
Zhang X, Han L, Liu M, Wang K, Tao L, Wan Q, Wei Y. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. MATERIALS CHEMISTRY FRONTIERS 2017; 1:807-822. [DOI: 10.1039/c6qm00135a] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Recent advances and progress in redox-responsive polymeric nanosystems for biomedical applications are discussed in this review article.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Lu Han
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| | - Meiying Liu
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ke Wang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| | - Lei Tao
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| | - Qing Wan
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| |
Collapse
|
40
|
Tang M, Zhou M, Huang Y, Zhong J, Zhou Z, Luo K. Dual-sensitive and biodegradable core-crosslinked HPMA copolymer–doxorubicin conjugate-based nanoparticles for cancer therapy. Polym Chem 2017. [DOI: 10.1039/c7py00348j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nanoplatform of biosafe crosslinked copolymer-NPs efficiently delivers anticancer drugs to tumor cellsviablood circulation.
Collapse
Affiliation(s)
- Manling Tang
- Key Laboratory of Drug Targeting and Drug Delivery System
- Ministry of Education West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P.R. China
| | - Minglu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System
- Ministry of Education West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P.R. China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System
- Ministry of Education West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P.R. China
| | - Jiaju Zhong
- Key Laboratory of Drug Targeting and Drug Delivery System
- Ministry of Education West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P.R. China
| | - Zhou Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System
- Ministry of Education West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- P.R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- Sichuan University
- Chengdu 610041
| |
Collapse
|
41
|
Hu Q, Prakash J, Rijcken CJ, Hennink WE, Storm G. High systemic availability of core-crosslinked polymeric micelles after subcutaneous administration. Int J Pharm 2016; 514:112-120. [DOI: 10.1016/j.ijpharm.2016.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 10/20/2022]
|
42
|
Preparation and characterization of polymeric micelles loaded with a potential anticancer prodrug. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Yang J, Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J Control Release 2016; 240:9-23. [DOI: 10.1016/j.jconrel.2015.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/13/2023]
|
44
|
Zhang L, Zhang R, Yang J, Wang J, Kopeček J. Indium-based and iodine-based labeling of HPMA copolymer-epirubicin conjugates: Impact of structure on the in vivo fate. J Control Release 2016; 235:306-318. [PMID: 27266365 PMCID: PMC5061135 DOI: 10.1016/j.jconrel.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
Recently, we developed 2nd generation backbone degradable N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-drug conjugates which contain enzymatically cleavable sequences (GFLG) in both polymeric backbone and side-chains. This design allows using polymeric carriers with molecular weights above renal threshold without impairing their biocompatibility, thereby leading to significant improvement in therapeutic efficacy. For example, 2nd generation HPMA copolymer-epirubicin (EPI) conjugates (2P-EPI) demonstrated complete tumor regression in the treatment of mice bearing ovarian carcinoma. To obtain a better understanding of the in vivo fate of this system, we developed a dual-labeling strategy to simultaneously investigate the pharmacokinetics and biodistribution of the polymer carrier and drug EPI. First, we synthesized two different types of dual-radiolabeled conjugates, including 1) (111)In-2P-EPI-(125)I (polymeric carrier 2P was radiolabeled with (111)In and drug EPI with (125)I), and 2) (125)I-2P-EPI-(111)In (polymeric carrier 2P was radiolabeled with (125)I and drug EPI with (111)In). Then, we compared the pharmacokinetics and biodistribution of these two dual-labeled conjugates in female nude mice bearing A2780 human ovarian carcinoma. There was no significant difference in the blood circulation between polymeric carrier and payload; the carriers ((111)In-2P and (125)I-2P) showed similar retention of radioactivity in both tumor and major organs except kidney. However, compared to (111)In-labeled payload EPI, (125)I-labeled EPI showed lower radioactivity in normal organs and tumor at 48h and 144h after intravenous administration of conjugates. This may be due to different drug release rates resulting from steric hindrance to the formation of enzyme-substrate complex as indicated by cleavage experiments with lysosomal enzymes (Tritosomes). A slower release rate of EPI(DTPA)(111)In than EPI(Tyr)(125)I was observed. It may be also due to in vivo catabolism and subsequent iodine loss as literature reported. Nevertheless, tumor-to-tissue uptake ratios of both radionuclides were comparable, indicating that drug-labeling strategy does not affect the tumor targeting ability of HPMA copolymer conjugates.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
45
|
Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol Res 2016; 111:577-591. [PMID: 27461138 DOI: 10.1016/j.phrs.2016.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Triple negative breast cancer is defined as one of the utmost prevailing breast cancers worldwide, possessing an inadequate prognosis and treatment option limited to chemotherapy and radiotherapy, creating a challenge for researchers as far as developing a specific targeted therapy is concerned. The past research era has shown several promising outcomes for TNBC such as nano-formulations of the chemotherapeutic agents already used for the management of the malignant tumor. Taking a glance at paclitaxel nano formulations, it has been proven beneficial in several researches in the past decade; nevertheless its solubility is often a challenge to scientists in achieving success. We have henceforth discussed the basic heterogeneity of triple negative breast cancer along with the current management options as well as a brief outlook on pros and cons of paclitaxel, known as the most widely used chemotherapeutic agent for the treatment of the disease. We further analyzed the need of nanotechnology pertaining to the problems encountered with the current paclitaxel formulations available discussing the strategic progress in various nano-formulations till date taking into account the basic research strategies required in terms of solubility, permeability, physicochemical properties, active and passive targeting. A thorough review in recent advances in active targeting for TNBC was carried out whereby the various ligands which are at present finding its way into TNBC research such as hyaluronic acid, folic acid, transferrin, etc. were discussed. These ligands have specific receptor affinity to TNBC tumor cells hence can be beneficial for novel drug targeting approaches. Conversely, there are currently several novel strategies in the research pipeline whose targeting ligands have not yet been studied. Therefore, we reviewed upon the numerous novel receptor targets along with the respective nano-formulation aspects which have not yet been fully researched upon and could be exemplified as outstanding target strategies for TNBC which is currently an urgent requirement.
Collapse
|
46
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
47
|
Zhong Y, Goltsche K, Cheng L, Xie F, Meng F, Deng C, Zhong Z, Haag R. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials 2016; 84:250-261. [DOI: 10.1016/j.biomaterials.2016.01.049] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
|
48
|
Alfurhood JA, Sun H, Bachler PR, Sumerlin BS. Hyperbranched poly(N-(2-hydroxypropyl) methacrylamide) via RAFT self-condensing vinyl polymerization. Polym Chem 2016. [DOI: 10.1039/c6py00111d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first synthesis of hyperbranched poly(N-(2-hydroxypropyl) methacrylamide) (HB-PHPMA) using reversible addition–fragmentation chain transfer (RAFT) self-condensing vinyl polymerization (SCVP).
Collapse
Affiliation(s)
- Jawaher A. Alfurhood
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Patricia R. Bachler
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| |
Collapse
|
49
|
Du N, Guo W, Yu Q, Guan S, Guo L, Shen T, Tang H, Gan Z. Poly(d,l-lactic acid)-block-poly(N-(2-hydroxypropyl)methacrylamide) nanoparticles for overcoming accelerated blood clearance and achieving efficient anti-tumor therapy. Polym Chem 2016. [DOI: 10.1039/c6py01113f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The substitution of PEG with PHPMA maintained the long circulation of PDLLA-b-PEG and alleviated the accelerated blood clearance (ABC).
Collapse
Affiliation(s)
- Nan Du
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Wenxuan Guo
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Qingsong Yu
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Shuli Guan
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Linyi Guo
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Tong Shen
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Hao Tang
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Zhihua Gan
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| |
Collapse
|
50
|
Truong NP, Whittaker MR, Anastasaki A, Haddleton DM, Quinn JF, Davis TP. Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polym Chem 2016. [DOI: 10.1039/c5py01467k] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RAFT-mediated emulsion polymerization of styrene and subsequent morphological transition produces nanoaggregates with tuneable morphologies.
Collapse
Affiliation(s)
- Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Athina Anastasaki
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - David M. Haddleton
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|