1
|
Predarska I, Kaluđerović GN, Hey-Hawkins E. Nanostructured mesoporous silica carriers for platinum-based conjugates with anti-inflammatory agents. BIOMATERIALS ADVANCES 2024; 165:213998. [PMID: 39236581 DOI: 10.1016/j.bioadv.2024.213998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
This review discusses the relationship between inflammation and cancer initiation and progression, which has prompted research into anti-inflammatory approaches for cancer prevention and treatment. Specifically, it focuses on the use of inflammation-reducing agents to enhance the effectiveness of tumor treatment methods. These agents are combined with platinum(II)-based antitumor drugs to create multifunctional platinum(IV) prodrugs, allowing for simultaneous delivery to tumor cells in a specific ratio. Once inside the cells and subjected to intracellular reduction, both components can act in parallel through distinct pathways. Motivated by the objective of reducing the systemic toxicity associated with contemporary chemotherapy, and with the aim of leveraging the passive enhanced permeability and retention effect exhibited by nanostructured materials to improve their accumulation within tumor tissues, the platinum(IV) complexes have been efficiently loaded into mesoporous silica SBA-15 material. The resulting nanostructured materials are capable of providing controlled release of the conjugates when subjected to simulated plasma conditions. This feature suggests the potential for extended circulation within the body in vivo, with minimal premature release of the drug before reaching the intended target site. The primary emphasis of this review is on research that integrates these two approaches to develop chemotherapeutic treatments that are both more efficient and less harmful.
Collapse
Affiliation(s)
- Ivana Predarska
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, 04103 Leipzig, Germany; Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
| | - Goran N Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany.
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Zhou Y, Li H, Tse E, Sun H. Metal-detection based techniques and their applications in metallobiology. Chem Sci 2024; 15:10264-10280. [PMID: 38994399 PMCID: PMC11234822 DOI: 10.1039/d4sc00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Metals are essential for human health and play a crucial role in numerous biological processes and pathways. Gaining a deeper insight into these biological events will facilitate novel strategies for disease prevention, early detection, and personalized treatment. In recent years, there has been significant progress in the development of metal-detection based techniques from single cell metallome and proteome profiling to multiplex imaging, which greatly enhance our comprehension of the intricate roles played by metals in complex biological systems. This perspective summarizes the recent progress in advanced metal-detection based techniques and highlights successful applications in elucidating the roles of metals in biology and medicine. Technologies including machine learning that couple with single-cell analysis such as mass cytometry and their application in metallobiology, cancer biology and immunology are also emphasized. Finally, we provide insights into future prospects and challenges involved in metal-detection based techniques, with the aim of inspiring further methodological advancements and applications that are accessible to chemists, biologists, and clinicians.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Eric Tse
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
3
|
Lan Y, Zou Z, Yang Z. Single Cell mass spectrometry: Towards quantification of small molecules in individual cells. Trends Analyt Chem 2024; 174:117657. [PMID: 39391010 PMCID: PMC11465888 DOI: 10.1016/j.trac.2024.117657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Studying cell heterogeneity can provide a deeper understanding of biological activities, but appropriate studies cannot be performed using traditional bulk analysis methods. The development of diverse single cell bioanalysis methods is in urgent need and of great significance. Mass spectrometry (MS) has been recognized as a powerful technique for bioanalysis for its high sensitivity, wide applicability, label-free detection, and capability for quantitative analysis. In this review, the general development of single cell mass spectrometry (SCMS) field is covered. First, multiple existing SCMS techniques are described and compared. Next, the development of SCMS field is discussed in a chronological order. Last, the latest quantification studies on small molecules using SCMS have been described in detail.
Collapse
Affiliation(s)
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
4
|
Johnston JT, Quoc BN, Abrahamson B, Candry P, Ramon C, Cash KJ, Saccomano SC, Samo TJ, Ye C, Weber PK, Winkler MKH, Mayali X. Increasing aggregate size reduces single-cell organic carbon incorporation by hydrogel-embedded wetland microbes. ISME COMMUNICATIONS 2024; 4:ycae086. [PMID: 38974332 PMCID: PMC11227278 DOI: 10.1093/ismeco/ycae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Microbial degradation of organic carbon in sediments is impacted by the availability of oxygen and substrates for growth. To better understand how particle size and redox zonation impact microbial organic carbon incorporation, techniques that maintain spatial information are necessary to quantify elemental cycling at the microscale. In this study, we produced hydrogel microspheres of various diameters (100, 250, and 500 μm) and inoculated them with an aerobic heterotrophic bacterium isolated from a freshwater wetland (Flavobacterium sp.), and in a second experiment with a microbial community from an urban lacustrine wetland. The hydrogel-embedded microbial populations were incubated with 13C-labeled substrates to quantify organic carbon incorporation into biomass via nanoSIMS. Additionally, luminescent nanosensors enabled spatially explicit measurements of oxygen concentrations inside the microspheres. The experimental data were then incorporated into a reactive-transport model to project long-term steady-state conditions. Smaller (100 μm) particles exhibited the highest microbial cell-specific growth per volume, but also showed higher absolute activity near the surface compared to the larger particles (250 and 500 μm). The experimental results and computational models demonstrate that organic carbon availability was not high enough to allow steep oxygen gradients and as a result, all particle sizes remained well-oxygenated. Our study provides a foundational framework for future studies investigating spatially dependent microbial activity in aggregates using isotopically labeled substrates to quantify growth.
Collapse
Affiliation(s)
- Juliet T Johnston
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Bao Nguyen Quoc
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Britt Abrahamson
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Pieter Candry
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Christina Ramon
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Kevin J Cash
- Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
| | - Sam C Saccomano
- Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
| | - Ty J Samo
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Congwang Ye
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Peter K Weber
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | | | - Xavier Mayali
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| |
Collapse
|
5
|
Mayali X, Samo TJ, Kimbrel JA, Morris MM, Rolison K, Swink C, Ramon C, Kim YM, Munoz-Munoz N, Nicora C, Purvine S, Lipton M, Stuart RK, Weber PK. Single-cell isotope tracing reveals functional guilds of bacteria associated with the diatom Phaeodactylum tricornutum. Nat Commun 2023; 14:5642. [PMID: 37704622 PMCID: PMC10499878 DOI: 10.1038/s41467-023-41179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Bacterial remineralization of algal organic matter fuels algal growth but is rarely quantified. Consequently, we cannot currently predict whether some bacterial taxa may provide more remineralized nutrients to algae than others. Here, we quantified bacterial incorporation of algal-derived complex dissolved organic carbon and nitrogen and algal incorporation of remineralized carbon and nitrogen in fifteen bacterial co-cultures growing with the diatom Phaeodactylum tricornutum at the single-cell level using isotope tracing and nanoSIMS. We found unexpected strain-to-strain and cell-to-cell variability in net carbon and nitrogen incorporation, including non-ubiquitous complex organic nitrogen utilization and remineralization. We used these data to identify three distinct functional guilds of metabolic interactions, which we termed macromolecule remineralizers, macromolecule users, and small-molecule users, the latter exhibiting efficient growth under low carbon availability. The functional guilds were not linked to phylogeny and could not be elucidated strictly from metabolic capacity as predicted by comparative genomics, highlighting the need for direct activity-based measurements in ecological studies of microbial metabolic interactions.
Collapse
Affiliation(s)
- Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Ty J Samo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeff A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Megan M Morris
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kristina Rolison
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Courtney Swink
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Christina Ramon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nathalie Munoz-Munoz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Sam Purvine
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Mary Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Rhona K Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
6
|
Affiliation(s)
- Gary Siuzdak
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA.
- Center for Metabolomics, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Zhang C, Tian Z, Chen R, Rowan F, Qiu K, Sun Y, Guan JL, Diao J. Advanced imaging techniques for tracking drug dynamics at the subcellular level. Adv Drug Deliv Rev 2023; 199:114978. [PMID: 37385544 PMCID: PMC10527994 DOI: 10.1016/j.addr.2023.114978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.
Collapse
Affiliation(s)
- Chengying Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
8
|
Raj D, Kraish B, Martikainen J, Podraza-Farhanieh A, Kao G, Naredi P. Cisplatin toxicity is counteracted by the activation of the p38/ATF-7 signaling pathway in post-mitotic C. elegans. Nat Commun 2023; 14:2886. [PMID: 37210583 DOI: 10.1038/s41467-023-38568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Cisplatin kills proliferating cells via DNA damage but also has profound effects on post-mitotic cells in tumors, kidneys, and neurons. However, the effects of cisplatin on post-mitotic cells are still poorly understood. Among model systems, C. elegans adults are unique in having completely post-mitotic somatic tissues. The p38 MAPK pathway controls ROS detoxification via SKN-1/NRF and immune responses via ATF-7/ATF2. Here, we show that p38 MAPK pathway mutants are sensitive to cisplatin, but while cisplatin exposure increases ROS levels, skn-1 mutants are resistant. Cisplatin exposure leads to phosphorylation of PMK-1/MAPK and ATF-7 and the IRE-1/TRF-1 signaling module functions upstream of the p38 MAPK pathway to activate signaling. We identify the response proteins whose increased abundance depends on IRE-1/p38 MAPK activity as well as cisplatin exposure. Four of these proteins are necessary for protection from cisplatin toxicity, which is characterized by necrotic death. We conclude that the p38 MAPK pathway-driven proteins are crucial for adult cisplatin resilience.
Collapse
Affiliation(s)
- Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Bashar Kraish
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Jari Martikainen
- Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE413 45, Gothenburg, Sweden
| | - Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden.
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden.
- Department of Surgery, Sahlgrenska University Hospital, SE413 45, Gothenburg, Sweden.
| |
Collapse
|
9
|
Parada AE, Mayali X, Weber PK, Wollard J, Santoro AE, Fuhrman JA, Pett-Ridge J, Dekas AE. Constraining the composition and quantity of organic matter used by abundant marine Thaumarchaeota. Environ Microbiol 2023; 25:689-704. [PMID: 36478085 DOI: 10.1111/1462-2920.16299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Marine Group I (MGI) Thaumarchaeota were originally described as chemoautotrophic nitrifiers, but molecular and isotopic evidence suggests heterotrophic and/or mixotrophic capabilities. Here, we investigated the quantity and composition of organic matter assimilated by individual, uncultured MGI cells from the Pacific Ocean to constrain their potential for mixotrophy and heterotrophy. We observed that most MGI cells did not assimilate carbon from any organic substrate provided (glucose, pyruvate, oxaloacetate, protein, urea, and amino acids). The minority of MGI cells that did assimilate it did so exclusively from nitrogenous substrates (urea, 15% of MGI and amino acids, 36% of MGI), and only as an auxiliary carbon source (<20% of that subset's total cellular carbon was derived from those substrates). At the population level, MGI assimilation of organic carbon comprised just 0.5%-11% of total biomass carbon. We observed extensive assimilation of inorganic carbon and urea- and amino acid-derived nitrogen (equal to that from ammonium), consistent with metagenomic and metatranscriptomic analyses performed here and previously showing a widespread potential for MGI to perform autotrophy and transport and degrade organic nitrogen. Our results constrain the quantity and composition of organic matter used by MGI and suggest they use it primarily to meet nitrogen demands for anabolism and nitrification.
Collapse
Affiliation(s)
- Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
10
|
Huang S, Chen K, Leung JK, Guagliardo P, Chen W, Song W, Clode P, Xu J, Young SG, Jiang H. Subcellular Partitioning of Arsenic Trioxide Revealed by Label-Free Imaging. Anal Chem 2022; 94:13889-13896. [PMID: 36189785 DOI: 10.1021/acs.analchem.2c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subcellular partitioning of therapeutic agents is highly relevant to their interactions with target molecules and drug efficacy, but studying subcellular partitioning is an enormous challenge. Here, we describe the application of nanoscale secondary ion mass spectrometry (NanoSIMS) analysis to define the subcellular pharmacokinetics of a cytotoxic chemotherapy drug, arsenic trioxide (ATO). We reasoned that defining the partitioning of ATO would yield valuable insights into the mechanisms underlying ATO efficacy. NanoSIMS imaging made it possible to define the intracellular fate of ATO in a label-free manner─and with high resolution and high sensitivity. Our studies of ATO-treated cells revealed that arsenic accumulates in the nucleolus. After prolonged ATO exposure, ∼40 nm arsenic- and sulfur-rich protein aggregates appeared in the cell nucleolus, nucleus, and membrane-free compartments in the cytoplasm, and our studies suggested that the partitioning of nanoscale aggregates could be relevant to cell survival. All-trans retinoic acid increased intracellular ATO levels and accelerated the nanoscale aggregate formation in the nucleolus. This study yielded fresh insights into the subcellular pharmacokinetics of an important cancer therapeutic agent and the potential impact of drug partitioning and pharmacokinetics on drug activity.
Collapse
Affiliation(s)
- Song Huang
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.,Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jong-Kai Leung
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Weihua Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Wenxin Song
- Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Peta Clode
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia.,School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Jiake Xu
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, California 90095, United States.,School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia.,Department of Human Genetics, University of California, Los Angeles, California 90095, United States
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.,Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Pavese F, Capoluongo ED, Muratore M, Minucci A, Santonocito C, Fuso P, Concolino P, Di Stasio E, Carbognin L, Tiberi G, Garganese G, Corrado G, Di Leone A, Generali D, Fragomeni SM, D’Angelo T, Franceschini G, Masetti R, Fabi A, Mulè A, Santoro A, Belli P, Tortora G, Scambia G, Paris I. BRCA Mutation Status in Triple-Negative Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: A Pivotal Role for Treatment Decision-Making. Cancers (Basel) 2022; 14:cancers14194571. [PMID: 36230495 PMCID: PMC9559391 DOI: 10.3390/cancers14194571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by earlier recurrence and shorter survival compared with other types of breast cancer. Moreover, approximately 15 to 25% of all TNBC patients harbor germline BRCA (gBRCA) 1/2 mutations, which confer a more aggressive phenotype. However, TNBC seems to be particularly sensitive to chemotherapy, the so-called ‘triple negative paradox’. Therefore, Neoadjuvant chemotherapy (NACT) is currently considered the preferred approach for early-stage TNBC. BRCA status has also been studied as a predictive biomarker of response to platinum compounds. Although several randomized trials investigated the addition of carboplatin to standard NACT in early-stage TNBC, the role of BRCA status remains unclear. In this retrospective analysis, we evaluated data from 136 consecutive patients with Stage I-III TNBC who received standard NACT with or without the addition of carboplatin, in order to define clinical features and outcomes in BRCA 1/2 mutation carriers and non-carrier controls. Between January 2013 and February 2021, 67 (51.3%) out of 136 patients received a standard anthracyclines/taxane regimen and 69 (50.7%) patients received a platinum-containing chemotherapy regimen. Deleterious germline BRCA1 or BRCA2 mutations were identified in 39 (28.7%) patients. Overall, patients with deleterious gBRCA1/2 mutation have significantly higher pCR rate than non-carrier patients (23 [59%] of 39 vs. 33 [34%] of 97; p = 0.008). The benefit of harboring a gBRCA mutation was confirmed only in the subset of patients who received a platinum-based NACT (17 [65.4%] of 26 vs. 13 [30.2%] of 43; p = 0.005) while no differences were found in the platinum-free subgroup. Patients who achieved pCR after NACT had significantly better EFS (OR 4.5; 95% CI 1.9–10.7; p = 0.001) and OS (OR 3.3; 95% CI 1.3–8.9; p = 0.01) than patients who did not, regardless of BRCA1/2 mutation status and type of NACT received. Our results based on real-world evidence show that TNBC patients with the gBRCA1/2 mutation who received platinum-based NACT have a higher pCR rate than non-carrier patients, supporting the use of this chemotherapy regimen in this patient population. Long-term follow-up analyses are needed to further define the role of gBRCA mutation status on clinical outcomes in patients with early-TNBC.
Collapse
Affiliation(s)
- Francesco Pavese
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ettore Domenico Capoluongo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy
- Department of Clinical Pathology and Genomics, Cannizzaro Hospital, 95126 Catania, Italy
| | - Margherita Muratore
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Minucci
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Concetta Santonocito
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paola Fuso
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paola Concolino
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enrico Di Stasio
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luisa Carbognin
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giordana Tiberi
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgia Garganese
- Gynaecology and Breast Care Center, Mater Olbia Hospital, 07026 Olbia, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giacomo Corrado
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alba Di Leone
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Simona Maria Fragomeni
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Tatiana D’Angelo
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Franceschini
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Riccardo Masetti
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandra Fabi
- Unit of Precision Medicine in Breast Cancer, Scientific Directorate, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonino Mulè
- Unità di Gineco-Patologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Santoro
- Unità di Gineco-Patologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paolo Belli
- UOC Radiologia Generale ed Interventistica Generale, Area Diagnostica per Immagini, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Unit of Medical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Scambia
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ida Paris
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Jin G, Sun D, Xia X, Jiang Z, Cheng B, Ning Y, Wang F, Zhao Y, Chen X, Zhang J. Bioorthogonal Lanthanide Molecular Probes for Near‐Infrared Fluorescence and Mass Spectrometry Imaging. Angew Chem Int Ed Engl 2022; 61:e202208707. [DOI: 10.1002/anie.202208707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Guo‐Qing Jin
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| | - De‐en Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Xiaoqian Xia
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Zhi‐Fan Jiang
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Yingying Ning
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences National Centre for Mass Spectrometry in Beijing CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences National Centre for Mass Spectrometry in Beijing CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xing Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 P. R. China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 P. R. China
| | - Jun‐Long Zhang
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| |
Collapse
|
13
|
Jin GQ, Sun DE, Xia X, Jiang ZF, Cheng B, Ning Y, Wang F, Zhao Y, Chen X, Zhang JL. Bioorthogonal Lanthanide Molecular Probes for Near‐Infrared Fluorescence and Mass Spectrometry Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guo-Qing Jin
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - De-en Sun
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Xiaoqian Xia
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Zhi-Fan Jiang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Bo Cheng
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Yingying Ning
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Fuyi Wang
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences CHINA
| | - Yao Zhao
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences CHINA
| | - Xing Chen
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Jun-Long Zhang
- Peking University College of Chemistry and Molecular Engineering Chengfu Road 202 100871 Beijing CHINA
| |
Collapse
|
14
|
Kabatas Glowacki S, Agüi-Gonzalez P, Sograte-Idrissi S, Jähne S, Opazo F, Phan NTN, Rizzoli SO. An iodine-containing probe as a tool for molecular detection in secondary ion mass spectrometry. Chem Commun (Camb) 2022; 58:7558-7561. [PMID: 35708485 DOI: 10.1039/d2cc02290g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed here an iodine-containing probe that can be used to identify the molecules of interest in secondary ion mass spectrometry (SIMS) by simple immunolabelling procedures. The immunolabelled iodine probe was readily combined with previously-developed SIMS probes carrying fluorine, to generate dual-channel SIMS data. This probe should provide a useful complement to the currently available SIMS probes, thus expanding the scope of this technology.
Collapse
Affiliation(s)
- Selda Kabatas Glowacki
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Shama Sograte-Idrissi
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Sebastian Jähne
- Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany.
| | - Nhu T N Phan
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Silvio O Rizzoli
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| |
Collapse
|
15
|
Abstract
Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| |
Collapse
|
16
|
Zhang C, Xu C, Gao X, Yao Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022; 12:2115-2132. [PMID: 35265202 PMCID: PMC8899578 DOI: 10.7150/thno.69424] [Citation(s) in RCA: 302] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/15/2022] [Indexed: 12/03/2022] Open
Abstract
Platinum-based drugs cisplatin, carboplatin, and oxaliplatin are widely used for chemotherapeutic eradication of cancer. However, the side effects of platinum drugs, such as lack of selectivity, high systemic toxicity, and drug resistance, seriously limit their clinical application. With advancements in nanotechnology and chemical synthesis, Pt-based anti-cancer drugs have made great progress in cancer therapy in recent years. Many strategies relied on the anti-cancer mechanism similar to cisplatin and achieved some success by modifying existing platinum drugs. Pt-based nanodrugs, such as platinum nanoclusters, have novel anti-cancer mechanisms and great potential in tumor-targeted therapy and have shown promising results in clinical application. In this review, we systematically explored the development of first-line platinum chemotherapy drugs in the clinic and their anti-cancer mechanisms. We also summarize the progress of Pt-based anti-cancer drug application in cancer therapy, emphasizing their modification to enhance the anti-tumor effect. Finally, we address challenges faced by platinum chemotherapy drugs, especially Pt nanocluster-based nanodrugs, in cancer treatment. The new platinum drugs and their targeted modifications undoubtedly provide a promising prospect for improving the current anti-cancer treatments.
Collapse
Affiliation(s)
- Chunyu Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
- Department of Life Science and Chemistry, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xueyun Gao
- Department of Life Science and Chemistry, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| |
Collapse
|
17
|
|
18
|
Trefely S, Huber K, Liu J, Noji M, Stransky S, Singh J, Doan MT, Lovell CD, von Krusenstiern E, Jiang H, Bostwick A, Pepper HL, Izzo L, Zhao S, Xu JP, Bedi KC, Rame JE, Bogner-Strauss JG, Mesaros C, Sidoli S, Wellen KE, Snyder NW. Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol Cell 2022; 82:447-462.e6. [PMID: 34856123 PMCID: PMC8950487 DOI: 10.1016/j.molcel.2021.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 11/03/2021] [Indexed: 01/22/2023]
Abstract
Quantitative subcellular metabolomic measurements can explain the roles of metabolites in cellular processes but are subject to multiple confounding factors. We developed stable isotope labeling of essential nutrients in cell culture-subcellular fractionation (SILEC-SF), which uses isotope-labeled internal standard controls that are present throughout fractionation and processing to quantify acyl-coenzyme A (acyl-CoA) thioesters in subcellular compartments by liquid chromatography-mass spectrometry. We tested SILEC-SF in a range of sample types and examined the compartmentalized responses to oxygen tension, cellular differentiation, and nutrient availability. Application of SILEC-SF to the challenging analysis of the nuclear compartment revealed a nuclear acyl-CoA profile distinct from that of the cytosol, with notable nuclear enrichment of propionyl-CoA. Using isotope tracing, we identified the branched chain amino acid isoleucine as a major metabolic source of nuclear propionyl-CoA and histone propionylation, thus revealing a new mechanism of crosstalk between metabolism and the epigenome.
Collapse
Affiliation(s)
- Sophie Trefely
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharina Huber
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Biochemistry, Graz University of Technology, Graz 8010, Austria
| | - Joyce Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Noji
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jay Singh
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mary T Doan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Claudia D Lovell
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eliana von Krusenstiern
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Helen Jiang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Anna Bostwick
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Hannah L Pepper
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Luke Izzo
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jimmy P Xu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Penn Medicine Heart Failure Mechanical Assist and Cardiac Transplant Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Eduardo Rame
- Penn Medicine Heart Failure Mechanical Assist and Cardiac Transplant Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Clementina Mesaros
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
19
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
20
|
Li X, Hang L, Wang T, Leng Y, Zhang H, Meng Y, Yin Z, Hang W. Nanoscale Three-Dimensional Imaging of Drug Distributions in Single Cells via Laser Desorption Post-Ionization Mass Spectrometry. J Am Chem Soc 2021; 143:21648-21656. [PMID: 34913337 DOI: 10.1021/jacs.1c10081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution with mass spectrometry imaging (MSI) techniques is crucial in cellular biology, yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. Herein, a microlensed fiber laser desorption post-ionization time-of-flight mass spectrometer (MLF-LDPI-TOFMS) was developed for the 3D imaging of two anticancer drugs within single cells at a 500 × 500 × 500 nm3 voxel resolution. Nanoscale desorption was obtained with a microlensed fiber (MLF), and a 157 nm post-ionization laser was introduced to enhance the ionization yield. Furthermore, a new type of alignment method for 3D reconstruction was developed on the basis of our embedded uniform circular polystyrene microspheres (PMs). Our findings demonstrate that this 3D imaging technique has the potential to provide information about the 3D distributions of specific molecules at the nanoscale level.
Collapse
Affiliation(s)
- Xiaoping Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Le Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tongtong Wang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yixin Leng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Zhang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Meng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhibin Yin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
McMahon G, Lechene C. High-Resolution Multi-Isotope Imaging Mass Spectrometry (MIMS) Imaging Applications in Stem Cell Biology. Curr Protoc 2021; 1:e290. [PMID: 34787964 PMCID: PMC8654063 DOI: 10.1002/cpz1.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multi-isotope imaging mass spectrometry (MIMS) allows the measurement of turnover of molecules within intracellular compartments with a spatial resolution down to 30 nm. We use molecules enriched in stable isotopes administered to animals by diet or injection, or to cells through the culture medium. The stable isotopes used are, in general, 15 N, 13 C, 18 O, and 2 H. For stem cell studies, we essentially use 15 N-thymidine, 13 C-thymidine, and 81 Br from BrdU. This protocol describes the practical use of MIMS with specific reference to applications in stem cell research. This includes choice and administration of stable isotope label(s), sample preparation, best practice for high-resolution imaging, secondary ion mass spectrometry using the Cameca NanoSIMS 50L, and methods for robust statistical analysis of label incorporation in regions of interest (ROI). © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Stable isotope labeling of DNA in cultured cells Basic Protocol 2: Stable isotope labeling of DNA in animals Basic Protocol 3: Preparation of Si chips, the general sample support for NanoSIMS analysis Basic Protocol 4: Stable isotope analysis of DNA replication in single nuclei in a population of cells with NanoSIMS Basic Protocol 5: Data reduction and processing.
Collapse
Affiliation(s)
- G. McMahon
- National Physical Laboratory, Teddington UK
| | - C.P. Lechene
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston MA USA
| |
Collapse
|
22
|
Schueffl H, Theiner S, Hermann G, Mayr J, Fronik P, Groza D, van Schonhooven S, Galvez L, Sommerfeld NS, Schintlmeister A, Reipert S, Wagner M, Mader RM, Koellensperger G, Keppler BK, Berger W, Kowol CR, Legin A, Heffeter P. Albumin-targeting of an oxaliplatin-releasing platinum(iv) prodrug results in pronounced anticancer activity due to endocytotic drug uptake in vivo. Chem Sci 2021; 12:12587-12599. [PMID: 34703544 PMCID: PMC8494022 DOI: 10.1039/d1sc03311e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Oxaliplatin is a very potent platinum(ii) drug which is frequently used in poly-chemotherapy schemes against advanced colorectal cancer. However, its benefit is limited by severe adverse effects as well as resistance development. Based on their higher tolerability, platinum(iv) prodrugs came into focus of interest. However, comparable to their platinum(ii) counterparts they lack tumor specificity and are frequently prematurely activated in the blood circulation. With the aim to exploit the enhanced albumin consumption and accumulation in the malignant tissue, we have recently developed a new albumin-targeted prodrug, which supposed to release oxaliplatin in a highly tumor-specific manner. In more detail, we designed a platinum(iv) complex containing two maleimide moieties in the axial position (KP2156), which allows selective binding to the cysteine 34. In the present study, diverse cell biological and analytical tools such as laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS), isotope labeling, and nano-scale secondary ion mass spectrometry (NanoSIMS) were employed to better understand the in vivo distribution and activation process of KP2156 (in comparison to free oxaliplatin and a non-albumin-binding succinimide analogue). KP2156 forms very stable albumin adducts in the bloodstream resulting in a superior pharmacological profile, such as distinctly prolonged terminal excretion half-life and enhanced effective platinum dose (measured by ICP-MS). The albumin-bound drug is accumulating in the malignant tissue, where it enters the cancer cells via clathrin- and caveolin-dependent endocytosis, and is activated by reduction to release oxaliplatin. This results in profound, long-lasting anticancer activity of KP2156 against CT26 colon cancer tumors in vivo based on cell cycle arrest and apoptotic cell death. Summarizing, albumin-binding of platinum(iv) complexes potently enhances the efficacy of oxaliplatin therapy and should be further developed towards clinical phase I trials.
Collapse
Affiliation(s)
- Hemma Schueffl
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Gerrit Hermann
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Josef Mayr
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Philipp Fronik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Diana Groza
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Sushilla van Schonhooven
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Luis Galvez
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology and Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna Djerassiplatz 1 A-1030 Vienna Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, University Biology Building (UBB) Djerassiplatz 1 A-1030 Vienna Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology and Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna Djerassiplatz 1 A-1030 Vienna Austria
| | - Robert M Mader
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Medical University of Vienna Vienna Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Anton Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| |
Collapse
|
23
|
Maria Ranieri A, Vezzelli M, Leslie KG, Huang S, Stagni S, Jacquemin D, Jiang H, Hubbard A, Rigamonti L, Watkin ELJ, Ogden MI, New EJ, Massi M. Structure illumination microscopy imaging of lipid vesicles in live bacteria with naphthalimide-appended organometallic complexes. Analyst 2021; 146:3818-3822. [PMID: 34036982 DOI: 10.1039/d1an00363a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. Here, organometallic molecular probes have been developed and assessed for bacterial imaging, designed to have the potential to support multiple imaging modalities. The chemical structure of the probes is designed around a metal-naphthalimide structure. The 4-amino-1,8-naphthalimide moiety, covalently appended through a pyridine ancillary ligand, acts as a luminescent probe for super-resolution microscopy. On the other hand, the metal centre, rhenium(i) or platinum(ii) in the current study, enables techniques such as nanoSIMS. While the rhenium(i) complex was not sufficiently stable to be used as a probe, the platinum(ii) analogue showed good chemical and biological stability. Structured illumination microscopy (SIM) imaging on live Bacillus cereus confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis was used to monitor the uptake of the platinum(ii) complex within the bacteria and demonstrate the potential of this chemical architecture to enable multimodal imaging. The successful combination of these two moieties introduces a platform that could lead to a versatile range of multi-functional probes for bacteria.
Collapse
Affiliation(s)
- Anna Maria Ranieri
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| | - Matteo Vezzelli
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Kathryn G Leslie
- School of Chemistry, The University of Sydney, 2006 NSW, Australia.
| | - Song Huang
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Stefano Stagni
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Denis Jacquemin
- Laboratoire CEISAM, UMR CNRS 6230, Universit8 de Nantes, 2 Rue de la HoussiniHre, BP 92208, 44322 Nantes Cedex 3, France
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Elizabeth L J Watkin
- Curtin Medical School, Curtin University, Kent Street, Bentley 6102 WA, Australia
| | - Mark I Ogden
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, 2006 NSW, Australia.
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| |
Collapse
|
24
|
Zhang X, Zhou Y, Chai Y, Yuan R. Double Hairpin DNAs Recognition Induced a Novel Cascade Amplification for Highly Specific and Ultrasensitive Electrochemiluminescence Detection of DNA. Anal Chem 2021; 93:7987-7992. [PMID: 34029048 DOI: 10.1021/acs.analchem.1c01012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, a novel DNA cascade amplification, including double hairpin DNAs recognition-triggered single-target recycling (D-STR) and concatenated DNA structure-controlled rolling circle amplification (C-RCA), was developed as a signal amplifier to construct a highly specific and ultrasensitive electrochemiluminescence (ECL) biosensor for human immunodeficiency virus (HIV) DNA fragments detection, which not only revealed tremendous potential in avoiding false positive signals but also obviously promoted the amplification efficiency simultaneously compared to conventional single recognition of the target. Once the target DNA triggered the rolling circle amplification (RCA), the obtained RCA products could be anchored on the Pt-modified glassy carbon electrode (GCE) via the Pt-N bond, capturing massive ruthenium (Ru)-labeled ssDNA as the ECL signal tag to generate remarkable ECL emission. As a result, the proposed biosensor showed highly specific and ultrasensitive detection of the target with the detection limit down to 27.0 aM, which gives great impetus to the development of a novel specific biosensor for practical bioanalysis and diagnostic technologies.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
25
|
Raj D, Billing O, Podraza-Farhanieh A, Kraish B, Hemmingsson O, Kao G, Naredi P. Alternative redox forms of ASNA-1 separate insulin signaling from tail-anchored protein targeting and cisplatin resistance in C. elegans. Sci Rep 2021; 11:8678. [PMID: 33883621 PMCID: PMC8060345 DOI: 10.1038/s41598-021-88085-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Cisplatin is a frontline cancer therapeutic, but intrinsic or acquired resistance is common. We previously showed that cisplatin sensitivity can be achieved by inactivation of ASNA-1/TRC40 in mammalian cancer cells and in Caenorhabditis elegans. ASNA-1 has two more conserved functions: in promoting tail-anchored protein (TAP) targeting to the endoplasmic reticulum membrane and in promoting insulin secretion. However, the relation between its different functions has remained unknown. Here, we show that ASNA-1 exists in two redox states that promote TAP-targeting and insulin secretion separately. The reduced state is the one required for cisplatin resistance: an ASNA-1 point mutant, in which the protein preferentially was found in the oxidized state, was sensitive to cisplatin and defective for TAP targeting but had no insulin secretion defect. The same was true for mutants in wrb-1, which we identify as the C. elegans homolog of WRB, the ASNA1/TRC40 receptor. Finally, we uncover a previously unknown action of cisplatin induced reactive oxygen species: cisplatin induced ROS drives ASNA-1 into the oxidized form, and selectively prevents an ASNA-1-dependent TAP substrate from reaching the endoplasmic reticulum. Our work suggests that ASNA-1 acts as a redox-sensitive target for cisplatin cytotoxicity and that cisplatin resistance is likely mediated by ASNA-1-dependent TAP substrates. Treatments that promote an oxidizing tumor environment should be explored as possible means to combat cisplatin resistance.
Collapse
Affiliation(s)
- Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Ola Billing
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 85, Umeå, Sweden
| | - Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Bashar Kraish
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Oskar Hemmingsson
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 85, Umeå, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
- Department of Surgery, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| |
Collapse
|
26
|
Neuditschko B, Legin AA, Baier D, Schintlmeister A, Reipert S, Wagner M, Keppler BK, Berger W, Meier‐Menches SM, Gerner C. Die Wechselwirkung mit ribosomalen Proteinen begleitet die Stressinduktion des Wirkstoffkandidaten BOLD-100/KP1339 im endoplasmatischen Retikulum. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5121-5126. [PMID: 38505777 PMCID: PMC10947255 DOI: 10.1002/ange.202015962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/09/2022]
Abstract
AbstractDer metallhaltige Wirkstoff BOLD‐100/KP1339 zeigte bereits vielversprechende Resultate in verschiedenen In vitro‐ und In vivo‐Tumormodellen sowie in klinischen Studien. Der detaillierte Wirkmechanismus wurde jedoch noch nicht komplett aufgeklärt. Als entscheidende Wirkstoffeffekte kristallisierten sich kürzlich die Stressinduktion im endoplasmatischen Retikulum (ER) und die damit einhergehende Modulierung von HSPA5 (GRP78) heraus. Das spontane und stabile Addukt zwischen BOLD‐100 und menschlichem Serumalbumin wurde als Immobilisierungsstrategie ausgewählt, um einen chemoproteomischen Ansatz auszuführen, der die ribosomalen Proteine RPL10, RPL24 und den Transkriptionsfaktor GTF2I als potentielle Interaktoren dieser Ru(III)‐Verbindung identifizierten. Dieses Ergebnis wurde mit proteomischen und transkriptomischen Profiling‐Experimenten kombiniert, was die Interpretation einer ribosomalen Beeinträchtigung sowie der Induktion von ER‐Stress unterstützte. Die Bildung von Polyribosomen und begleitende ER‐Schwellungen in behandelten Krebszellen wurden zudem durch TEM‐Messungen bestätigt. Somit scheint eine direkte Wechselwirkung von BOLD‐100 mit ribosomalen Proteinen die ER‐Stressinduktion und die Modulierung von GRP78 in Krebszellen zu begleiten.
Collapse
Affiliation(s)
- Benjamin Neuditschko
- Institut für Anorganische ChemieFakultät für ChemieUniversität WienWähringer Str. 421090WienÖsterreich
- Institut für Analytische ChemieFakultät für ChemieUniversität WienWähringer Str. 381090WienÖsterreich
| | - Anton A. Legin
- Institut für Anorganische ChemieFakultät für ChemieUniversität WienWähringer Str. 421090WienÖsterreich
- Forschungsnetzwerk “Chemistry, Microbiology and Environmental Systems Science”Universität WienWähringer Str. 421090WienÖsterreich
| | - Dina Baier
- Institut für Anorganische ChemieFakultät für ChemieUniversität WienWähringer Str. 421090WienÖsterreich
- Institut für Krebsforschung und Comprehensive Cancer CenterUniversitätsklinik für Innere Medizin IMedizinische Universität WienBorschkegasse 8a1090WienÖsterreich
- Forschungscluster “Translational Cancer Therapy Research”Universität WienWähringer Str. 421090WienÖsterreich
| | - Arno Schintlmeister
- Forschungsnetzwerk “Chemistry, Microbiology and Environmental Systems Science”Universität WienWähringer Str. 421090WienÖsterreich
- Großgeräteeinrichtung für Umwelt- und Isotopen-MassenspektrometrieZentrum für Mikrobiologie und UmweltsystemwissenschaftUniversität WienAlthanstr. 141090WienÖsterreich
| | - Siegfried Reipert
- Core Facility für Cell Imaging und UltrastrukturforschungAlthanstr. 141090WienÖsterreich
| | - Michael Wagner
- Forschungsnetzwerk “Chemistry, Microbiology and Environmental Systems Science”Universität WienWähringer Str. 421090WienÖsterreich
- Großgeräteeinrichtung für Umwelt- und Isotopen-MassenspektrometrieZentrum für Mikrobiologie und UmweltsystemwissenschaftUniversität WienAlthanstr. 141090WienÖsterreich
| | - Bernhard K. Keppler
- Institut für Anorganische ChemieFakultät für ChemieUniversität WienWähringer Str. 421090WienÖsterreich
- Forschungsnetzwerk “Chemistry, Microbiology and Environmental Systems Science”Universität WienWähringer Str. 421090WienÖsterreich
- Forschungscluster “Translational Cancer Therapy Research”Universität WienWähringer Str. 421090WienÖsterreich
| | - Walter Berger
- Institut für Krebsforschung und Comprehensive Cancer CenterUniversitätsklinik für Innere Medizin IMedizinische Universität WienBorschkegasse 8a1090WienÖsterreich
- Forschungscluster “Translational Cancer Therapy Research”Universität WienWähringer Str. 421090WienÖsterreich
| | - Samuel M. Meier‐Menches
- Institut für Analytische ChemieFakultät für ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Forschungscluster “Translational Cancer Therapy Research”Universität WienWähringer Str. 421090WienÖsterreich
| | - Christopher Gerner
- Institut für Analytische ChemieFakultät für ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Joint Metabolome FacilityUniversität Wien und Medizinische Universität WienWähringer Str. 381090WienÖsterreich
| |
Collapse
|
27
|
Neuditschko B, Legin AA, Baier D, Schintlmeister A, Reipert S, Wagner M, Keppler BK, Berger W, Meier‐Menches SM, Gerner C. Interaction with Ribosomal Proteins Accompanies Stress Induction of the Anticancer Metallodrug BOLD-100/KP1339 in the Endoplasmic Reticulum. Angew Chem Int Ed Engl 2021; 60:5063-5068. [PMID: 33369073 PMCID: PMC7986094 DOI: 10.1002/anie.202015962] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 02/06/2023]
Abstract
The ruthenium-based anticancer agent BOLD-100/KP1339 has shown promising results in several in vitro and in vivo tumour models as well as in early clinical trials. However, its mode of action remains to be fully elucidated. Recent evidence identified stress induction in the endoplasmic reticulum (ER) and concomitant down-modulation of HSPA5 (GRP78) as key drug effects. By exploiting the naturally formed adduct between BOLD-100 and human serum albumin as an immobilization strategy, we were able to perform target-profiling experiments that revealed the ribosomal proteins RPL10, RPL24, and the transcription factor GTF2I as potential interactors of this ruthenium(III) anticancer agent. Integrating these findings with proteomic profiling and transcriptomic experiments supported ribosomal disturbance and concomitant induction of ER stress. The formation of polyribosomes and ER swelling of treated cancer cells revealed by TEM validated this finding. Thus, the direct interaction of BOLD-100 with ribosomal proteins seems to accompany ER stress-induction and modulation of GRP78 in cancer cells.
Collapse
Affiliation(s)
- Benjamin Neuditschko
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Anton A. Legin
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Research Network “Chemistry, Microbiology and Environmental Systems Science”University of ViennaWähringer Str. 421090ViennaAustria
| | - Dina Baier
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Institute of Cancer Research and Comprehensive Cancer CenterDepartment of Medicine IMedical University of ViennaBorschkegasse 8a1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaWaehringer Str. 421090ViennaAustria
| | - Arno Schintlmeister
- Research Network “Chemistry, Microbiology and Environmental Systems Science”University of ViennaWähringer Str. 421090ViennaAustria
- Large-Instrument Facility for Environmental and Isotope Mass SpectrometryCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaAlthanstr. 141090ViennaAustria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure ResearchAlthanstr. 141090ViennaAustria
| | - Michael Wagner
- Research Network “Chemistry, Microbiology and Environmental Systems Science”University of ViennaWähringer Str. 421090ViennaAustria
- Large-Instrument Facility for Environmental and Isotope Mass SpectrometryCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaAlthanstr. 141090ViennaAustria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Research Network “Chemistry, Microbiology and Environmental Systems Science”University of ViennaWähringer Str. 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaWaehringer Str. 421090ViennaAustria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer CenterDepartment of Medicine IMedical University of ViennaBorschkegasse 8a1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaWaehringer Str. 421090ViennaAustria
| | - Samuel M. Meier‐Menches
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaWaehringer Str. 421090ViennaAustria
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 381090ViennaAustria
| |
Collapse
|
28
|
He Q, Sun C, Liu J, Pan Y. MALDI-MSI analysis of cancer drugs: Significance, advances, and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Lin Y, Wu K, Jia F, Chen L, Wang Z, Zhang Y, Luo Q, Liu S, Qi L, Li N, Dong P, Gao F, Zheng W, Fang X, Zhao Y, Wang F. Single cell imaging reveals cisplatin regulating interactions between transcription (co)factors and DNA. Chem Sci 2021; 12:5419-5429. [PMID: 34163767 PMCID: PMC8179581 DOI: 10.1039/d0sc06760a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Cisplatin is an extremely successful anticancer drug, and is commonly thought to target DNA. However, the way in which cisplatin-induced DNA lesions regulate interactions between transcription factors/cofactors and genomic DNA remains unclear. Herein, we developed a dual-modal microscopy imaging strategy to investigate, in situ, the formation of ternary binding complexes of the transcription cofactor HMGB1 and transcription factor Smad3 with cisplatin crosslinked DNA in single cells. We utilized confocal microscopy imaging to map EYFP-fused HMGB1 and fluorescent dye-stained DNA in single cells, followed by the visualization of cisplatin using high spatial resolution (200-350 nm) time of flight secondary ion mass spectrometry (ToF-SIMS) imaging of the same cells. The superposition of the fluorescence and the mass spectrometry (MS) signals indicate the formation of HMGB1-Pt-DNA ternary complexes in the cells. More significantly, for the first time, similar integrated imaging revealed that the cisplatin lesions at Smad-binding elements, for example GGC(GC)/(CG) and AGAC, disrupted the interactions of Smad3 with DNA, which was evidenced by the remarkable reduction in the expression of Smad-specific luciferase reporters subjected to cisplatin treatment. This finding suggests that Smad3 and its related signalling pathway are most likely involved in the intracellular response to cisplatin induced DNA damage.
Collapse
Affiliation(s)
- Yu Lin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 People's Republic of China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Ling Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Zhaoying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Suyan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Nan Li
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Pu Dong
- China Telecom Corporation Limited Beijing Research Institute Beijing 100035 People's Republic of China
| | - Fei Gao
- China Telecom Corporation Limited Beijing Research Institute Beijing 100035 People's Republic of China
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Xiaohong Fang
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 People's Republic of China
| |
Collapse
|
30
|
Theiner S, Schoeberl A, Schweikert A, Keppler BK, Koellensperger G. Mass spectrometry techniques for imaging and detection of metallodrugs. Curr Opin Chem Biol 2021; 61:123-134. [PMID: 33535112 DOI: 10.1016/j.cbpa.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Undoubtedly, metallomic approaches based on mass spectrometry have evolved into essential tools supporting the drug development of novel metal-based anticancer drugs. This article will comment on the state-of-the-art instrumentation and highlight some of the recent analytical advances beyond routine, especially focusing on the latest developments in inductively coupled plasma-mass spectrometry (ICP-MS). Mass spectrometry-based bioimaging and single-cell methods will be presented, paving the way to exciting investigations of metal-based anticancer drugs in heterogeneous and structurally, as well as functionally complex solid tumor tissues.
Collapse
Affiliation(s)
- Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria; Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
31
|
Legin AA, Schintlmeister A, Sommerfeld NS, Eckhard M, Theiner S, Reipert S, Strohhofer D, Jakupec MA, Galanski MS, Wagner M, Keppler BK. Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. NANOSCALE ADVANCES 2021; 3:249-262. [PMID: 36131874 PMCID: PMC9419577 DOI: 10.1039/d0na00685h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 05/04/2023]
Abstract
Oxaliplatin shows a superior clinical activity in colorectal cancer compared to cisplatin. Nevertheless, the knowledge about its cellular distribution and the mechanisms responsible for the different range of oxaliplatin-responsive tumors is far from complete. In this study, we combined highly sensitive element specific and isotope selective imaging by nanometer-scale secondary ion mass spectrometry (NanoSIMS) with transmission electron microscopy to investigate the subcellular accumulation of oxaliplatin in three human colon cancer cell lines (SW480, HCT116 wt, HCT116 OxR). Oxaliplatin bearing dual stable isotope labeled moieties, i.e. 2H-labeled diaminocyclohexane (DACH) and 13C-labeled oxalate, were applied for comparative analysis of the subcellular distribution patterns of the central metal and the ligands. In all the investigated cell lines, oxaliplatin was found to have a pronounced tendency for cytoplasmic aggregation in single membrane bound organelles, presumably related to various stages of the endocytic pathway. Moreover, nuclear structures, heterochromatin and in particular nucleoli, were affected by platinum-drug exposure. In order to explore the consequences of oxaliplatin resistance, subcellular drug distribution patterns were investigated in a pair of isogenic malignant cell lines with distinct levels of drug sensitivity (HCT116 wt and HCT116 OxR, the latter with acquired resistance to oxaliplatin). The subcellular platinum distribution was found to be similar in both cell lines, with only slightly higher accumulation in the sensitive HCT116 wt cells which is inconsistent with the resistance factor of more than 20-fold. Instead, the isotopic analysis revealed a disproportionally high accumulation of the oxalate ligand in the resistant cell line.
Collapse
Affiliation(s)
- Anton A Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| | - Arno Schintlmeister
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
- Division of Microbial Ecology, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna A-1090 Vienna Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Margret Eckhard
- Core Facility Cell Imaging and Ultrastructural Research, University of Vienna A-1090 Vienna Austria
| | - Sarah Theiner
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructural Research, University of Vienna A-1090 Vienna Austria
| | - Daniel Strohhofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Michael Wagner
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
- Division of Microbial Ecology, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna A-1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| |
Collapse
|
32
|
Determination of Fraction Unbound and Unbound Partition Coefficient to Estimate Intracellular Free Drug Concentration. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2021. [DOI: 10.1007/978-1-0716-1250-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Karas BF, Hotz JM, Buckley BT, Cooper KR. Cisplatin alkylating activity in zebrafish causes resistance to chorionic degradation and inhibition of osteogenesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105656. [PMID: 33075613 PMCID: PMC9210937 DOI: 10.1016/j.aquatox.2020.105656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 05/06/2023]
Abstract
Zebrafish have gained popularity as a model organism due to their rapid, external, and transparent development, high fecundity, and gene homology with higher vertebrate models and humans. Specifically, drug discovery has had high success in the implementation of zebrafish in studies for target discovery, efficacy, and toxicity. However, a major limitation of the zebrafish model is a dependence on waterborne exposure in order to maintain high throughput capabilities. Dose delivery can be impeded by a matrix of N-linked glycoproteins and other polypeptides called the chorion. This acelluar barrier is protective of the developing embryo, and thus new approaches for assessment have involved their removal. In these studies, we explored the chorionic interference of a well-characterized alkylating chemotherapeutic, cisplatin, known to accumulate in the chorion of zebrafish and cause delayed hatching. Our results indicated that increased exposure of cisplatin due to dechorionation did not alter morphological endpoints, although retained confinement reduced total body length and yolk utilization. Additionally, inhibition of osteogenesis visualized with Alizarian Red staining, was observable in dechorionated and non-dechorionated treatment groups. The chorions of cisplatin-treated embryos showed resistance to degradation unless treated with a pronase solution. This may be may be due to cisplatin covalently crosslinking which reinforces the structure. As such, the chorion may play an advantageous role in studies to determine alkylating activity of novel compounds. Furthermore, the expression of zebrafish hatching enzyme was not affected by cisplatin exposure. These studies demonstrate that not only was recapitulation of mechanistic activity supported in zebrafish, but highly relevant off-target toxicities observed in higher vertebrates were identified in zebrafish, regardless of chorionation. Experimental design in drug discovery should consider preliminary studies without dechorionation in order to determine dose impediment or off-target adducting.
Collapse
Affiliation(s)
- Brittany F Karas
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick NJ, 08854, United States
| | - Jordan M Hotz
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick NJ, 08854, United States
| | - Brian T Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway NJ, 08854, United States
| | - Keith R Cooper
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick NJ, 08854, United States.
| |
Collapse
|
34
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
35
|
Narendra DP, Steinhauser ML. Metabolic Analysis at the Nanoscale with Multi-Isotope Imaging Mass Spectrometry (MIMS). CURRENT PROTOCOLS IN CELL BIOLOGY 2020; 88:e111. [PMID: 32706155 PMCID: PMC7484994 DOI: 10.1002/cpcb.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Incorporation of a stable-isotope metabolic tracer into cells or tissue can be followed at submicron resolution by multi-isotope imaging mass spectrometry (MIMS), a form of imaging secondary ion microscopy optimized for accurate isotope ratio measurement from microvolumes of sample (as small as ∼30 nm across). In a metabolic MIMS experiment, a cell or animal is metabolically labeled with a tracer containing a stable isotope. Relative accumulation of the heavy isotope in the fixed sample is then measured as an increase over its natural abundance by MIMS. MIMS has been used to measure protein turnover in single organelles, track cellular division in vivo, visualize sphingolipid rafts on the plasma membrane, and measure dopamine incorporation into dense-core vesicles, among other biological applications. In this article, we introduce metabolic analysis using NanoSIMS by focusing on two specific applications: quantifying protein turnover in single organelles of cultured cells and tracking cell replication in mouse tissues in vivo. These examples illustrate the versatility of metabolic analysis with MIMS. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Metabolic labeling for MIMS Basic Protocol 2: Embedding of samples for correlative transmission electron microscopy and MIMS with a genetically encoded reporter Alternate Protocol: Embedding of samples for correlative light microscopy and MIMS Support Protocol: Preparation of silicon wafers as sample supports for MIMS Basic Protocol 3: Analysis of MIMS data.
Collapse
Affiliation(s)
- Derek P Narendra
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Matthew L Steinhauser
- Department of Medicine, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
37
|
Thomen A, Najafinobar N, Penen F, Kay E, Upadhyay PP, Li X, Phan NTN, Malmberg P, Klarqvist M, Andersson S, Kurczy ME, Ewing AG. Subcellular Mass Spectrometry Imaging and Absolute Quantitative Analysis across Organelles. ACS NANO 2020; 14:4316-4325. [PMID: 32239916 PMCID: PMC7199216 DOI: 10.1021/acsnano.9b09804] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/02/2020] [Indexed: 05/22/2023]
Abstract
Mass spectrometry imaging is a field that promises to become a mainstream bioanalysis technology by allowing the combination of single-cell imaging and subcellular quantitative analysis. The frontier of single-cell imaging has advanced to the point where it is now possible to compare the chemical contents of individual organelles in terms of raw or normalized ion signal. However, to realize the full potential of this technology, it is necessary to move beyond this concept of relative quantification. Here we present a nanoSIMS imaging method that directly measures the absolute concentration of an organelle-associated, isotopically labeled, pro-drug directly from a mass spectrometry image. This is validated with a recently developed nanoelectrochemistry method for single organelles. We establish a limit of detection based on the number of isotopic labels used and the volume of the organelle of interest, also offering this calculation as a web application. This approach allows subcellular quantification of drugs and metabolites, an overarching and previously unmet goal in cell science and pharmaceutical development.
Collapse
Affiliation(s)
- Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| | - Neda Najafinobar
- Medicinal
Chemistry, Research and Early Development, Respiratory, Inflammation,
and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Florent Penen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, 412 96, Sweden
| | - Emma Kay
- Bioscience,
Research and Early Development, Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Pratik P. Upadhyay
- Pharmaceutical
Technolgy and Development, AstraZeneca R&D, Gothenburg, 430 52, Sweden
| | - Xianchan Li
- Center
for Imaging and Systems Biology, College of Life and Environmental
Sciences, Minzu University of China, Beijing, 100081, China
| | - Nhu T. N. Phan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, 412 96, Sweden
| | - Magnus Klarqvist
- Early
Product Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, 431 50, Sweden
| | - Shalini Andersson
- New Modalities,
Discovery Sciences, R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Michael E. Kurczy
- DMPK,
Research and Early Development, Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 430 51, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg, 412 96, Sweden
| |
Collapse
|
38
|
Enzymes to unravel bioproducts architecture. Biotechnol Adv 2020; 41:107546. [PMID: 32275940 DOI: 10.1016/j.biotechadv.2020.107546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022]
Abstract
Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.
Collapse
|
39
|
Gramaccioni C, Yang Y, Pacureanu A, Vigano N, Procopio A, Valenti P, Rosa L, Berlutti F, Bohic S, Cloetens P. Cryo-nanoimaging of Single Human Macrophage Cells: 3D Structural and Chemical Quantification. Anal Chem 2020; 92:4814-4819. [PMID: 32162903 DOI: 10.1021/acs.analchem.9b04096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
X-ray microscopy is increasingly used in biology, but in most cases only in a qualitative way. We present here a 3D correlative cryo X-ray microscopy approach suited for the quantification of molar concentrations and structure in native samples at nanometer scale. The multimodal approach combines X-ray fluorescence and X-ray holographic nanotomography on "thick" frozen-hydrated cells. The quantitativeness of the X-ray fluorescence reconstruction is improved by estimating the self-attenuation from the 3D holography reconstruction. Applied to complex macrophage cells, we extract the quantification of major and minor elements heavier than phosphorus, as well as the density, in the different organelles. The intracellular landscape shows remarkable elemental differences. This novel analytical microscopy approach will be of particular interest to investigate complex biological and chemical systems in their native environment.
Collapse
Affiliation(s)
- Chiara Gramaccioni
- University of Calabria, Department of Physics, 87036 Arcavata di Rende, Italy
| | - Yang Yang
- ESRF, The European Synchrotron, 38043 Grenoble, France
| | | | - Nicola Vigano
- ESRF, The European Synchrotron, 38043 Grenoble, France
| | - Alessandra Procopio
- University of Bologna, Department of Pharmacy and biotechnology, 40127 Bologna Italy
| | - Piera Valenti
- University of Sapienza Roma, Department of Public Health and Infectious Diseases, 00185 Roma Italy
| | - Luigi Rosa
- University of Sapienza Roma, Department of Public Health and Infectious Diseases, 00185 Roma Italy
| | - Francesca Berlutti
- University of Sapienza Roma, Department of Public Health and Infectious Diseases, 00185 Roma Italy
| | - Sylvain Bohic
- ESRF, The European Synchrotron, 38043 Grenoble, France.,Universite Grenoble Alpes, INSERM, UA7, Synchrotron Radiation for Biomedicine, 38043 Grenoble, France
| | | |
Collapse
|
40
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
41
|
Tang FK, Zhu J, Kong FKW, Ng M, Bian Q, Yam VWW, Tse AKW, Tse YC, Leung KCF. A BODIPY-based fluorescent sensor for the detection of Pt2+ and Pt drugs. Chem Commun (Camb) 2020; 56:2695-2698. [DOI: 10.1039/d0cc00027b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel BODIPY-based fluorescent sensor PS was designed for imaging Pt2+, cisplatin and nedaplatin in aqueous medium and biological environments, providing great potential for studying the Pt-drug metabolism and the development of new platinum drugs.
Collapse
Affiliation(s)
- Fung-Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| | - Jiaqian Zhu
- Centre for Cancer and Inflammation Research
- School of Chinese Medicine
- Hong Kong Baptist University
- P. R. China
| | | | - Maggie Ng
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Qingyuan Bian
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| | | | - Anfernee Kai-Wing Tse
- Programme of Food Science and Technology, Division of Science and Technology
- Beijing Normal University-Hong Kong Baptist University United International College
- Zhuhai 519087
- P. R. China
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research
- Department of Biology
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| |
Collapse
|
42
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2019; 59:1270-1278. [DOI: 10.1002/anie.201911510] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
43
|
Lipiec E, Ruggeri FS, Benadiba C, Borkowska AM, Kobierski JD, Miszczyk J, Wood BR, Deacon GB, Kulik A, Dietler G, Kwiatek WM. Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucleic Acids Res 2019; 47:e108. [PMID: 31562528 PMCID: PMC6765102 DOI: 10.1093/nar/gkz630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 01/27/2023] Open
Abstract
The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Francesco S Ruggeri
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry, University of Cambridge, CB21EW, UK
| | - Carine Benadiba
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anna M Borkowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Jan D Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy Jagiellonian University Medical College, PL-31007 Cracow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Glen B Deacon
- School of Chemistry, Faculty of Science, Monash University, 3800 Victoria, Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
44
|
Massai L, Pratesi A, Gailer J, Marzo T, Messori L. The cisplatin/serum albumin system: A reappraisal. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Lasorsa A, Nardella MI, Rosato A, Mirabelli V, Caliandro R, Caliandro R, Natile G, Arnesano F. Mechanistic and Structural Basis for Inhibition of Copper Trafficking by Platinum Anticancer Drugs. J Am Chem Soc 2019; 141:12109-12120. [DOI: 10.1021/jacs.9b05550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alessia Lasorsa
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona, 4, 70125 Bari, Italy
| | - Maria I. Nardella
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona, 4, 70125 Bari, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona, 4, 70125 Bari, Italy
| | | | - Rosanna Caliandro
- Bioorganic Chemistry and Bio-Crystallography laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
- Institute of Crystallography, CNR, Area Science Park Basovizza, 34149 Trieste, Italy
| | - Rocco Caliandro
- Institute of Crystallography, CNR, via Amendola, 122/o, 70126 Bari, Italy
| | - Giovanni Natile
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona, 4, 70125 Bari, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
46
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Exploring the Fundamental Structures of Life: Non-Targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angew Chem Int Ed Engl 2019; 58:9348-9364. [PMID: 30500998 PMCID: PMC6542728 DOI: 10.1002/anie.201811951] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 01/14/2023]
Abstract
Cells are a basic functional and structural unit of living organisms. Both unicellular communities and multicellular species produce an astonishing chemical diversity, enabling a wide range of divergent functions, yet each cell shares numerous aspects that are common to all living organisms. While there are many approaches for studying this chemical diversity, only a few are non-targeted and capable of analyzing hundreds of different chemicals at cellular resolution. Here, we review the non-targeted approaches used to perform comprehensive chemical analyses, provide chemical imaging information, or obtain high-throughput single-cell profiling data. Single-cell measurement capabilities are rapidly increasing in terms of throughput, limits of detection, and completeness of the chemical analyses; these improvements enable their application to understand ever more complex physiological phenomena, such as learning, memory, and behavior.
Collapse
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry, 1420 Circle Drive, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Hu D, Yang C, Lok C, Xing F, Lee P, Fung YME, Jiang H, Che C. An Antitumor Bis(N‐Heterocyclic Carbene)Platinum(II) Complex That Engages Asparagine Synthetase as an Anticancer Target. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Di Hu
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Chen Yang
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional Materials and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen China
| | - Chun‐Nam Lok
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Fangrong Xing
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Pui‐Yan Lee
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Haibo Jiang
- School of Molecular SciencesThe University of Western Australia Perth Western Australia Australia
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryAglaia-KEIIT Laboratory for Drug Discovery and Development and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- State Key Laboratory of Synthetic ChemistryInstitute of Molecular Functional Materials and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen China
| |
Collapse
|
48
|
Hu D, Yang C, Lok CN, Xing F, Lee PY, Fung YME, Jiang H, Che CM. An Antitumor Bis(N-Heterocyclic Carbene)Platinum(II) Complex That Engages Asparagine Synthetase as an Anticancer Target. Angew Chem Int Ed Engl 2019; 58:10914-10918. [PMID: 31165553 DOI: 10.1002/anie.201904131] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Indexed: 12/22/2022]
Abstract
New anticancer platinum(II) compounds with distinctive modes of action are appealing alternatives to combat the drug resistance and improve the efficacy of clinically used platinum chemotherapy. Herein, we describe a rare example of an antitumor PtII complex targeting a tumor-associated protein, rather than DNA, under cellular conditions. Complex [(bis-NHC)Pt(bt)]PF6 (1 a; Hbt=1-(3-hydroxybenzo[b]thiophen-2-yl)ethanone) overcomes cisplatin resistance in cancer cells and displays significant tumor growth inhibition in mice with higher tolerable doses compared to cisplatin. The cellular Pt species shows little association with DNA, and localizes in the cytoplasm as revealed by nanoscale secondary ion mass spectrometry. An unbiased thermal proteome profiling experiment identified asparagine synthetase (ASNS) as a molecular target of 1 a. Accordingly, 1 a treatment reduced the cellular asparagine levels and inhibited cancer cell proliferation, which could be reversed by asparagine supplementation. A bis-NHC-ligated Pt species generated from the hydrolysis of 1 a forms adducts with thiols and appears to target an active-site cysteine of ASNS.
Collapse
Affiliation(s)
- Di Hu
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Fangrong Xing
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Pui-Yan Lee
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haibo Jiang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Aglaia-KEIIT Laboratory for Drug Discovery and Development and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
49
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Erforschung der fundamentalen Strukturen des Lebens: Nicht zielgerichtete chemische Analyse von Einzelzellen und subzellulären Strukturen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Thanh D. Do
- Department of ChemistryUniversity of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
50
|
Proetto MT, Callmann CE, Cliff J, Szymanski CJ, Hu D, Howell SB, Evans JE, Orr G, Gianneschi NC. Tumor Retention of Enzyme-Responsive Pt(II) Drug-Loaded Nanoparticles Imaged by Nanoscale Secondary Ion Mass Spectrometry and Fluorescence Microscopy. ACS CENTRAL SCIENCE 2018; 4:1477-1484. [PMID: 30555899 PMCID: PMC6276039 DOI: 10.1021/acscentsci.8b00444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 05/04/2023]
Abstract
In nanomedicine, determining the spatial distribution of particles and drugs, together and apart, at high resolution within tissues, remains a major challenge because each must have a different label or detectable feature that can be observed with high sensitivity and resolution. We prepared nanoparticles capable of enzyme-directed assembly of particle therapeutics (EDAPT), containing an analogue of the Pt(II)-containing drug oxaliplatin, an 15N-labeled monomer in the hydrophobic block of the backbone of the polymer, the near-infrared dye Cy5.5, and a peptide that is a substrate for tumor metalloproteinases in the hydrophilic block. When these particles reach an environment rich in tumor associated proteases, the hydrophilic peptide substrate is cleaved, causing the particles to accumulate through a morphology transition, locking them in the tumor extracellular matrix. To evaluate the distribution of drug and EDAPT carrier in vivo, the localization of the isotopically labeled polymer backbone was compared to that of Pt by nanoscale secondary ion mass spectrometry (NanoSIMS). The correlation of NanoSIMS with super-resolution fluorescence microscopy revealed the release of the drug from the nanocarrier and colocalization with cellular DNA within tumor tissue. The results confirmed the dependence of particle accumulation and Pt(II) drug delivery on the presence of a Matrix Metalloproteinase (MMP) substrate and demonstrated antitumor activity. We conclude that these techniques are powerful for the elucidation of the localization of cargo and carrier, and enable a high-resolution assessment of their performance following in vivo delivery.
Collapse
Affiliation(s)
- Maria T Proetto
- Department of Chemistry & Biochemistry and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cassandra E Callmann
- Department of Chemistry & Biochemistry and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John Cliff
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Craig J Szymanski
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Stephen B Howell
- Department of Chemistry & Biochemistry and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - James E Evans
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nathan C Gianneschi
- Department of Chemistry & Biochemistry and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|