1
|
Martínez-Orts M, Pujals S. Responsive Supramolecular Polymers for Diagnosis and Treatment. Int J Mol Sci 2024; 25:4077. [PMID: 38612886 PMCID: PMC11012635 DOI: 10.3390/ijms25074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
Collapse
Affiliation(s)
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
2
|
Gustavsson L, Lv ZP, Cherian T, Seppälä W, Liljeström V, Peng B, Huotari S, Rannou P, Ikkala O. Heating-Induced Switching to Hierarchical Liquid Crystallinity Combining Colloidal and Molecular Order in Zwitterionic Molecules. ACS OMEGA 2023; 8:39345-39353. [PMID: 37901556 PMCID: PMC10601052 DOI: 10.1021/acsomega.3c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Hierarchical self-assemblies of soft matter involving triggerable or switchable structures at different length scales have been pursued toward multifunctional behaviors and complexity inspired by biological matter. They require several and balanced competing attractive and repulsive interactions, which provide a grand challenge in particular in the "bulk" state, i.e., in the absence of plasticizing solvents. Here, we disclose that zwitterionic bis-n-tetradecylphosphobetaine, as a model compound, shows a complex thermally switchable hierarchical self-assembly in the solvent-free state. It shows polymorphism and heating-induced reversible switching from low-temperature molecular-level assemblies to high-temperature hierarchical self-assemblies, unexpectedly combining colloidal and molecular self-assemblies, as inferred by synchrotron small-angle X-ray scattering (SAXS). The high-temperature phase sustains birefringent flow, indicating a new type of hierarchical thermotropic liquid crystallinity. The high-temperature colloidal-level SAXS reflections suggest indexation as a 2D oblique pattern and their well-defined layer separation in the perpendicular direction. We suggest that the colloidal self-assembled motifs are 2D nanoplatelets formed by the lateral packing of the molecules, where the molecular packing frustration between the tightly packed zwitterionic moieties and the coiled alkyl chains demanding more space limits the lateral platelet growth controlled by the alkyl stretching entropy. An indirect proof is provided by the addition of plasticizing ionic liquids, which relieve the ionic dense packings of zwitterions, thus allowing purely smectic liquid crystallinity without the colloidal level order. Thus, molecules with a simple chemical structure can lead to structural hierarchy and tunable complexity in the solvent-free state by balancing the competing long-range electrostatics and short-range nanosegregations.
Collapse
Affiliation(s)
- Lotta Gustavsson
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Zhong-Peng Lv
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Tomy Cherian
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Wille Seppälä
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Ville Liljeström
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Bo Peng
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| | - Simo Huotari
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Patrice Rannou
- Université
Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, Grenoble
INP, LEPMI, 38000 Grenoble, France
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University, Puumiehenkuja 2, FI-00076 Espoo, Finland
| |
Collapse
|
3
|
Hisamatsu Y, Cheng F, Yamamoto K, Takase H, Umezawa N, Higuchi T. Control of the stepwise self-assembly process of a pH-responsive amphiphilic 4-aminoquinoline-tetraphenylethene conjugate. NANOSCALE 2023; 15:3177-3187. [PMID: 36655765 DOI: 10.1039/d2nr05756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Controlling the kinetic processes of self-assembly and switching their kinetic properties according to the changes in external environments are crucial concepts in the field of supramolecular polymers in water for biological and biomedical applications. Here we report a new self-assembling amphiphilic 4-aminoquinoline (4-AQ)-tetraphenylethene (TPE) conjugate that exhibits kinetically controllable stepwise self-assembly and has the ability of switching its kinetic nature in response to pH. The self-assembly process of the 4-AQ amphiphile comprises the formation of sphere-like nanoparticles, a transition to short nanofibers, and their growth to long nanofibers with ∼1 μm length scale at room temperature (RT). The timescale of the self-assembly process differs according to the pH-responsivity of the 4-AQ moiety in a weakly acidic to neutral pH range. Therefore, after aging for 24 h at RT, the 4-AQ amphiphile forms metastable short nanofibers at pH 5.5, while it forms thermodynamically favored long nanofibers at pH 7.4. Moreover, the modulation of nanofiber growth proceeding spontaneously at RT was achieved by switching the kinetic pathway through changing the pH between 7.4 and 5.5.
Collapse
Affiliation(s)
- Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Fangzhou Cheng
- Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Katsuhiro Yamamoto
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroshi Takase
- Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| |
Collapse
|
4
|
Knoll K, Herold D, Hirschmann M, Thiele CM. A supramolecular and liquid crystalline water-based alignment medium based on azobenzene-substituted 1,3,5-benzenetricarboxamides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:563-571. [PMID: 35266585 DOI: 10.1002/mrc.5266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A supramolecular, lyotropic liquid crystalline alignment medium based on an azobenzene-containing 1,3,5-benzenetricarboxamide (BTA) building block is described and investigated. As we demonstrate, this water-based system is suitable for the investigation of various water-soluble analytes and allows for a scaling of alignment strength through variation of temperature. Additionally, alignment is shown to reversibly collapse above a certain temperature, yielding an isotropic solution. This collapse allows for isotropic reference measurements, which are typically needed in addition to those in an anisotropic environment, to be performed using the same sample just by varying the temperature. The medium described thus provides easy access to anisotropic NMR observables and simplifies structure elucidation techniques based thereon.
Collapse
Affiliation(s)
- Kevin Knoll
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dominik Herold
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Max Hirschmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Marichez V, Sato A, Dunne PA, Leira-Iglesias J, Formon GJM, Schicho MK, de Feijter I, Hébraud P, Bailleul M, Besenius P, Venkatesan M, Coey JMD, Meijer EW, Hermans TM. Magnetic Control over the Fractal Dimension of Supramolecular Rod Networks. J Am Chem Soc 2021; 143:11914-11918. [PMID: 34342435 DOI: 10.1021/jacs.1c05053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling supramolecular polymerization is of fundamental importance to create advanced materials and devices. Here we show that the thermodynamic equilibrium of Gd3+-bearing supramolecular rod networks is shifted reversibly at room temperature in a static magnetic field of up to 2 T. Our approach opens opportunities to control the structure formation of other supramolecular or coordination polymers that contain paramagnetic ions.
Collapse
Affiliation(s)
- Vincent Marichez
- Université de Strasbourg, CNRS, UMR7140, 67083 Strasbourg, France
| | - Akihiro Sato
- Université de Strasbourg, CNRS, UMR7140, 67083 Strasbourg, France
| | - Peter A Dunne
- Université de Strasbourg, CNRS, UMR7140, 67083 Strasbourg, France
| | | | | | | | - Isja de Feijter
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Pascal Hébraud
- Institut de Physique et Chimie des Materiaux de Strasbourg, Université de Strasbourg, CNRS, UMR7504, 23 rue du Loess, 67034 Strasbourg, France
| | - Matthieu Bailleul
- Institut de Physique et Chimie des Materiaux de Strasbourg, Université de Strasbourg, CNRS, UMR7504, 23 rue du Loess, 67034 Strasbourg, France
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - J M D Coey
- School of Physics, Trinity College, Dublin 2, Ireland
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Thomas M Hermans
- Université de Strasbourg, CNRS, UMR7140, 67083 Strasbourg, France
| |
Collapse
|
6
|
Fuentes E, Gerth M, Berrocal JA, Matera C, Gorostiza P, Voets IK, Pujals S, Albertazzi L. An Azobenzene-Based Single-Component Supramolecular Polymer Responsive to Multiple Stimuli in Water. J Am Chem Soc 2020; 142:10069-10078. [PMID: 32395995 PMCID: PMC7497294 DOI: 10.1021/jacs.0c02067] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
One
of the most appealing features of supramolecular assemblies
is their ability to respond to external stimuli due to their noncovalent
nature. This provides the opportunity to gain control over their size,
morphology, and chemical properties and is key toward some of their
applications. However, the design of supramolecular systems able to
respond to multiple stimuli in a controlled fashion is still challenging.
Here we report the synthesis and characterization of a novel discotic
molecule, which self-assembles in water into a single-component supramolecular
polymer that responds to multiple independent stimuli. The building
block of such an assembly is a C3-symmetric
monomer, consisting of a benzene-1,3,5-tricarboxamide core conjugated
to a series of natural and non-natural functional amino acids. This
design allows the use of rapid and efficient solid-phase synthesis
methods and the modular implementation of different functionalities.
The discotic monomer incorporates a hydrophobic azobenzene moiety,
an octaethylene glycol chain, and a C-terminal lysine. Each of these
blocks was chosen for two reasons: to drive the self-assembly in water
by a combination of H-bonding and hydrophobicity and to impart specific
responsiveness. With a combination of microscopy and spectroscopy
techniques, we demonstrate self-assembly in water and responsiveness
to temperature, light, pH, and ionic strength. This work shows the
potential to integrate independent mechanisms for controlling self-assembly
in a single-component supramolecular polymer by the rational monomer
design and paves the way toward the use of multiresponsive systems
in water.
Collapse
Affiliation(s)
- Edgar Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
| | - Marieke Gerth
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| | - José Augusto Berrocal
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Network Biomedical Research Centre in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Network Biomedical Research Centre in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08011, Spain
| | - Ilja K Voets
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona 08011, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Department of Biomedical Engineering, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
7
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
8
|
Zagorodko O, Nebot VJ, Vicent MJ. The generation of stabilized supramolecular nanorods from star-shaped polyglutamates. Polym Chem 2020. [DOI: 10.1039/c9py01442j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new strategy of polyglutamate nanorod preparation based on supramolecular polymers stabilized with hydrophobic drugs.
Collapse
Affiliation(s)
- O. Zagorodko
- Polymer Therapeutics Lab. Prince Felipe Research Center
- 46012 Valencia
- Spain
| | - V. J. Nebot
- Polymer Therapeutics Lab. Prince Felipe Research Center
- 46012 Valencia
- Spain
| | - M. J. Vicent
- Polymer Therapeutics Lab. Prince Felipe Research Center
- 46012 Valencia
- Spain
| |
Collapse
|
9
|
Sahoo JK, VandenBerg MA, Webber MJ. Injectable network biomaterials via molecular or colloidal self-assembly. Adv Drug Deliv Rev 2018; 127:185-207. [PMID: 29128515 DOI: 10.1016/j.addr.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/16/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Self-assembly is a powerful tool to create functional materials. A specific application for which self-assembled materials are ideally suited is in creating injectable biomaterials. Contrasting with traditional biomaterials that are implanted through surgical means, injecting biomaterials through the skin offers numerous advantages, expanding the scope and impact for biomaterials in medicine. In particular, self-assembled biomaterials prepared from molecular or colloidal interactions have been frequently explored. The strategies to create these materials are varied, taking advantage of engineered oligopeptides, proteins, and nanoparticles as well as affinity-mediated crosslinking of synthetic precursors. Self-assembled materials typically facilitate injectability through two different mechanisms: i) in situ self-assembly, whereby materials would be administered in a monomeric or oligomeric form and self-assemble in response to some physiologic stimulus, or ii) self-assembled materials that, by virtue of their dynamic, non-covalent interactions, shear-thin to facilitate flow within a syringe and subsequently self-heal into its reassembled material form at the injection site. Indeed, many classes of materials are capable of being injected using a combination of these two mechanisms. Particular utility has been noted for self-assembled biomaterials in the context of tissue engineering, regenerative medicine, drug delivery, and immunoengineering. Given the controlled and multifunctional nature of many self-assembled materials demonstrated to date, we project a future where injectable self-assembled biomaterials afford improved practice in advancing healthcare.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Michael A VandenBerg
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
10
|
Duro-Castano A, Nebot VJ, Niño-Pariente A, Armiñán A, Arroyo-Crespo JJ, Paul A, Feiner-Gracia N, Albertazzi L, Vicent MJ. Capturing "Extraordinary" Soft-Assembled Charge-Like Polypeptides as a Strategy for Nanocarrier Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702888. [PMID: 28834624 DOI: 10.1002/adma.201702888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/03/2017] [Indexed: 05/24/2023]
Abstract
The rational design of nanomedicines is a challenging task given the complex architectures required for the construction of nanosized carriers with embedded therapeutic properties and the complex interface of these materials with the biological environment. Herein, an unexpected charge-like attraction mechanism of self-assembly for star-shaped polyglutamates in nonsalty aqueous solutions is identified, which matches the ubiquitous "ordinary-extraordinary" phenomenon previously described by physicists. For the first time, a bottom-up methodology for the stabilization of these nanosized soft-assembled star-shaped polyglutamates is also described, enabling the translation of theoretical research into nanomaterials with applicability within the drug-delivery field. Covalent capture of these labile assemblies provides access to unprecedented architectures to be used as nanocarriers. The enhanced in vitro and in vivo properties of these novel nanoconstructs as drug-delivery systems highlight the potential of this approach for tumor-localized as well as lymphotropic delivery.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Vicent J Nebot
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Amaya Niño-Pariente
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Juan J Arroyo-Crespo
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Alison Paul
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Natalia Feiner-Gracia
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|
11
|
Abstract
Principles rooted in supramolecular chemistry have empowered new and highly functional therapeutics and drug delivery devices. This general approach offers elegant tools rooted in molecular and materials engineered to address the many challenges faced in treating disease.
Collapse
Affiliation(s)
- Matthew J. Webber
- Department of Chemical & Biomolecular Engineering
- University of Notre Dame
- Notre Dame IN 46556
- USA
- Department of Chemistry & Biochemistry
| | - Robert Langer
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- David H. Koch Institute for Integrative Cancer Research
| |
Collapse
|
12
|
Besenius P. Controlling supramolecular polymerization through multicomponent self-assembly. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28385] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pol Besenius
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 Mainz 55128 Germany
| |
Collapse
|
13
|
Desmarchelier A, Alvarenga BG, Caumes X, Dubreucq L, Troufflard C, Tessier M, Vanthuyne N, Idé J, Maistriaux T, Beljonne D, Brocorens P, Lazzaroni R, Raynal M, Bouteiller L. Tuning the nature and stability of self-assemblies formed by ester benzene 1,3,5-tricarboxamides: the crucial role played by the substituents. SOFT MATTER 2016; 12:7824-7838. [PMID: 27722677 DOI: 10.1039/c6sm01601d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As the benzene 1,3,5-tricarboxamide (BTA) moiety is commonly used as the central assembling unit for the construction of functionalized supramolecular architectures, strategies to tailor the nature and stability of BTA assemblies are needed. The assembly properties of a library of structurally simple BTAs derived from amino dodecyl esters (ester BTAs, 13 members) have been studied, either in the bulk or in cyclohexane solutions, by means of a series of analytical methods (NMR, DSC, POM, FT-IR, UV-Vis, CD, ITC, high-sensitivity DSC, SANS). Two types of hydrogen-bonded species have been identified and characterized: the expected amide-bonded helical rods (or stacks) that are structurally similar to those formed by BTAs with simple alkyl side chains (alkyl BTAs), and ester-bonded dimers in which the BTAs are connected by means of hydrogen bonds linking the amide N-H and the ester C[double bond, length as m-dash]O. MM/MD calculations coupled with simulations of CD spectra allow for the precise determination of the molecular arrangement and of the hydrogen bond pattern of these dimers. Our study points out the crucial influence of the substituent attached on the amino-ester α-carbon on the relative stability of the rod-like versus dimeric assemblies. By varying this substituent, one can precisely tune the nature of the dominant hydrogen-bonded species (stacks or dimers) in the neat compounds and in cyclohexane over a wide range of temperatures and concentrations. In the neat BTAs, stacks are stable up to 213 °C and dimers above 180 °C whilst in cyclohexane stacks form at c* > 3 × 10-5 M at 20 °C and dimers are stable up to 80 °C at 7 × 10-6 M. Ester BTAs that assemble into stacks form a liquid-crystalline phase and yield gels or viscous solutions in cyclohexane, demonstrating the importance of controlling the structure of these assemblies. Our systematic study of these structurally similar ester BTAs also allows for a better understanding of how a single atom or moiety can impact the nature and stability of BTA aggregates, which is of importance for the future development of functionalized BTA supramolecular polymers.
Collapse
Affiliation(s)
- Alaric Desmarchelier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymeres, 4 Place Jussieu, F-75005 Paris, France.
| | - Bruno Giordano Alvarenga
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymeres, 4 Place Jussieu, F-75005 Paris, France. and Department of Physical-Chemistry, Institute of Chemistry, University of Campinas, Brazil
| | - Xavier Caumes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymeres, 4 Place Jussieu, F-75005 Paris, France.
| | - Ludovic Dubreucq
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymeres, 4 Place Jussieu, F-75005 Paris, France.
| | - Claire Troufflard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymeres, 4 Place Jussieu, F-75005 Paris, France.
| | - Martine Tessier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymeres, 4 Place Jussieu, F-75005 Paris, France.
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313, 13397 Marseille Cedex 20, France
| | - Julien Idé
- Service de Chimie des Matériaux Nouveaux, Université de Mons/Materia Nova, Place du Parc, 20, B-7000 Mons, Belgium
| | - Thomas Maistriaux
- Service de Chimie des Matériaux Nouveaux, Université de Mons/Materia Nova, Place du Parc, 20, B-7000 Mons, Belgium
| | - David Beljonne
- Service de Chimie des Matériaux Nouveaux, Université de Mons/Materia Nova, Place du Parc, 20, B-7000 Mons, Belgium
| | - Patrick Brocorens
- Service de Chimie des Matériaux Nouveaux, Université de Mons/Materia Nova, Place du Parc, 20, B-7000 Mons, Belgium
| | - Roberto Lazzaroni
- Service de Chimie des Matériaux Nouveaux, Université de Mons/Materia Nova, Place du Parc, 20, B-7000 Mons, Belgium
| | - Matthieu Raynal
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymeres, 4 Place Jussieu, F-75005 Paris, France.
| | - Laurent Bouteiller
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymeres, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
14
|
Frisch H, Spitzer D, Haase M, Basché T, Voskuhl J, Besenius P. Probing the self-assembly and stability of oligohistidine based rod-like micelles by aggregation induced luminescence. Org Biomol Chem 2016; 14:5574-9. [DOI: 10.1039/c6ob00292g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The synthesis and self-assembly of a new C2-symmetric oligohistidine amphiphile equipped with an aggregation induced emission luminophore is reported.
Collapse
Affiliation(s)
- Hendrik Frisch
- Institute of Organic Chemistry
- Johannes Gutenberg-Universität Mainz
- D-55128 Mainz
- Germany
| | - Daniel Spitzer
- Institute of Organic Chemistry
- Johannes Gutenberg-Universität Mainz
- D-55128 Mainz
- Germany
| | - Mathias Haase
- Institute of Physical Chemistry
- Johannes Gutenberg-Universität Mainz
- D-55128 Mainz
- Germany
| | - Thomas Basché
- Institute of Physical Chemistry
- Johannes Gutenberg-Universität Mainz
- D-55128 Mainz
- Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry
- University of Duisburg-Essen
- D-45117 Essen
- Germany
| | - Pol Besenius
- Institute of Organic Chemistry
- Johannes Gutenberg-Universität Mainz
- D-55128 Mainz
- Germany
| |
Collapse
|
15
|
Appel R, Fuchs J, Tyrrell SM, Korevaar PA, Stuart MCA, Voets IK, Schönhoff M, Besenius P. Steric Constraints Induced Frustrated Growth of Supramolecular Nanorods in Water. Chemistry 2015; 21:19257-64. [PMID: 26555139 DOI: 10.1002/chem.201503616] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 11/05/2022]
Abstract
A unique example of supramolecular polymerisation in water based on monomers with nanomolar affinities, which yield rod-like materials with extraordinarily high thermodynamic stability, yet of finite length, is reported. A small library of charge-neutral dendritic peptide amphiphiles was prepared, with a branched nonaphenylalanine-based core that was conjugated to hydrophilic dendrons of variable steric demand. Below a critical size of the dendron, the monomers assemble into nanorod-like polymers, whereas for larger dendritic side chains frustrated growth into near isotropic particles is observed. The supramolecular morphologies observed by electron microscopy, X-ray scattering and diffusion NMR spectroscopy studies are in agreement with the mechanistic insights obtained from fitting polymerisation profiles: non-cooperative isodesmic growth leads to degrees of polymerisation that match the experimentally determined nanorod contour lengths of close to 70 nm. The reported designs for aqueous self-assembly into well-defined anisotropic particles has promising potential for biomedical applications and the development of functional supramolecular biomaterials, with emerging evidence that anisotropic shapes in carrier design outperform conventional isotropic materials for targeted imaging and therapy.
Collapse
Affiliation(s)
- Ralph Appel
- Institute of Organic Chemistry and CeNTech, University of Muenster, Corrensstrasse 40, 48149 Münster (Germany).,Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz (Germany)
| | - Jonas Fuchs
- Institute of Physical Chemistry, University of Muenster, Corrensstrasse 28/30, 48149 Münster (Germany)
| | - Sara M Tyrrell
- Institute of Physical Chemistry, University of Muenster, Corrensstrasse 28/30, 48149 Münster (Germany)
| | - Peter A Korevaar
- Institute for Complex Molecular Systems and, Laboratory for Macromolecular and Organic Chemistry, Eindhoven University of Technology (The Netherlands)
| | - Marc C A Stuart
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen (The Netherlands)
| | - Ilja K Voets
- Institute for Complex Molecular Systems and, Laboratory for Macromolecular and Organic Chemistry, Eindhoven University of Technology (The Netherlands).,Laboratory for Physical Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands)
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Muenster, Corrensstrasse 28/30, 48149 Münster (Germany)
| | - Pol Besenius
- Institute of Organic Chemistry and CeNTech, University of Muenster, Corrensstrasse 40, 48149 Münster (Germany). .,Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz (Germany).
| |
Collapse
|
16
|
Neumann LN, Baker MB, Leenders CMA, Voets IK, Lafleur RPM, Palmans ARA, Meijer EW. Supramolecular polymers for organocatalysis in water. Org Biomol Chem 2015; 13:7711-9. [DOI: 10.1039/c5ob00937e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An l-proline-functionalised benzene-1,3,5-tricarboxamide derivative self-assembles in water into well-defined, one-dimensional, helical, supramolecular polymers that efficiently catalyse aldol reactions.
Collapse
Affiliation(s)
- Laura N. Neumann
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - Matthew B. Baker
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - Christianus M. A. Leenders
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - Ilja K. Voets
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - René P. M. Lafleur
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - Anja R. A. Palmans
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| | - E. W. Meijer
- Laboratory for Macromolecular and Organic Chemistry
- Institute for Complex Molecular Sciences
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
17
|
de Feijter I, Albertazzi L, Palmans ARA, Voets IK. Stimuli-responsive colloidal assembly driven by surface-grafted supramolecular moieties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:57-64. [PMID: 25489659 DOI: 10.1021/la5031872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A robust method is described for precisely functionalizing silica colloids with short-chain alkanes and self-associating o-nitrobenzyl protected benzene-1,3,5-tricarboxamides (BTAs). Controlled deprotection affords activation of the latent supramolecular moieties by facilitating short-range hydrogen-bonding interactions between surface-functionalized silica particles. Control of mesoscale assembly of the responsive colloidal suspensions is demonstrated with two different external triggers. First, the amount of active (i.e., deprotected) BTAs is efficiently tuned by varying the exposure time to UV radiation. Controlled activation of the BTAs translates to regulating the valence of the system. After activation, the binding strength of individual BTAs can be modulated with temperature, providing an additional handle with which the assembly behavior is manipulated. This dual-regulation approach is a powerful and sensitive avenue for controlling colloidal assembly processes.
Collapse
Affiliation(s)
- Isja de Feijter
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
18
|
Ahlers P, Frisch H, Spitzer D, Vobecka Z, Vilela F, Besenius P. The Synthesis of Dendritic EDOT-Peptide Conjugates and their Multistimuli-Responsive Self-Assembly into Supramolecular Nanorods and Fibers in Water. Chem Asian J 2014; 9:2052-7. [DOI: 10.1002/asia.201402271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/09/2014] [Indexed: 12/18/2022]
|