1
|
Tian X, Li L, Zheng X, Liu BT, Chen L, Wang Z, Bi Y, Song G, Li S, Meng Q, Li C, Zhang D. A novel aggregation-induced emission-featured hyperbranched poly(amido amine)s stabilized copper nanoclusters‑cerium (III) sensor for detection of thiol flavor compounds in processed meat. Food Chem 2025; 466:142236. [PMID: 39612855 DOI: 10.1016/j.foodchem.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Thiol flavor compounds are a class of flavoring ingredients that contribute significantly to food flavor. However, rapid discrimination of multiple thiol-flavor compounds remain a challenge. In this study, a ratiometric fluorescent sensor (TPE-ssHPA@Cu NCs-Ce3+) with dual-channel fluorescence features was developed using tetraphenylethene-embedded hyperbranched poly(amidoamine) as a template to stabilize the copper nanocluster‑cerium ions. The sensor was explored for the specific discrimination of six typical thiol flavor compounds, each producing diverse fluorescent fingerprints that were further identified using pattern recognition methods. The sensor achieved a rapid response in identifying thiol flavor compounds and multicomponent mixtures, with detection limits of 0.32-3.13 μM. Furthermore, it was successfully applied to differentiate between the different types and cooking times of meat broths.
Collapse
Affiliation(s)
- Xiaoxian Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Li Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Guangchun Song
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingye Meng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, PR China
| | - Cheng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dequan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Tian X, Zheng X, Chen L, Wang Z, Liu BT, Bi Y, Li L, Shi H, Li S, Li C, Zhang D. Recent advances in photoluminescent fluorescent probe technology for food flavor compounds analysis. Food Chem 2024; 459:140455. [PMID: 39029422 DOI: 10.1016/j.foodchem.2024.140455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.
Collapse
Affiliation(s)
- Xiaoxian Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Liang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haonan Shi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dequan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Gautam A, Singh RS, Gautam P, Hussain SM, Reddy VS. X-ray photoelectron spectroscopy and tunable photoluminescence study of gold nanoparticles embedded in PVA films. LUMINESCENCE 2024; 39:e4607. [PMID: 37795827 DOI: 10.1002/bio.4607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
This article reports the systematic photoluminescence study of the various contents of gold nanocomposites in polyvinyl alcohol (PVA) films. The variations in the gold content in PVA film were 0.2, 0.5, 1.0, and 1.5 wt%. All the samples were excited at two selected wavelengths; those are at 400 nm and 532 nm. On exciting the gold-PVA nanocomposite films at 400 nm the photoluminescence was observed in the region of 430-500 nm in comparison to pure PVA films that show an emission at 400 nm. However, on exciting the gold-PVA nanocomposites at 532 nm, the emission was observed at 560-650 nm with a long tail till 700 nm that is unlike the pure PVA films that do not show any emission peak in this region. This suggests that emission between 430 and 500 nm regions is due to the coordination of PVA with gold nanoparticles because PVA has an emission at 400 nm. However, the emission peak between 560 and 650 nm is entirely due to the gold nanocomposite particle. The peak also shows a smaller red-shift that is usually with the increasing nanoparticles size with the increasing content in the PVA films. The formation of gold nanoparticles was justified by X-ray diffraction (XRD) analysis which is further supported by X-ray photoelectron spectroscopy (XPS) analysis.
Collapse
Affiliation(s)
- Anurag Gautam
- School of Sciences, Malla Reddy University, Hyderabad, Telangana, India
| | - Ram Sevak Singh
- Department of Physics, OP Jindal University, Raigarh, Chhattisgarh, India
| | - Prabhat Gautam
- Department of Chemistry, CMR Institute of Technology, Bengaluru, Karnataka, India
| | - Syed Modassir Hussain
- Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, Saudi Arabia
| | - Vustikayala Sivakumar Reddy
- Department of Electronics and Communication Engineering, Malla Reddy University, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Mashali F, Basham CM, Xu X, Servidio C, Silva PHJ, Stellacci F, Sarles SA. Simultaneous Electrophysiology and Imaging Reveal Changes in Lipid Membrane Thickness and Tension upon Uptake of Amphiphilic Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15031-15045. [PMID: 37812767 DOI: 10.1021/acs.langmuir.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Amphiphilic gold core nanoparticles (AmNPs) striped with hydrophilic 11-mercapto-1-undecanesulfonate (MUS) and hydrophobic 1-octanethiol (OT) ligands are promising candidates for drug carriers that passively and nondisruptively enter cells. Yet, how they interact with cellular membranes is still only partially understood. Herein, we use electrophysiology and imaging to carefully assess changes in droplet interface bilayer lipid membranes (DIBs) incurred by striped AmNPs added via microinjection. We find that AmNPs spontaneously reduce the steady-state specific capacitance and contact angle of phosphatidylcholine DIBs by amounts dependent on the final NP concentration. These reductions, which are greater for NPs with a higher % OT ligands and membranes containing unsaturated lipids but negligible for MUS-only-coated NPs, reveal that AmNPs passively embed in the interior of the bilayer where they increase membrane thickness and lateral tension through disruption of lipid packing. These results demonstrate the enhanced evaluation of nano-bio interactions possible via electrophysiology and imaging of DIBs.
Collapse
Affiliation(s)
- Farzin Mashali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Colin M Basham
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xufeng Xu
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Camilla Servidio
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paulo H Jacob Silva
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Stephen A Sarles
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Crintea A, Motofelea AC, Șovrea AS, Constantin AM, Crivii CB, Carpa R, Duțu AG. Dendrimers: Advancements and Potential Applications in Cancer Diagnosis and Treatment-An Overview. Pharmaceutics 2023; 15:pharmaceutics15051406. [PMID: 37242648 DOI: 10.3390/pharmaceutics15051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and the main treatment methods for this condition are surgery, chemotherapy, and radiotherapy. These treatment methods are invasive and can cause severe adverse reactions among organisms, so nanomaterials are increasingly used as structures for anticancer therapies. Dendrimers are a type of nanomaterial with unique properties, and their production can be controlled to obtain compounds with the desired characteristics. These polymeric molecules are used in cancer diagnosis and treatment through the targeted distribution of some pharmacological substances. Dendrimers have the ability to fulfill several objectives in anticancer therapy simultaneously, such as targeting tumor cells so that healthy tissue is not affected, controlling the release of anticancer agents in the tumor microenvironment, and combining anticancer strategies based on the administration of anticancer molecules to potentiate their effect through photothermal therapy or photodynamic therapy. The purpose of this review is to summarize and highlight the possible uses of dendrimers regarding the diagnosis and treatment of oncological conditions.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Alina Simona Șovrea
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Alina Gabriela Duțu
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Banerjee S, Banerjee S, Mondal A. Nanomaterials regenerative medicine and tissue engineering. NANOSTRUCTURED MATERIALS FOR TISSUE ENGINEERING 2023:3-53. [DOI: 10.1016/b978-0-323-95134-0.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Crintea A, Dutu AG, Sovrea A, Constantin AM, Samasca G, Masalar AL, Ifju B, Linga E, Neamti L, Tranca RA, Fekete Z, Silaghi CN, Craciun AM. Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1376. [PMID: 35458084 PMCID: PMC9024560 DOI: 10.3390/nano12081376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Mounting evidence shows that supplementation with vitamin D and K or their analogs induces beneficial effects in various diseases, e.g., osteoarticular, cardiovascular, or carcinogenesis. The use of drugs delivery systems via organic and inorganic nanocarriers increases the bioavailability of vitamins and analogs, enhancing their cellular delivery and effects. The nanotechnology-based dietary supplements and drugs produced by the food and pharmaceutical industries overcome the issues associated with vitamin administration, such as stability, absorption or low bioavailability. Consequently, there is a continuous interest in optimizing the carriers' systems in order to make them more efficient and specific for the targeted tissue. In this pioneer review, we try to circumscribe the most relevant aspects related to nanocarriers for drug delivery, compare different types of nanoparticles for vitamin D and K transportation, and critically address their benefits and disadvantages.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Sovrea
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Aurelian Lucian Masalar
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Brigitta Ifju
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Eugen Linga
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Lidia Neamti
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Rares Andrei Tranca
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Zsolt Fekete
- Department of Oncology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ciprian Nicolae Silaghi
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alexandra Marioara Craciun
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| |
Collapse
|
9
|
Paulkumar K, Murugan K. Synthesis of silver nanoparticles from mushroom: Safety and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:413-437. [DOI: 10.1016/b978-0-12-824508-8.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021; 11:life11070682. [PMID: 34357054 PMCID: PMC8307574 DOI: 10.3390/life11070682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Even though there are various types of cancer, this pathology as a whole is considered the principal cause of death worldwide. Lung cancer is known as a heterogeneous condition, and it is apparent that genome modification presents a significant role in the occurrence of this disorder. There are conventional procedures that can be utilized against diverse cancer types, such as chemotherapy or radiotherapy, but they are hampered by the numerous side effects. Owing to the many adverse events observed in these therapies, it is imperative to continuously develop new and improved strategies for managing individuals with cancer. Nanomedicine plays an important role in establishing new methods for detecting chromosomal rearrangements and mutations for targeted chemotherapeutics or the local delivery of drugs via different types of nano-particle carriers to the lungs or other organs or areas of interest. Because of the complex signaling pathways involved in developing different types of cancer, the need to discover new methods for prevention and detection is crucial in producing gene delivery materials that exhibit the desired roles. Scientists have confirmed that nanotechnology-based procedures are more effective than conventional chemotherapy or radiotherapy, with minor side effects. Several nanoparticles, nanomaterials, and nanosystems have been studied, including liposomes, dendrimers, polymers, micelles, inorganic nanoparticles, such as gold nanoparticles or carbon nanotubes, and even siRNA delivery systems. The cytotoxicity of such nanosystems is a debatable concern, and nanotechnology-based delivery systems must be improved to increase the bioavailability, biocompatibility, and safety profiles, since these nanosystems boast a remarkable potential in many biomedical applications, including anti-tumor activity or gene therapy. In this review, the nanosystems involved in treating lung cancer and its associated challenges are discussed.
Collapse
|
11
|
Dash A, Blasiak B, Tomanek B, Latta P, van Veggel FCJM. Target-Specific Magnetic Resonance Imaging of Human Prostate Adenocarcinoma Using NaDyF 4-NaGdF 4 Core-Shell Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24345-24355. [PMID: 34024098 DOI: 10.1021/acsami.0c19273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We illustrate the development of NaDyF4-NaGdF4 core-shell nanoparticles (NPs) for targeting prostate cancer cells using a preclinical 9.4 T magnetic resonance imaging (MRI) of live animals. The NPs composed of paramagnetic Dy3+ and Gd3+ (T2- and T1-contrast agents, respectively) demonstrate proton relaxivities of r1 = 20.2 mM-1 s-1 and r2 = 32.3 mM-1 s-1 at clinical 3 T and r1 = 9.4 mM-1 s-1 and r2 = 144.7 mM-1 s-1 at preclinical 9.4 T. The corresponding relaxivity values per NP are r1 = 19.4 × 105 mMNP-1 s-1 and r2 = 33.0 × 105 mMNP-1 s-1 at 3 T and r1 = 9.0 × 105 mMNP-1 s-1 and r2 = 147.0 × 105 mMNP-1 s-1 at 9.4 T. In vivo active targeting of human prostate tumors grown in nude mice revealed docking of anti-prostate-specific membrane antigen (PSMA) antibody-tagged NPs at tumor sites post-24 h of their intravenous injection. On the other hand, in vivo passive targeting showed preferential accumulation of NPs at tumor sites only within 2 h of their injection, ascribed to the enhanced permeation and retention effect of the tumor. A biodistribution study employing the harvested organs of mice, post-24 h injection of NPs, quantified active targeting as nearly twice as efficient as passive targeting. These outcomes provide potential opportunities for noninvasive diagnosis using NaDyF4-NaGdF4 core-shell NPs for target-specific MRI.
Collapse
Affiliation(s)
- Armita Dash
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Barbara Blasiak
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Boguslaw Tomanek
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2T4, Canada
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Peter Latta
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Frank C J M van Veggel
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
12
|
Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv 2021; 11:19041-19058. [PMID: 35478636 PMCID: PMC9033557 DOI: 10.1039/d1ra01849c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advancement in nanotechnology has brought prominent benefits in tissue engineering, which has been used to repair or reconstruct damaged tissues or organs and design smart drug delivery systems. With numerous applications of nanomaterials in tissue engineering, it is vital to choose appropriate nanomaterials for different tissue engineering applications because of the tissue heterogeneity. Indeed, the use of nanomaterials in tissue engineering is directly determined by the choice. In this review, we mainly introduced the use of nanomaterials in tissue engineering. First, the basic characteristics, preparation and characterization methods of the types of nanomaterials are introduced briefly, followed by a detailed description of the application and research progress of nanomaterials in tissue engineering and drug delivery. Finally, the existing challenges and prospects for future applications of nanomaterials in tissue engineering are discussed.
Collapse
Affiliation(s)
- Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Zhenxiang Fu
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
13
|
Toczek J, Boodagh P, Sanzida N, Ghim M, Salarian M, Gona K, Kukreja G, Rajendran S, Wei L, Han J, Zhang J, Jung JJ, Graham M, Liu X, Sadeghi MM. Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. Theranostics 2021; 11:5876-5888. [PMID: 33897887 PMCID: PMC8058712 DOI: 10.7150/thno.55106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Inflammation plays a major role in the pathogenesis of several vascular pathologies, including abdominal aortic aneurysm (AAA). Evaluating the role of inflammation in AAA pathobiology and potentially outcome in vivo requires non-invasive tools for high-resolution imaging. We investigated the feasibility of X-ray computed tomography (CT) imaging of phagocytic activity using nanoparticle contrast agents to predict AAA outcome. Methods: Uptake of several nanoparticle CT contrast agents was evaluated in a macrophage cell line. The most promising agent, Exitron nano 12000, was further characterized in vitro and used for subsequent in vivo testing. AAA was induced in Apoe-/- mice through angiotensin II (Ang II) infusion for up to 4 weeks. Nanoparticle biodistribution and uptake in AAA were evaluated by CT imaging in Ang II-infused Apoe-/- mice. After imaging, the aortic tissue was harvested and used from morphometry, transmission electron microscopy and gene expression analysis. A group of Ang II-infused Apoe-/- mice underwent nanoparticle-enhanced CT imaging within the first week of Ang II infusion, and their survival and aortic external diameter were evaluated at 4 weeks to address the value of vessel wall CT enhancement in predicting AAA outcome. Results: Exitron nano 12000 showed specific uptake in macrophages in vitro. Nanoparticle accumulation was observed by CT imaging in tissues rich in mononuclear phagocytes. Aortic wall enhancement was detectable on delayed CT images following nanoparticle administration and correlated with vessel wall CD68 expression. Transmission electron microscopy ascertained the presence of nanoparticles in AAA adventitial macrophages. Nanoparticle-induced CT enhancement on images obtained within one week of AAA induction was predictive of AAA outcome at 4 weeks. Conclusions: By establishing the feasibility of CT-based molecular imaging of phagocytic activity in AAA, this study links the inflammatory signal on early time point images to AAA evolution. This readily available technology overcomes an important barrier to cross-sectional, longitudinal and outcome studies, not only in AAA, but also in other cardiovascular pathologies and facilitates the evaluation of modulatory interventions, and ultimately upon clinical translation, patient management.
Collapse
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Parnaz Boodagh
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Nowshin Sanzida
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mean Ghim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mani Salarian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Gunjan Kukreja
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Saranya Rajendran
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Linyan Wei
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Morven Graham
- CCMI Electron Microscopy Core Facility, Yale University School of Medicine, New Haven, CT (USA)
| | - Xinran Liu
- CCMI Electron Microscopy Core Facility, Yale University School of Medicine, New Haven, CT (USA)
| | - Mehran M. Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| |
Collapse
|
14
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
15
|
Ashkan Z, Hemmati R, Homaei A, Dinari A, Jamlidoost M, Tashakor A. Immobilization of enzymes on nanoinorganic support materials: An update. Int J Biol Macromol 2020; 168:708-721. [PMID: 33232698 DOI: 10.1016/j.ijbiomac.2020.11.127] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Despite the widespread use in various industries, enzyme's instability and non-reusability limit their applications which can be overcome by immobilization. The nature of the enzyme's support material and method of immobilization affect activity, stability, and kinetics properties of enzymes. Here, we report a comparative study of the effects of inorganic support materials on immobilized enzymes. Accordingly, immobilization of enzymes on nanoinorganic support materials significantly improved thermal and pH stability. Furthermore, immobilizations of enzymes on the materials mainly increased Km values while decreased the Vmax values of enzymes. Immobilized enzymes on nanoinorganic support materials showed the increase in ΔG value, and decrease in both ΔH and ΔS values. In contrast to weak physical adsorption immobilization, covalently-bound and multipoint-attached immobilized enzymes do not release from the support surface to contaminate the product and thus the cost is decreased while the product quality is increased. Nevertheless, nanomaterials can enter the environment and increase health and environmental risks and should be used cautiously. Altogether, it can be predicated that hybrid support materials, directed immobilization methods, site-directed mutagenesis, recombinant fusion protein technology, green nanomaterials and trailor-made supports will be used increasingly to produce more efficient immobilized industrial enzymes in near future.
Collapse
Affiliation(s)
- Zahra Ashkan
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ali Dinari
- Department of Polymer Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Iran
| | - Marzieh Jamlidoost
- Department of Virology, Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Iran
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin 2, Ireland; School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
16
|
Fahmy HM, Ebrahim NM, Gaber MH. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. J Trace Elem Med Biol 2020; 60:126481. [PMID: 32135445 DOI: 10.1016/j.jtemb.2020.126481] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Nanotoxicology is a major field of study that reveals hazard effects of nanomaterials on the living cells. METHODS In the present study, Copper/Copper oxide nanoparticles (Cu/CuO NPs) were prepared by the chemical reduction method and characterized by different techniques such as: X-Ray Diffraction, Transmission and Scanning Electron Microscopy. Evaluation of the toxicity of Cu/CuO NPs was performed on 2 types of cells: human lung normal cell lines (WI-38) and human lung carcinoma cell (A549). To assess the toxicity of the prepared Cu/CuOs NPs, the two cell types were exposed to Cu/CuO NPs for 72 h. The half-maximal inhibitory concentration IC50 of Cu/CuO NPs for both cell types was separately determined and used to examine the cell genotoxicity concurrently with the determination of some oxidative stress parameters: nitric oxide, glutathione reduced, hydrogen peroxide, malondialdehyde and superoxide dismutase. RESULTS Cu/CuO NPs suppressed proliferation and viability of normal and carcinoma lung cells. Treatment of both cell types with their IC50's of Cu/CuO NPs resulted in DNA damage besides the generation of reactive oxygen species and consequently the generation of a state of oxidative stress. CONCLUSION Overall, it can be concluded that the IC50's of the prepared Cu/CuO NPs were cytotoxic and genotoxic to both normal and cancerous lung cells.
Collapse
Affiliation(s)
| | - Nashwa Moatez Ebrahim
- Faculty of Physical Therapy, Modern University for Science and Technology (MTI), Egypt
| | - Mohamed Hassaneen Gaber
- Biophysics Department, Faculty of Science, Cairo University, Egypt; Faculty of Engineering, British University in Egypt (BUE), Egypt
| |
Collapse
|
17
|
Kirubaharan CJ, Kumar GG, Sha C, Zhou D, Yang H, Nahm KS, Raj BS, Zhang Y, Yong YC. Facile fabrication of Au@polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135136] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Natarajan S, Harini K, Gajula GP, Sarmento B, Neves-Petersen MT, Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42833-019-0002-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractMagnetic iron oxide nanoparticles (MIONPs) play a major role in the emerging fields of nanotechnology to facilitate rapid advancements in biomedical and industrial platforms. The superparamagnetic properties of MIONPs and their environment friendly synthetic methods with well-defined particle size have become indispensable to obtain their full potential in a variety of applications ranging from cellular to diverse areas of biomedical science. Thus, the broadened scope and need for MIONPs in their demanding fields of applications required to be highlighted for a comprehensive understanding of their state-of-the-art. Many synthetic methods, however, do not entirely abolish their undesired cytotoxic effects caused by free radical production and high iron dosage. In addition, the agglomeration of MIONPs has also been a major problem. To alleviate these issues, suitable surface modification strategies adaptive to MIONPs has been suggested not only for the effective cytotoxicity control but also to minimize their agglomeration. The surface modification using inorganic and organic polymeric materials would represent an efficient strategy to utilize the diagnostic and therapeutic potentials of MIONPs in various human diseases including cancer. This review article elaborates the structural and magnetic properties of MIONPs, specifically magnetite, maghemite and hematite, followed by the important synthetic methods that can be exploited for biomedical approaches. The in vivo cytotoxic effects and the possible surface modifications employed to eliminate the cytotoxicity thereby enhancing the nanoparticle efficacy are also critically discussed. The roles and applications of surface modified MIONPs in medical and industrial platforms have been described for the benefits of global well-being.
Collapse
|
19
|
|
20
|
Harris M, Laskaratou D, Elst LV, Mizuno H, Parac-Vogt TN. Amphiphilic Nanoaggregates with Bimodal MRI and Optical Properties Exhibiting Magnetic Field Dependent Switching from Positive to Negative Contrast Enhancement. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5752-5761. [PMID: 30640430 DOI: 10.1021/acsami.8b18456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed micelles based on amphiphilic gadolinium(III)-DOTA and europium(III)-DTPA complexes were synthesized and evaluated for their paramagnetic and optical properties as potential bimodal contrast agents. Amphiphilic folate molecule for targeting the folate receptor protein, which is commonly expressed on the surface of many human cancer cells, was used in the self-assembly process in order to create nanoaggregates with targeting properties. Both targeted and nontargeted nanoaggregates formed monodisperse micelles having distribution maxima of 10 nm. The micelles show characteristic europium(III) emission with quantum yields of 2% and 1.1% for the nontargeted and targeted micelles, respectively. Fluorescence microscopy using excitation at 405 nm and emission at 575-675 nm was employed to visualize the nanoaggregates in cultured HeLa cells. The uptake of folate-targeted and nontargeted micelles is already visible after 5 h of incubation and was characterized with the europium(III) emission, which is clearly observable in the cytoplasm of the cells. The very fast longitudinal relaxivity r1 of ca. 26 s-1 mM-1 per gadolinium(III) ion was observed for both micelles at 60 MHz and 310 K. Upon increasing the magnetic field to 300 MHz, the nanoaggregates exhibited a large switching to transversal relaxivity with r2 value of ca. 52 s-1 mM-1 at 310 K. Theoretical fitting of the 1H NMRD profiles indicate that the efficient T1 and T2 relaxations are sustained by the favorable magnetic and electron-configuration properties of the gadolinium(III) ion, rotational correlation time, and coordinated water molecule. These nanoaggregates could have versatile application as a positive contrast agent at the currently used magnetic imaging field strengths and a negative contrast agent in higher field applications, while at the same time offering the possibility for the loading of hydrophobic therapeutics or targeting molecules.
Collapse
Affiliation(s)
- Michael Harris
- Department of Chemistry , KU Leuven , 3001 Leuven , Belgium
| | - Danai Laskaratou
- Department of Chemistry, Biochemistry, Molecular and Structural Biology Section, Laboratory of Biomolecular Network Dynamics , KU Leuven , 3001 Leuven , Belgium
| | - Luce Vander Elst
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , 7000 Mons , Belgium
| | - Hideaki Mizuno
- Department of Chemistry, Biochemistry, Molecular and Structural Biology Section, Laboratory of Biomolecular Network Dynamics , KU Leuven , 3001 Leuven , Belgium
| | | |
Collapse
|
21
|
Gautam A, Komal P. Probable ideal size of Ln3+-based upconversion nanoparticles for single and multimodal imaging. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Willing BP, Pepin DM, Marcolla CS, Forgie AJ, Diether NE, Bourrie BCT. Bacterial resistance to antibiotic alternatives: a wolf in sheep's clothing? Anim Front 2018; 8:39-47. [PMID: 32002217 PMCID: PMC6951935 DOI: 10.1093/af/vfy003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna M Pepin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Camila S Marcolla
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Natalie E Diether
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin C T Bourrie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Silvan JM, Zorraquin-Peña I, Gonzalez de Llano D, Moreno-Arribas MV, Martinez-Rodriguez AJ. Antibacterial Activity of Glutathione-Stabilized Silver Nanoparticles Against Campylobacter Multidrug-Resistant Strains. Front Microbiol 2018; 9:458. [PMID: 29615993 PMCID: PMC5864896 DOI: 10.3389/fmicb.2018.00458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
Campylobacter is the leading cause of bacterial diarrheal disease worldwide. Although most episodes of campylobacteriosis are self-limiting, antibiotic treatment is usually needed in patients with serious enteritis, and especially in childrens or the elderly. In the last years, antibiotic resistance in Campylobacter has become a major public health concern and a great interest exists in developing new antimicrobial strategies for reducing the impact of this food-borne pathogen on human health. Among them, the use of silver nanoparticles as antibacterial agents has taken on increased importance in the field of medicine. The aim of the present study was to evaluate the antimicrobial effectiveness of glutathione-stabilized silver nanoparticles (GSH-Ag NPs) against multidrug resistant (MDR) Campylobacter strains isolated from the chicken food chain (FC) and clinical patients (C). The results obtained showed that GSH-Ag NPs were highly effective against all MDR Campylobacter strains tested. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were in a range from 4.92 to 39.4 μg/mL and 9.85 to 39.4 μg/mL, respectively. Cytotoxicity assays were also assessed using human intestinal HT-29, Caco-2, and CCD-18 epithelial cells. Exposure of GSH-Ag NPs to intestinal cells showed a dose-dependent cytotoxic effect in all cell lines between 9.85 and 39.4 μg/mL. More than 60% of the tested Campylobacter strains were susceptible to GSH-Ag NPs concentrations ≤ 9.85 μg/mL, suggesting that practical inhibitory levels could be reached at low GSH-Ag NPs concentrations. Further works are needed with the purpose to evaluate the practical implications of the toxicity studies and to know more about other attributes linked to the biological compatibility. This behavior makes GSH-Ag NPs as a promising tool for the design of novel antibacterial agents for controlling Campylobacter.
Collapse
Affiliation(s)
- Jose M Silvan
- Grupo de Microbiología y Biocatálisis de Alimentos, Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Irene Zorraquin-Peña
- Grupo de Biotecnología Enológica Aplicada, Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Dolores Gonzalez de Llano
- Grupo de Biotecnología Enológica Aplicada, Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - M Victoria Moreno-Arribas
- Grupo de Biotecnología Enológica Aplicada, Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Adolfo J Martinez-Rodriguez
- Grupo de Microbiología y Biocatálisis de Alimentos, Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| |
Collapse
|
24
|
Yu ZF, Shi JP, Li JL, Li PH, Zhang HW. Luminescence enhancement of CaF 2:Nd 3+ nanoparticles in the second near-infrared window for in vivo imaging through Y 3+ doping. J Mater Chem B 2018; 6:1238-1243. [PMID: 32254184 DOI: 10.1039/c7tb03052e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In vivo luminescent imaging in the second biological window (1000-1400 nm, NIR-II) has attracted increasing attention since it can provide high sensitivity to deep tissue in vivo imaging. Herein, we synthesized approximately 10-15 nm-sized NIR-II luminescent nanoparticles (CaF2:Nd3+ NPs). Furthermore, co-doped Y3+ was utilized to enhance the NIR-II luminescence of the CaF2:Nd3+ NPs via breaking the aggregation of Nd3+. The appearance of a (200) diffraction peak and the broadening of the interplanar spacing of the (111) plane both showed that the incorporated Y3+ can dissolve in CaF2 by occupying the Ca2+ sites to form a CaF2-YF3 solid solution. In particular, the addition of Y3+ can greatly enhance the of the NIR-II luminescence of CaF2:Nd3+ NPs. When the Y3+ doped concentration reached 0.30, the luminescence intensity of CaF2:Y3+,Nd3+ NPs was about 65 times that of CaF2:Nd3+ NPs. In addition, the quantum yield of Ca0.68Y0.30Nd0.02F2.32 NPs was 9.30% under the excitation of an 808 nm laser with 483 mW cm-2 power, which was about 3 times higher than that of CaF2:Nd3+ NPs (3.10%). The in vivo imaging results revealed that the in vivo imaging intensity of Ca0.68Y0.30Nd0.02F2.32 NPs was about 2.38-fold stronger than that of Ca0.98F2.02:Nd3+ 0.02 NPs. All of these results indicated that CaF2:Y3+,Nd3+ NPs can be regarded as potential in vivo imaging probes for biological imaging.
Collapse
Affiliation(s)
- Zhen-Feng Yu
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | | | | | | | | |
Collapse
|
25
|
Mancic L, Djukic-Vukovic A, Dinic I, Nikolic MG, Rabasovic MD, Krmpot AJ, Costa AMLM, Marinkovic BA, Mojovic L, Milosevic O. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv 2018; 8:27429-27437. [PMID: 35540002 PMCID: PMC9083799 DOI: 10.1039/c8ra04178d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022] Open
Abstract
The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic α phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (2H11/2, 4S3/2 → 4I15/2) and stronger red emission (4F9/2 → 4I15/2), as a result of enhanced non-radiative 4I11/2 → 4I13/2 Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 μg ml−1, without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma. The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery.![]()
Collapse
Affiliation(s)
- Lidija Mancic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
- Belgrade
- Serbia
| | - Aleksandra Djukic-Vukovic
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- Serbia
| | - Ivana Dinic
- Innovation Center of the Faculty of Chemistry
- University of Belgrade
- Serbia
| | - Marko G. Nikolic
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Mihailo D. Rabasovic
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Aleksandar J. Krmpot
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Antonio M. L. M. Costa
- Department of Chemical and Materials Engineering
- Pontifical Catholic University of Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Bojan A. Marinkovic
- Department of Chemical and Materials Engineering
- Pontifical Catholic University of Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Ljiljana Mojovic
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- Serbia
| | - Olivera Milosevic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
- Belgrade
- Serbia
| |
Collapse
|
26
|
Harris M, Henoumont C, Peeters W, Toyouchi S, Vander Elst L, Parac-Vogt TN. Amphiphilic complexes of Ho(iii), Dy(iii), Tb(iii) and Eu(iii) for optical and high field magnetic resonance imaging. Dalton Trans 2018; 47:10646-10653. [DOI: 10.1039/c8dt01227j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic lanthanide(iii) complexes self-assemble into monodisperse micelles with favourable properties for optical and high field magnetic resonance imaging.
Collapse
Affiliation(s)
| | - Céline Henoumont
- General, Organic and Biomedical Chemistry
- NMR and Molecular Imaging Laboratory
- University of Mons
- 7000 Mons
- Belgium
| | | | | | - Luce Vander Elst
- General, Organic and Biomedical Chemistry
- NMR and Molecular Imaging Laboratory
- University of Mons
- 7000 Mons
- Belgium
| | | |
Collapse
|
27
|
Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s41204-017-0029-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Lee DY, Kim JY, Lee Y, Lee S, Miao W, Kim HS, Min JJ, Jon S. Black Pigment Gallstone Inspired Platinum-Chelated Bilirubin Nanoparticles for Combined Photoacoustic Imaging and Photothermal Therapy of Cancers. Angew Chem Int Ed Engl 2017; 56:13684-13688. [DOI: 10.1002/anie.201707137] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Dong Yun Lee
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Jin Yong Kim
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Yonghyun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences, KAIST; 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences, KAIST; 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Wenjun Miao
- KAIST Institute for the BioCentury; Department of Biological Sciences, KAIST; 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Hyeon Sik Kim
- Department of Nuclear Medicine; Chonnam National University Hwasun Hospital; 322 Seoyang-ro Hwasun 58128 Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine; Chonnam National University Hwasun Hospital; 322 Seoyang-ro Hwasun 58128 Republic of Korea
| | - Sangyong Jon
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
- KAIST Institute for the BioCentury; Department of Biological Sciences, KAIST; 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
29
|
Lee DY, Kim JY, Lee Y, Lee S, Miao W, Kim HS, Min JJ, Jon S. Black Pigment Gallstone Inspired Platinum-Chelated Bilirubin Nanoparticles for Combined Photoacoustic Imaging and Photothermal Therapy of Cancers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong Yun Lee
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Jin Yong Kim
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Yonghyun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences, KAIST; 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences, KAIST; 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Wenjun Miao
- KAIST Institute for the BioCentury; Department of Biological Sciences, KAIST; 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Hyeon Sik Kim
- Department of Nuclear Medicine; Chonnam National University Hwasun Hospital; 322 Seoyang-ro Hwasun 58128 Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine; Chonnam National University Hwasun Hospital; 322 Seoyang-ro Hwasun 58128 Republic of Korea
| | - Sangyong Jon
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
- KAIST Institute for the BioCentury; Department of Biological Sciences, KAIST; 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
30
|
Khalid Q, Ahmad M, Minhas MU. Synthesis of β-cyclodextrin hydrogel nanoparticles for improving the solubility of dexibuprofen: characterization and toxicity evaluation. Drug Dev Ind Pharm 2017; 43:1873-1884. [DOI: 10.1080/03639045.2017.1350703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qandeel Khalid
- Faculty of Pharmacy and Alternative Medicine, the Islamia University of Bahawalpur, Punjab, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy and Alternative Medicine, the Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Usman Minhas
- Faculty of Pharmacy and Alternative Medicine, the Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
31
|
Atabaev TS, Shin YC, Song SJ, Han DW, Hong NH. Toxicity and T₂-Weighted Magnetic Resonance Imaging Potentials of Holmium Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E216. [PMID: 28783114 PMCID: PMC5575698 DOI: 10.3390/nano7080216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/15/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022]
Abstract
In recent years, paramagnetic nanoparticles (NPs) have been widely used for magnetic resonance imaging (MRI). This paper reports the fabrication and toxicity evaluation of polyethylene glycol (PEG)-functionalized holmium oxide (Ho₂O₃) NPs for potential T₂-weighted MRI applications. Various characterization techniques were used to examine the morphology, structure and chemical properties of the prepared PEG-Ho₂O₃ NPs. MRI relaxivity measurements revealed that PEG-Ho₂O₃ NPs could generate a strong negative contrast in T₂-weighted MRI. The pilot cytotoxicity experiments showed that the prepared PEG-Ho₂O₃ NPs are biocompatible at concentrations less than 16 μg/mL. Overall, the prepared PEG-Ho₂O₃ NPs have potential applications for T₂-weighted MRI imaging.
Collapse
Affiliation(s)
- Timur Sh Atabaev
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.
| | - Yong Cheol Shin
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Nguyen Hoa Hong
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
32
|
Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int J Biol Macromol 2017; 101:254-272. [DOI: 10.1016/j.ijbiomac.2017.03.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
|
33
|
Ghosh PR, Fawcett D, Sharma SB, Poinern GEJ. Production of High-Value Nanoparticles via Biogenic Processes Using Aquacultural and Horticultural Food Waste. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E852. [PMID: 28773212 PMCID: PMC5578218 DOI: 10.3390/ma10080852] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 02/03/2023]
Abstract
The quantities of organic waste produced globally by aquacultural and horticulture are extremely large and offer an attractive renewable source of biomolecules and bioactive compounds. The availability of such large and diverse sources of waste materials creates a unique opportunity to develop new recycling and food waste utilisation strategies. The aim of this review is to report the current status of research in the emerging field of producing high-value nanoparticles from food waste. Eco-friendly biogenic processes are quite rapid, and are usually carried out at normal room temperature and pressure. These alternative clean technologies do not rely on the use of the toxic chemicals and solvents commonly associated with traditional nanoparticle manufacturing processes. The relatively small number of research articles in the field have been surveyed and evaluated. Among the diversity of waste types, promising candidates and their ability to produce various high-value nanoparticles are discussed. Experimental parameters, nanoparticle characteristics and potential applications for nanoparticles in pharmaceuticals and biomedical applications are discussed. In spite of the advantages, there are a number of challenges, including nanoparticle reproducibility and understanding the formation mechanisms between different food waste products. Thus, there is considerable scope and opportunity for further research in this emerging field.
Collapse
Affiliation(s)
- Purabi R Ghosh
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Derek Fawcett
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Shashi B Sharma
- Department of Primary Industries and Regional Development, 3 Baron Hay Court, South Perth, Western Australia 6151, Australia.
| | - Gerrard E J Poinern
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
34
|
A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. ACTA ACUST UNITED AC 2017. [DOI: 10.1155/2017/8013850] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Today there is a growing need to develop reliable, sustainable, and ecofriendly protocols for manufacturing a wide range of metal and metal oxide nanoparticles. The biogenic synthesis of nanoparticles via nanobiotechnology based techniques has the potential to deliver clean manufacturing technologies. These new clean technologies can significantly reduce environmental contamination and decease the hazards to human health resulting from the use of toxic chemicals and solvents currently used in conventional industrial fabrication processes. The largely unexplored marine environment that covers approximately 70% of the earth’s surface is home to many naturally occurring and renewable marine plants. The present review summarizes current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae (commonly known as seaweeds) and seagrasses. Both groups of marine plants contain a wide variety of biologically active compounds and secondary metabolites that enables these plants to act as biological factories for the manufacture of metal and metal oxide nanoparticles.
Collapse
|
35
|
Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang JY. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B 2017; 5:6193-6216. [DOI: 10.1039/c7tb01156c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we discuss recent advances of I–III–VI QDs with a major focus on synthesis and biomedical applications; advantages include low toxicity and fluorescent tuning in the biological window.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | | | - Adi Permadi
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Mulu Alemayehu Abate
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| |
Collapse
|
36
|
Zhang S, Zheng Y, Fu DY, Li W, Wu Y, Li B, Wu L. Biocompatible supramolecular dendrimers bearing a gadolinium-substituted polyanionic core for MRI contrast agents. J Mater Chem B 2017; 5:4035-4043. [DOI: 10.1039/c6tb03263j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two hybrid supramolecular complexes comprising magnetic core and dendritic periphery were prepared, which exhibited uniform size, definite molecular weight and chemical composition, and were applicable as enhanced contrast agents.
Collapse
Affiliation(s)
- Simin Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Yanmei Zheng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| |
Collapse
|
37
|
Iacovita C, Florea A, Dudric R, Pall E, Moldovan AI, Tetean R, Stiufiuc R, Lucaciu CM. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties. Molecules 2016; 21:E1357. [PMID: 27754394 PMCID: PMC6274490 DOI: 10.3390/molecules21101357] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022] Open
Abstract
Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe₃O₄-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/gMNP for the small monocrystalline MNPs and only 400 W/gMNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism.
Collapse
Affiliation(s)
- Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
| | - Roxana Dudric
- Faculty of Physics, "Babes Bolyai" University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Emoke Pall
- Department of Reproduction Obstetrics and Veterinary Gynecology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania.
| | - Alin Iulian Moldovan
- Department of Bionanoscopy, MedFuture Research Center for Advance Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania.
| | - Romulus Tetean
- Faculty of Physics, "Babes Bolyai" University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Rares Stiufiuc
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
- Department of Bionanoscopy, MedFuture Research Center for Advance Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania.
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
| |
Collapse
|
38
|
Lee DG, An SY, Um MS, Choi WJ, Noh SM, Jung HW, Oh JK. Photo-induced thiol-ene crosslinked polymethacrylate networks reinforced with Al2O3 nanoparticles. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules 2016; 21:E836. [PMID: 27355939 PMCID: PMC6273897 DOI: 10.3390/molecules21070836] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023] Open
Abstract
Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.
Collapse
Affiliation(s)
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| | - Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| |
Collapse
|
40
|
Ramachandra Kurup Sasikala A, Thomas RG, Unnithan AR, Saravanakumar B, Jeong YY, Park CH, Kim CS. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging. Sci Rep 2016; 6:20543. [PMID: 26841709 PMCID: PMC4740792 DOI: 10.1038/srep20543] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/07/2016] [Indexed: 01/28/2023] Open
Abstract
A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide-Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia.
Collapse
Affiliation(s)
| | - Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Afeesh Rajan Unnithan
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Chan Hee Park
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
41
|
Khosroshahi ME, Rezvani HA, Keshvari H, Bonakdar S, Tajabadi M. Evaluation of cell viability and T2 relaxivity of fluorescein conjugated SPION-PAMAM third generation nanodendrimers for bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:544-52. [PMID: 26952457 DOI: 10.1016/j.msec.2016.01.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/11/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
This study has investigated the possibility of using fluorescent dendronized magnetic nanoparticles (FDMNPs) for potential applications in drug delivery and imaging. FDMNPs were first synthesized, characterized and then the effect of Polyamidoamine (PAMAM) dendrimer functionalization and fluorescein isothiocyanate (FITC) conjugation on biocompatibility of superparamagnetic iron oxide nanoparticles (SPIONs) was evaluated. The nanostructures' cytotoxicity tests were performed at different concentrations from 10 to 500 μg/mL using MCF-7 and L929 cell lines. IC50 in MTT assay were 139.22 and 201.88 μg/mL for DMNP incubated L929 and MCF-7 cell lines respectively, whereas the cell viability for FDMNPs did not decrease to 50%. The results showed that FITC conjugation diminishes the toxicity of dendronized magnetic nanoparticles (DMNPs) mainly due to the reduction of surface charge. DMNP appears to be cytotoxic at the concentration levels being used for both cell lines. On the contrary, FDMNPs showed more biocompatibility and cell viability of MCF-7 and L929 cell lines at all concentrations. The fluorescence microscopy of FDMNPs incubated with MCF-7 cells showed a successful localization of cells indicating their ability for applications such as a magnetic fluorescent probe in cell studies and imaging purposes. T2 relaxivity measurements demonstrated the applicability of the synthesized nanostructures as the contrast agents in tissue differential assessment by altering their relaxation times. In our case, the r2 relaxivity of FDMNPs was measured as 103.67 mM(-1)S(-1).
Collapse
Affiliation(s)
- Mohammad E Khosroshahi
- Amirkabir University of Technology, Faculty of Biomedical Engineering, Biomaterial group, Laser & nanobiophotonics Lab. Tehran, Iran; University of Toronto, Department of Mechanical & Industrial Engineering, Toronto, Canada.
| | - Hamideh Alanagh Rezvani
- Amirkabir University of Technology, Faculty of Biomedical Engineering, Biomaterial group, Laser & nanobiophotonics Lab. Tehran, Iran
| | - Hamid Keshvari
- Amirkabir University of Technology, Faculty of Biomedical Engineering, Biomaterial group, Laser & nanobiophotonics Lab. Tehran, Iran
| | | | - Maryam Tajabadi
- Amirkabir University of Technology, Faculty of Biomedical Engineering, Biomaterial group, Laser & nanobiophotonics Lab. Tehran, Iran
| |
Collapse
|
42
|
Hajba L, Guttman A. The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices. Biotechnol Adv 2016; 34:354-361. [PMID: 26853617 DOI: 10.1016/j.biotechadv.2016.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
Abstract
Magnetic nanoparticles are frequently used in a wide range of biomedical applications. In the first part of this review the most commonly used preparation and surface coating approaches of MNPs are briefly summarized including multifunctional hybrid particles. The second part gives a detailed overview of the use of MNPs in "traditional" biomedical applications related to cancer theranostics, like magnetic resonance imaging, drug delivery, hyperthermia and also their applicability in the next generation of point of care devices based on micro nuclear magnetic resonance and surface enhanced Raman spectroscopic detection technology that all can be routinely applied in everyday clinical practice.
Collapse
Affiliation(s)
- Laszlo Hajba
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| | - Andras Guttman
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary; Horvath Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
43
|
Sasikala ARK, Unnithan AR, Yun YH, Park CH, Kim CS. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater 2016; 31:122-133. [PMID: 26687978 DOI: 10.1016/j.actbio.2015.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 11/28/2022]
Abstract
The study describes the design and synthesis of an implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. This device is achieved using a two-component smart nanofiber matrix from monodisperse iron oxide nanoparticles (IONPs) as well as bortezomib (BTZ), a chemotherapeutic drug. The IONP-incorporated nanofiber matrix was developed by electrospinning a biocompatible and bioresorbable polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by exploiting mussel-inspired surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the borate-containing BTZ anticancer drug through a catechol metal binding in a pH-sensitive manner. Thus, an implantable smart magnetic nanofiber device can be exploited to both apply hyperthermia with an alternating magnetic field (AMF) and to achieve cancer cell-specific drug release to enable synergistic cancer therapy. These results confirm that the BTZ-loaded mussel-inspired magnetic nanofiber matrix (BTZ-MMNF) is highly beneficial not only due to the higher therapeutic efficacy and low toxicity towards normal cells but also, as a result of the availability of magnetic nanoparticles for repeated hyperthermia application and tumor-triggered controlled drug release. STATEMENT OF SIGNIFICANCE The current work report on the design and development of a smart nanoplatform responsive to a magnetic field to administer both hyperthermia and pH-dependent anticancer drug release for the synergistic anticancer treatment. The iron oxide nanoparticles (IONPs) incorporated nanofiber matrix was developed by electrospinning a biocompatible polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the boratecontaining anticancer drug bortezomib through a catechol metal binding in a pH-sensitive manner. This implantable magnetic nanofiber device can be exploited to apply hyperthermia with an alternating magnetic field and to achieve cancer cell-specific drug release to enable synergistic cancer therapy, which results in an improvement in both quality of life and patient compliance.
Collapse
Affiliation(s)
| | - Afeesh Rajan Unnithan
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Yeo-Heung Yun
- Department of Bioengineering, North Carolina Agricultural & Technical State University, Greensboro, NC 27411, United States
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
44
|
Ramachandra Kurup Sasikala A, Unnithan AR, Park CH, Kim CS. Design and application of a smart nanodevice by combining cationic drug delivery and hyperthermia for cancer apoptosis. J Mater Chem B 2016; 4:785-792. [DOI: 10.1039/c5tb02011e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration of the synergistic anticancer mechanism exhibited by smart mesoporous silica nanoparticles by combining cationic doxorubicin delivery with hyperthermia.
Collapse
Affiliation(s)
| | - Afeesh Rajan Unnithan
- Department of Bionanosystem Engineering
- Graduate School
- Chonbuk National University
- Jeonju 561-756
- Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering
- Graduate School
- Chonbuk National University
- Jeonju 561-756
- Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering
- Graduate School
- Chonbuk National University
- Jeonju 561-756
- Republic of Korea
| |
Collapse
|
45
|
Wang L, Baudis S, Kratz K, Lendlein A. Characterization of bi-layered magnetic nanoparticles synthesized via two-step surface-initiated ring-opening polymerization. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2015-0607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)2 as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto- and thermo-sensitive polymer networks were prepared via two subsequent surface-initiated ring-opening polymerizations (ROPs) with ω-pentadecalactone and ε-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85°C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and 1H-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(ω-pentadecalactone) (OPDL) and oligo(ε-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few ω-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)2 was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP.
Collapse
Affiliation(s)
| | - Stefan Baudis
- 1Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Karl Kratz
- 1Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | | |
Collapse
|
46
|
Hurley KR, Ring HL, Kang H, Klein ND, Haynes CL. Characterization of Magnetic Nanoparticles in Biological Matrices. Anal Chem 2015; 87:11611-9. [DOI: 10.1021/acs.analchem.5b02229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Katie R. Hurley
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Hattie L. Ring
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Center
for Magnetic Resonance Research, University of Minnesota, 2021 Sixth
Street SE, Minneapolis, Minnesota 55455, United States
| | - Hyunho Kang
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nathan D. Klein
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
47
|
Park JH, Kang HJ, Kwon DY, Lee BK, Lee B, Jang JW, Chun HJ, Kim JH, Kim MS. Biodegradable poly(lactide-co-glycolide-co-ε-caprolactone) block copolymers - evaluation as drug carriers for a localized and sustained delivery system. J Mater Chem B 2015; 3:8143-8153. [PMID: 32262871 DOI: 10.1039/c5tb01542a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To develop an appropriate drug carrier for drug delivery systems, we prepared random poly(lactide-co-glycolide-co-ε-caprolactone) (PLGC) copolymers in comparison to commercial poly(lactic acid-co-glycolic acid) (PLGA) grades. The molecular weights of PLGC copolymers varied from 20k to 90k g mol-1 in the total polyester segments, when poly-l-lactic acid (PLLA), polyglycolic acid (PGA), and polycaprolactone (PCL) compositions were kept constant. The lengths of PLGC copolymers varied from 10 : 10 : 80 to 40 : 40 : 20 in the PLLA : PGA : PCL segments, when the molecular weights of the total polyester segments were kept constant. The crystalline properties of the PLGA copolymers can be changed to amorphous by the incorporation of PCL segments. In vitro and in vivo degradation behavior can be easily tuned from a few days to a few weeks by changing the chemical composition of the PLGC copolymers. The in vivo inflammation associated with the PLGC implants was less pronounced than that associated with PLGA. In this study, as drug delivery carriers for locally implantable paclitaxel (Ptx) dosages, Ptx-loaded PLGC and PLGA films showed in vitro and in vivo Ptx release for 35 days. The orders of Ptx release showed profiles similar to those of in vitro and in vivo degradation of PLGC. Using near-infrared (NIR) fluorescence imaging, we confirmed the sustained release of NIR over an extended period from IR-780-loaded PLGC and PLGA implanted in live animals. In conclusion, we confirmed that compared to PLGA, PLGC effectively acts as a drug carrier for drug delivery systems.
Collapse
Affiliation(s)
- Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-759, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Carniato F, Tei L, Phadngam S, Isidoro C, Botta M. NaGdF4Nanoparticles Coated with Functionalised Ethylenediaminetetraacetic Acid as Versatile Probes for Dual Optical and Magnetic Resonance Imaging. Chempluschem 2014; 80:503-510. [DOI: 10.1002/cplu.201402245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/29/2014] [Indexed: 11/07/2022]
|
49
|
Kuzovkov VN, Zvejnieks G, Kotomin EA. Theory of non-equilibrium critical phenomena in three-dimensional condensed systems of charged mobile nanoparticles. Phys Chem Chem Phys 2014; 16:13974-83. [PMID: 24898383 DOI: 10.1039/c3cp55181d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of 3d electrostatic self-assembly (SA) in systems of charged nanoparticles (NPs) is one of the most difficult theoretical problems. In particular, the limiting case of negligible or very low polar media (e.g. salt) concentration, where the long-range NP interactions cannot be reduced to commonly used effective short-range (Yukawa) potentials, remains unstudied. Moreover, the present study has demonstrated that unlike the Debye-Hückel theory, a complete screening of the charges in SA kinetics (dynamic SA) is not always possible. Generally speaking, one has to take into account implicitly how each NP interacts with all other NPs (the true long-range interactions). Traditional theoretical methods allow us to monitor such electrostatic 3d system kinetics only for very short times, which is far from sufficient for understanding the dynamic SA. In this paper, combining an integrated analytical approach (the non-linear integro-differential kinetic equation for correlation functions) and reverse Monte Carlo in the 3d case, we have obtained a self-consistent solution of this challenging problem. We demonstrate, in particular, the existence of critical points and critical phenomena in the non-equilibrium kinetics in a 3d system of oppositely charged mobile NPs.
Collapse
Affiliation(s)
- V N Kuzovkov
- Institute for Solid State Physics, University of Latvia, Riga, Latvia.
| | | | | |
Collapse
|
50
|
da Silva EP, Sitta DLA, Fragal VH, Cellet TSP, Mauricio MR, Garcia FP, Nakamura CV, Guilherme MR, Rubira AF, Kunita MH. Covalent TiO(2)/pectin microspheres with Fe(3)O(4) nanoparticles for magnetic field-modulated drug delivery. Int J Biol Macromol 2014; 67:43-52. [PMID: 24565898 DOI: 10.1016/j.ijbiomac.2014.02.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
Abstract
Covalent TiO(2)-co-pectin microspheres containing Fe(3)O(4) nanoparticles were developed through an ultrasound-induced crosslinking/polymerization reaction between the glycidyl methacrylate from vinyl groups in TiO(2) and in pectin. ζ-potentials became less negative in the nanostructured microspheres, caused by the presence of both inorganic particles in the negatively charged pectin. The nanostructured pectin microspheres showed an amoxicillin release rate slower than that of pure pectin microspheres. The proposed microspheres were found to be a sustained release system of amoxicillin in the acid medium. Furthermore, the antibiotic release may be modulated by exposition of the microspheres to a remote magnetic field. In practical terms, the nanostructured microspheres could deliver a larger proportion of their initial load to specific site of action. The cytotoxic concentrations for 50% of VERO cells (CC(50)), calculated as the concentration required to reduce cell viability by 50% after 72h of incubation, for pectin-only microspheres and nanostructured pectin microspheres were 217.7±6.5 and 121.5±4.9μgmL(-1), respectively. The obtained CC(50) values indicated acceptable cytotoxic levels for an incubation period of 72h, showing that the pectin microspheres have a great pharmacological potential for uses in biological environments, even after the introduction of both Fe(3)O(4) and TiO(2).
Collapse
Affiliation(s)
- Elisangela P da Silva
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Danielly L A Sitta
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Vanessa H Fragal
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Thelma S P Cellet
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Marcos R Mauricio
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Francielle P Garcia
- Department of Basic Sciences of Health, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Department of Basic Sciences of Health, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil; Graduate Program in Pharmaceutical Sciences, Department of Basic Science of Health, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Marcos R Guilherme
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Adley F Rubira
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Marcos H Kunita
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|