1
|
Gupta S, Dutta B, Shelar SB, Gangwar A, Bhattacharyya K, Bairwa KK, Hassan PA, Barick KC. Polyphosphate-Mediated Crystallographic and Colloidal Stabilization of CuS Nanoparticles: Enhanced NIR-Responsive Chemo-Photothermal Efficacy. ACS APPLIED BIO MATERIALS 2024; 7:6641-6655. [PMID: 39257063 DOI: 10.1021/acsabm.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Photothermal therapy (PTT) is an emerging treatment modality for cancer management. However, the photothermal agents (PTAs) used in PTT should have sufficient biocompatibility, water dispersibility, and good photoresponsive. In this aspect, water-dispersible and biocompatible linear polyphosphate (LP)-functionalized CuS nanoparticles (LP-CuS NPs) were developed using sodium tripolyphosphate (LP molecule) as a surface passivating agent. The successful formation of the green covellite CuS phase was confirmed by X-ray diffraction and TEM analyses, and its surface functionalization with the LP ligand was evident from X-ray photoelectron spectroscopy, Fourier transform infrared, thermogravimetric analysis, and light scattering measurements. It has been found that the use of LP not only stabilizes the crystallographic covellite CuS phase by overcoming the requirement of a soft ligand but also provides long-term aqueous colloidal stability, which is essential for PTT applications. The aqueous suspension of LP-CuS NPs showed excellent heating efficacy under near infrared (NIR) light irradiation (980 nm) and has a strong binding affinity towards anticancer drug, doxorubicin hydrochloride (DOX). The drug-loaded systems (DOX@LP-CuS NPs) revealed a pH-dependent drug release behavior with higher concentrations in a mild acidic environment. The in vitro studies showed substantial cellular uptake of DOX-loaded systems in cancer cell lines and enhanced toxicity towards them upon irradiation of NIR light through apoptotic induction, suggesting their potential application in chemo-photothermal therapy.
Collapse
Affiliation(s)
- Sonali Gupta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S B Shelar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Asnit Gangwar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - K Bhattacharyya
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K K Bairwa
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Zu H, Wu Y, Meng H, Cheng X, Wang Y, Zhang LW, Wang Y. Tumor Metabolism Aiming Cu 2-xS Nanoagents Mediate Photothermal-Derived Cuproptosis and Immune Activation. ACS NANO 2024; 18:23941-23957. [PMID: 39171773 DOI: 10.1021/acsnano.3c10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cuproptosis is an emerging form of cell death that relies on the targeted delivery of copper ions to lipoylated tricarboxylic acid cycle proteins. However, a major challenge associated with cuproptosis is its potential to kill both normal and tumor cells without discrimination. Therefore, it is crucial to develop strategies for precise intracellular delivery and redox control of copper to create effective cuproptosis-based tumor therapies. We have introduced a class of nanoagents called metabolism aiming Cu2-xS (MACuS) through a glucose-mediated biomineralization approach. MACuS nanoagents can be specifically targeted to tumors via the glucose transport receptor 1, and we found that NIR-II irradiation can not only result in direct hyperthermia ablation of tumor cells but also facilitate efficient cuproptosis and enhance reactive oxygen species-induced cytotoxicity in tumor cells. As a result, the triple effect of MACuS treatment induced immunogenic cell death, which triggered systemic antitumor immune responses and demonstrated potent efficacy in inhibiting growth, metastasis, and recurrence in mouse and rabbit breast cancer models. The precise intracellular delivery and redox control of copper provided by MACuS hold great potential for the development of highly efficient cuproptosis-based tumor therapies with minimal off-target effects.
Collapse
Affiliation(s)
- He Zu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hezhang Meng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Agoro MA, Meyer EL, Olayiwola OI. Assemble of porous heterostructure thin film through CuS passivation for efficient electron transport in dye-sensitized solar cells. DISCOVER NANO 2024; 19:130. [PMID: 39158675 PMCID: PMC11333774 DOI: 10.1186/s11671-024-04082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Three different modified solar cells have been passivated with copper sulfide (CuS) on a TiO2 electrode and manganese sulfide (γ-MnS) hexagonal as photon absorbers. The MnS were prepared using (a-c) bis(N-Piperl-N-p-anisildithiocarbamato)Manganese(II) Complexes Mn[N-Piper-N-p-Anisdtc] as (MnS_1), N-p-anisidinyldithiocarbamato Mn[N-p-anisdtc] as (MnS_2) and N-piperidinyldithiocarbamato Mn[N-piperdtc] as (MnS_3). The corresponding passivated films were denoted as CM-1, CM-2, and CM-3. The influence of passivation on the structural, optical, morphological, and photochemical properties of the prepared devices has been investigated. Raman spectra show that the combination of this heterostructure is triggered by the variation in particle size and surface effect, thus resulting in good electronic conductivity. The narrow band gaps could be attributed to good interaction between the passivative materials on the TiO2 surface. CM-2 cells, stability studies show that the cell is polarized and current flows due to electron migration across the electrolyte and interfaces at this steady state. The cyclic voltammetry (CV) curve for the CM-3 with the highest current density promotes the electrocatalytic activity of the assembled solar cell. The catalytic reactions are further confirmed by the interfacial electron lifetimes in the Bode plots and the impedance spectra. The current-voltage (J-V) analysis suggests that the electrons in the conduction band of TiO2/CuS recombine with the semiconductor quantum dots (QDs) and the iodolyte HI-30 electrolyte, resulting in 5.20-6.85% photo-conversions.
Collapse
Affiliation(s)
- Mojeed A Agoro
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.
| | - Edson L Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | | |
Collapse
|
4
|
Rushworth DD, Schenkeveld WDC, Kumar N, Noël V, Dewulf J, van Helmond NAGM, Slomp CP, Lehmann MF, Kraemer SM. Solid phase speciation controls copper mobilisation from marine sediments by methanobactin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173046. [PMID: 38735326 DOI: 10.1016/j.scitotenv.2024.173046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Although marine environments represent huge reservoirs of the potent greenhouse gas methane, they currently contribute little to global net methane emissions. Most of the methane is oxidized by methanotrophs, minimizing escape to the atmosphere. Aerobic methanotrophs oxidize methane mostly via the copper (Cu)-bearing enzyme particulate methane monooxygenase (pMMO). Therefore, aerobic methane oxidation depends on sufficient Cu acquisition by methanotrophs. Because they require both oxygen and methane, aerobic methanotrophs reside at oxic-anoxic interfaces, often close to sulphidic zones where Cu bioavailability can be limited by poorly soluble Cu sulphide mineral phases. Under Cu-limiting conditions, certain aerobic methanotrophs exude Cu-binding ligands termed chalkophores, such as methanobactin (mb) exuded by Methylosinus trichosporium OB3b. Our main objective was to establish whether chalkophores can mobilise Cu from Cu sulphide-bearing marine sediments to enhance Cu bioavailability. Through a series of kinetic batch experiments, we investigated Cu mobilisation by mb from a set of well-characterized sulphidic marine sediments differing in sediment properties, including Cu content and phase distribution. Characterization of solid-phase Cu speciation included X-ray absorption spectroscopy and a targeted sequential extraction. Furthermore, in batch experiments, we investigated to what extent adsorption of metal-free mb and Cu-mb complexes to marine sediments constrains Cu mobilisation. Our results are the first to show that both solid phase Cu speciation and chalkophore adsorption can constrain methanotrophic Cu acquisition from marine sediments. Only for certain sediments did mb addition enhance dissolved Cu concentrations. Cu mobilisation by mb was not correlated to the total Cu content of the sediment, but was controlled by solid-phase Cu speciation. Cu was only mobilised from sediments containing a mono-Cu-sulphide (CuSx) phase. We also show that mb adsorption to sediments limits Cu acquisition by mb to less compact (surface) sediments. Therefore, in sulphidic sediments, mb-mediated Cu acquisition is presumably constrained to surface-sediment interfaces containing mono-Cu-sulphide phases.
Collapse
Affiliation(s)
- Danielle D Rushworth
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands
| | - Walter D C Schenkeveld
- Soil Chemistry and Chemical Soil Quality, Environmental Sciences, Wageningen University, Wageningen, Netherlands.
| | - Naresh Kumar
- Soil Chemistry and Chemical Soil Quality, Environmental Sciences, Wageningen University, Wageningen, Netherlands.
| | - Vincent Noël
- Environmental Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, USA
| | - Jannes Dewulf
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands
| | - Niels A G M van Helmond
- Geochemistry, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands; Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Caroline P Slomp
- Geochemistry, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands; Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Stephan M Kraemer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Tripathi M, Sharma A, Sinharay S, Raichur AM. Effect of PVP Molecular Weights on the Synthesis of Ultrasmall Cus Nanoflakes: Synthesis, Properties, and Potential Application for Phototheranostics. ACS APPLIED BIO MATERIALS 2024; 7:1671-1681. [PMID: 38447193 DOI: 10.1021/acsabm.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Copper sulfide nanoparticles (CuS) hold tremendous potential for applications in photothermal therapy (PTT) and photoacoustic imaging (PAI). However, the conventional chemical coprecipitation method often leads to particle agglomeration issues. To overcome this challenge, we utilized polyvinylpyrrolidone (PVP) as a stabilizing agent, resulting in the synthesis of small PVP-CuS nanoparticles named PC10, PCK30, and PC40. Our study aimed to investigate how different molecular weights of PVP influence the nanoparticles' crystalline characteristics and essential properties, especially their photoacoustic and photothermal responses. While prior research on PVP-assisted CuS nanoparticles has been conducted, our study delves deeper into this area, providing insights into optical properties. Remarkably, all synthesized nanoparticles exhibited a crystalline structure, were smaller than 10 nm, and featured an absorbance peak at 1020 nm, indicating their robust photoacoustic and photothermal capabilities. Among these nanoparticles, PC10 emerged as the standout performer, displaying superior photoacoustic properties. Our photothermal experiments demonstrated significant temperature increases in all cases, with PC10 achieving an impressive efficiency of 51%. Moreover, cytotoxicity assays revealed the nanoparticles' compatibility with cells, coupled with an enhanced incidence of apoptosis compared to necrosis. These findings underscore the promising potential of PVP-stabilized CuS nanoparticles for advanced cancer theranostics.
Collapse
Affiliation(s)
- Madhavi Tripathi
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ananya Sharma
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sanhita Sinharay
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
- College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg 1709, South Africa
| |
Collapse
|
6
|
Bao L, Ali S, Dai C, Zeng Q, Zeng C, Jia Y, Liu X, Wang P, Ren X, Yang T, Bououdina M, Lu ZH, Wei Y, Yu X, Zhou Y. A Full-Spectrum ZnS Photocatalyst with Gradient Distribution of Atomic Copper Dopants and Concomitant Sulfur Vacancies for Highly Efficient Hydrogen Evolution. ACS NANO 2024. [PMID: 38318803 DOI: 10.1021/acsnano.3c12773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A rarely discussed phenomenon in the realm of photocatalytic materials involves the presence of gradient distributed dopants and defects from the interior to the surface. This intriguing characteristic has been successfully achieved in the case of ZnS through the incorporation of atomic monovalent copper ions (Cu+) and concurrent sulfur vacancies (Vs), resulting in a photocatalyst denoted as G-CZS1-x. Through the cooperative action of these atomic Cu dopants and Vs, G-CZS1-x significantly extends its photoabsorption range to encompass the full spectrum (200-2100 nm), which improves the solar utilization ability. This alteration enhances the efficiency of charge separation and optimizes Δ(H*) (free energy of hydrogen adsorption) to approach 0 eV for the hydrogen evolution reaction (HER). It is noteworthy that both surface-exposed atomic Cu and Vs act as active sites for photocatalysis. G-CZS1-x exhibits a significant H2 evolution rate of 1.01 mmol h-1 in the absence of a cocatalyst. This performance exceeds the majority of previously reported photocatalysts, exhibiting approximately 25-fold as ZnS, and 5-fold as H-CZS1-x with homogeneous distribution of equal content Cu dopants and Vs. In contrast to G-CZS1-x, the H adsorption on Cu sites for H-CZS1-x (ΔG(H*) = -1.22 eV) is excessively strong to inhibit the H2 release, and the charge separation efficiency for H-CZS1-x is relatively sluggish, revealing the positive role of a gradient distribution model of dopants and defects on activity enhancement. This work highlights the synergy of atomic dopants and defects in advancing photoactivity, as well as the significant benefit of the controllable distribution model of dopants and defects for photocatalysis.
Collapse
Affiliation(s)
- Linping Bao
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330224, People's Republic of China
| | - Sajjad Ali
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Qing Zeng
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, People's Republic of China
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330224, People's Republic of China
| | - Yushuai Jia
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330224, People's Republic of China
| | - Xin Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330224, People's Republic of China
| | - Ping Wang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330224, People's Republic of China
| | - Xiaohui Ren
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Teng Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110017, People's Republic of China
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Zhang-Hui Lu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330224, People's Republic of China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Xuan Yu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| |
Collapse
|
7
|
Cabrera-German D, Martínez-Gil M, Fuentes-Ríos L, Montiel-González Z, Mazón-Montijo DA, Sotelo-Lerma M. Insights into the SILAR Processing of Cu xZn 1-xS Thin Films via a Chemical, Structural, and Optoelectronic Assessment. ACS OMEGA 2023; 8:48056-48070. [PMID: 38144126 PMCID: PMC10734041 DOI: 10.1021/acsomega.3c06848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Careful analysis of the chemical state of CuxZn1-xS thin films remains an underdeveloped topic although it is key to a better understanding of the phase transformations and the linking between structural and optoelectronic properties needed for tuning the performance of CuxZn1-xS-based next-generation energy devices. Here, we propose a chemical formulation and formation mechanism, providing insights into the successive ionic layer adsorption and reaction (SILAR) processing of CuxZn1-xS, in which the copper concentration directly affects the behavior of the optoelectronic properties. Via chemical, optoelectronic, and structural characterization, including quantitative X-ray photoelectron spectroscopy, we determine that the CuxZn1-xS thin films at low copper concentration are composed of ZnS, metastable CuxZn1-xS, and CuS, where the evidence suggests that a depth compositional gradient exists, which contrasts with homogeneous films reported in the literature. The oxidation states for copper and sulfide species indicate that the films grow following a formation mechanism governed by ionic exchange and diffusion processes. At high copper concentrations, the CuxZn1-xS thin films are covellite CuS that grew on a ZnS seed layer. Hence, this work reiterates that future research related to fine-tuning the application of this material requires a careful analysis of the depth-profile compositional and structural characteristics that can enable high conductivity and transparency.
Collapse
Affiliation(s)
- Dagoberto Cabrera-German
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, México
| | - Miguel Martínez-Gil
- Departamento
de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa, Sonora 85880, México
| | - Lorenzo Fuentes-Ríos
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, México
| | - Zeuz Montiel-González
- CONAHCYT-Centro
de Investigación en Materiales Avanzados S. C., subsede Monterrey, Apodaca, Nuevo Leon 66628, México
- Laboratorio
de Diseño y Optimización de Recubrimientos Avanzados
(DORA-Lab), CIMAV-Mty/TECNL-CIIT, Parque
de Investigación e Innovación Tecnológica, Apodaca, Nuevo Leon 66629, México
| | - Dalia Alejandra Mazón-Montijo
- Laboratorio
de Diseño y Optimización de Recubrimientos Avanzados
(DORA-Lab), CIMAV-Mty/TECNL-CIIT, Parque
de Investigación e Innovación Tecnológica, Apodaca, Nuevo Leon 66629, México
- CONAHCYT-Tecnológico
Nacional de México campus Nuevo León (TECNL), Centro
de Investigación e Innovación Tecnológica (CIIT), Apodaca, Nuevo Leon 66629, México
| | - Mérida Sotelo-Lerma
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, México
| |
Collapse
|
8
|
Oppong-Antwi L, Huang B, Hart JN. Electronic Properties of Transition and Alkaline Earth Metal Doped CuS: A DFT Study. Chemphyschem 2023:e202300417. [PMID: 37792575 DOI: 10.1002/cphc.202300417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Indexed: 10/06/2023]
Abstract
CuS is a unique semiconductor with potential in optoelectronics. Its unusual electronic structure, including a partially occupied valence band, and complex crystal structure with an S-S bond offer unique opportunities and potential applications. In this work, the use of doping to optimize the properties of CuS for various applications is investigated by density functional theory (DFT) calculations. Among the dopants studied, Ni, Zn, and Mg may be the most practical due to their lower formation energies. Doping with Fe, Ni, or Ca induces significant distortion, which may be beneficial for achieving materials with high surface areas and active states. Significantly, doping alters the conductor-like behavior of CuS, opening a band gap by increasing bond ionicity and reducing the S-S bond covalency. Thus, doping CuS can tune the plasmonic properties and transform it from a conductor to an intrinsic fluorescent semiconductor. Ni and Fe doping give the lowest band gaps (0.35 eV and 0.39 eV, respectively), while Mg doping gives the highest (0.86 eV). Doping with Mg, Ca, and Zn may enhance electron mobility and charge separation. Most dopants increase the anisotropy of electron-to-hole mass ratios, enabling device design that exploits directional-dependence for improved performance.
Collapse
Affiliation(s)
- Louis Oppong-Antwi
- School of Materials Science and Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Bosi Huang
- School of Materials Science and Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Judy N Hart
- School of Materials Science and Engineering, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Park J, Kim HK, Park J, Kim B, Baik H, Baik MH, Lee K. Flattening bent Janus nanodiscs expands lattice parameters. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Hu J, Gong Y, Niu L, Li C, Liu X. Sulfur Vacancy-Rich CuS for Improved Surface-Enhanced Raman Spectroscopy and Full-Spectrum Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:128. [PMID: 36616037 PMCID: PMC9823980 DOI: 10.3390/nano13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
There are growing interests in the development of bifunctional semiconducting nanostructures for photocatalysis and real-time monitoring of degradation process on catalysts. Defect engineering is a low-cost approach to manipulating the properties of semiconductors. Herein, we prepared CuS nanoplates by a hydrothermal method at increasing amounts of thioacetamide (CS-1, CS-2, and CS-3) and investigated the influence of sulfur vacancy (Vs) on surface-enhanced Raman spectroscopy (SERS) and photocatalysis performance. SERS intensity of 4-nitrobenzenethiol on CS-3 is 346 and 17 times that of CS-1 and CS-2, respectively, and enhancement factor is 1.34 × 104. Moreover, SERS is successfully applied to monitor the photodegradation of methyl orange. In addition, CS-3 also exhibited higher efficiency of Cr(VI) photoreduction than CS-1 and CS-2, and removal rate is 88%, 96%, and 73% under 2 h UV, 4 h visible, and 4 h near-infrared illumination, respectively. A systematic study including electron paramagnetic resonance spectra, photoelectrochemical measurements, and nitrogen adsorption isotherms were conducted to investigate the underlying mechanism. This work may help to understand the impact of vacancy defect on SERS and photocatalysis, and provide an effective and low-cost approach for the design of multifunctional materials.
Collapse
Affiliation(s)
- Jiapei Hu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, China
| | - Yinyan Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, China
| | - Lengyuan Niu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, China
| | - Can Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
11
|
Park Y, Eyal Z, Pekker P, Chevrier DM, Lefèvre CT, Arnoux P, Armengaud J, Monteil CL, Gal A, Pósfai M, Faivre D. Periplasmic Bacterial Biomineralization of Copper Sulfide Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203444. [PMID: 35975419 PMCID: PMC9534983 DOI: 10.1002/advs.202203444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Metal sulfides are a common group of extracellular bacterial biominerals. However, only a few cases of intracellular biomineralization are reported in this group, mostly limited to greigite (Fe3 S4 ) in magnetotactic bacteria. Here, a previously unknown periplasmic biomineralization of copper sulfide produced by the magnetotactic bacterium Desulfamplus magnetovallimortis strain BW-1, a species known to mineralize greigite (Fe3 S4 ) and magnetite (Fe3 O4 ) in the cytoplasm is reported. BW-1 produces hundreds of spherical nanoparticles, composed of 1-2 nm substructures of a poorly crystalline hexagonal copper sulfide structure that remains in a thermodynamically unstable state. The particles appear to be surrounded by an organic matrix as found from staining and electron microscopy inspection. Differential proteomics suggests that periplasmic proteins, such as a DegP-like protein and a heavy metal-binding protein, could be involved in this biomineralization process. The unexpected periplasmic formation of copper sulfide nanoparticles in BW-1 reveals previously unknown possibilities for intracellular biomineralization that involves intriguing biological control and holds promise for biological metal recovery in times of copper shortage.
Collapse
Affiliation(s)
- Yeseul Park
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Zohar Eyal
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Péter Pekker
- Nanolab, Research Institute of Biomolecular and Chemical EngineeringUniversity of PannoniaEgyetem st. 10Veszprém8200Hungary
| | - Daniel M. Chevrier
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Christopher T. Lefèvre
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Pascal Arnoux
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Jean Armengaud
- Medicines and Healthcare Technologies Department (DMTS) University of Paris‐SaclayFrench Alternative Energies and Atomic Energy Commission (CEA)National Research Institute for Agriculture, Food and the Environment (INRAE)Pharmacology and Immunoanalysis unit (SPI)Bagnols‐sur‐Cèze30200France
| | - Caroline L. Monteil
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Assaf Gal
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Mihály Pósfai
- Nanolab, Research Institute of Biomolecular and Chemical EngineeringUniversity of PannoniaEgyetem st. 10Veszprém8200Hungary
- ELKH‐PE Environmental Mineralogy Research GroupEgyetem st. 10Veszprém8200Hungary
| | - Damien Faivre
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| |
Collapse
|
12
|
Moëlo Y, Popa AF, Dubost V. The bond valence model as a prospective approach: examination of the crystal structures of copper chalcogenides with Cu bond valence excess. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:627-636. [PMID: 35975829 DOI: 10.1107/s2052520622006138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Bond valence analysis has been applied to various copper chalcogenides with copper valence excess, i.e. where the formal valence of copper exceeds 1. This approach always reveals a copper bond valence excess relative to the unit value, correlated to an equivalent ligand bond valence deficit. In stoichiometric chalcogenides, this corresponds to one ligand electron in excess per formula unit relative to the valence equilibrium considering only CuI. This ligand electron in excess is 50/50 shared between all or part of the Cu-atom positions, and all or part of the ligand-atom positions. In Cu3Se2, only one of the two Cu positions is involved in this sharing. It would indicate a special type of multicentre bonding (`one-electron co-operative bonding'). Calculated and ideal structural formulae according to this bond valence distribution are presented. At the crystal structure scale, Cu-ligand bonds implying the single electron in excess form one-, two- or three-dimensional subnetworks. Bond valence distribution according to two two-dimensional subnets is detailed in covellite, CuS. This bond valence description is a formal crystal-chemical representation of the metallic conductivity of holes (mixing between Cu 3d bands and ligand p bands), according to published electronic band structures. Bond valence analysis is a useful and very simple prospective approach in the search for new compounds with targeted specific physical properties.
Collapse
Affiliation(s)
- Yves Moëlo
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | - Aurelian Florin Popa
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | | |
Collapse
|
13
|
Manivelan N, Karuppanan S, Prabakar K. Djurleite Copper Sulfide-Coupled Cobalt Sulfide Interface for a Stable and Efficient Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30812-30823. [PMID: 35762731 DOI: 10.1021/acsami.2c06010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal sulfides (TMS) exhibit proliferated edge sites, facile electrode kinetics, and improved intrinsic electrical conductivity, which demand low potential requirements for total water splitting application. Here, we have propounded copper sulfide-coupled cobalt sulfide nanosheets grown on 3D nickel as an electrocatalyst for hydrogen (HER) and oxygen evolution (OER) reactions. The formation of djurleite copper sulfide with a Cu vacancy enables faster H+ ion transport and shows improved HER activity with a remarkably lower overpotential of 164 mV at 10 mA/cm2, whereas cobalt-incorporated copper sulfide undergoes cation exchange during synthesis and shows elevated OER activity with a lower overpotential of 240 mV at 10 mA/cm2 for the OER. Moreover, Cu2-xS/Co is said to have a hybrid CoS-CoS2 interface and provide Co2+ active sites on the surface and enable the fast adsorption of intermediate species (OH*, O*, and OOH*), which lowers the potential requirement. The copper vacancy and cation exchange with a hybrid CoS-CoS2 structure are helpful in supplying more surface reactive species and faster ion transport for the HER and OER, respectively. The full-cell electrolyzer requires a very low potential of 1.58 V to attain a current density of 10 mA/cm2, and it shows excellent stability for 50 h at 100 mA/cm2 as confirmed by the chronopotentiometry test.
Collapse
Affiliation(s)
- Nandapriya Manivelan
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Senthil Karuppanan
- Department of Physics, School of Advanced Sciences, VIT-AP University, Amaravati 522 237, Andhra Pradesh, India
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Kim HS, Jin H, Kim SH, Choi J, Lee DW, Ham HC, Yoo SJ, Park HS. Sacrificial Dopant to Enhance the Activity and Durability of Electrochemical N 2 Reduction Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hee Soo Kim
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KEPCO Research Institute, Korea Electric Power Corporation, 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea
| | - Haneul Jin
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung-Hoon Kim
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Graduate School of Energy & Environment, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jihyun Choi
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dong Wook Lee
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyung Chul Ham
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyun S. Park
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Savarimuthu I, Susairaj MJAM. CuS Nanoparticles Trigger Sulfite for Fast Degradation of Organic Dyes under Dark Conditions. ACS OMEGA 2022; 7:4140-4149. [PMID: 35155908 PMCID: PMC8830066 DOI: 10.1021/acsomega.1c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 05/12/2023]
Abstract
CuS nanoparticles (CuS NPs) were synthesized by a simple precipitation method using rice starch water as a capping and reducing agent. The phase composition, morphology, absorbance, chemical bonds, and chemical states of the CuS NPs were investigated systematically and then examined for dye degradation catalytic activity with or without sulfite (SO3 2-) under dark conditions. Herein, we observed two reaction trends after the addition of SO3 2- in a CuS NPs/dye system, first substantially enhanced dye degradation and second greater degradation activity between reaction time interval "t" 0-12 min. The redox cycling of Cu(II)/Cu(I) and oxidized sulfur (SO x 2-) species on the surface of CuS NPs played a major role for the activation of SO3 2- and generation and transformation of a sulfite radical (•SO3 -) into a sulfate radical (•SO4 -). Scavenging studies of reactive oxygen species (ROS) revealed that •SO4 - was major reactive species involved in dye degradation. Our study showed that SO3 2- acted as a source and CuS NP surface acted as an SO3 2- activating agent for the generation of •SO4 -, which degrades the dyes. The activation pathway of SO3 2- and generation pathway of relevant ROS were proposed.
Collapse
Affiliation(s)
- Irudhayaraj Savarimuthu
- Department
of Chemistry, Indira Gandhi National Tribal
University, Amarkantak, Madhya Pradesh 484886, India
| | | |
Collapse
|
16
|
Senkale S, Cibin G, Chadwick AV, Bensch W. Synthetically Produced Isocubanite as an Anode Material for Sodium-Ion Batteries: Understanding the Reaction Mechanism During Sodium Uptake and Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58552-58565. [PMID: 34846121 DOI: 10.1021/acsami.1c16814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bulk isocubanite (CuFe2S3) was synthesized via a multistep high-temperature synthesis and was investigated as an anode material for sodium-ion batteries. CuFe2S3 exhibits an excellent electrochemical performance with a capacity retention of 422 mA h g-1 for more than 1000 cycles at a current rate of 0.5 A g-1 (0.85 C). The complex reaction mechanism of the first cycle was investigated via PXRD and X-ray absorption spectroscopy. At the early stages of Na uptake, CuFe2S3 is converted to form crystalline CuFeS2 and nanocrystalline NaFe1.5S2 simultaneously. By increasing the Na content, Cu+ is reduced to nanocrystalline Cu, followed by the reduction of Fe2+ to amorphous Fe0 while reflections of nanocrystalline Na2S appear. During charging up to -5 Na/f.u., the intermediate NaFe1.5S2 appears again, which transforms in the last step of charging to a new unknown phase. This unknown phase together with NaFe1.5S2 plays a key role in the mechanism for the following cycles, evidenced by the PXRD investigation of the second cycle. Even after 400 cycles, the occurrence of nanocrystalline phases made it possible to gain insights into the alteration of the mechanism, which shows that CuxS phases play an important role in the region of constant specific capacity.
Collapse
Affiliation(s)
- Svenja Senkale
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Giannantonio Cibin
- Diamond Light Source (DLS), Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Alan V Chadwick
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury CT2 7NH, U.K
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| |
Collapse
|
17
|
Canning GA, Azzam SA, Hoffman AS, Boubnov A, Alshafei FH, Ghosh R, Ko B, Datye A, Bare SR, Simonetti DA. Lanthanum induced lattice strain improves hydrogen sulfide capacities of copper oxide adsorbents. AIChE J 2021. [DOI: 10.1002/aic.17484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Griffin A. Canning
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque New Mexico USA
- Department of Chemical and Biological Engineering University of New Mexico Albuquerque New Mexico USA
| | - Sara A. Azzam
- Chemical and Biomolecular Engineering Department University of California‐Los Angeles Los Angeles California USA
| | - Adam S. Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California USA
| | - Alexey Boubnov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California USA
| | - Faisal H. Alshafei
- Chemical and Biomolecular Engineering Department University of California‐Los Angeles Los Angeles California USA
| | - Richa Ghosh
- Chemical and Biomolecular Engineering Department University of California‐Los Angeles Los Angeles California USA
| | - Brian Ko
- Chemical and Biomolecular Engineering Department University of California‐Los Angeles Los Angeles California USA
| | - Abhaya Datye
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque New Mexico USA
- Department of Chemical and Biological Engineering University of New Mexico Albuquerque New Mexico USA
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California USA
| | - Dante A. Simonetti
- Chemical and Biomolecular Engineering Department University of California‐Los Angeles Los Angeles California USA
| |
Collapse
|
18
|
Tian G, Huang C, Luo X, Zhao Z, Peng Y, Gao Y, Tang N, Dsoke S. Study of the Lithium Storage Mechanism of N-Doped Carbon-Modified Cu 2 S Electrodes for Lithium-Ion Batteries. Chemistry 2021; 27:13774-13782. [PMID: 34318954 PMCID: PMC9400886 DOI: 10.1002/chem.202101818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/03/2022]
Abstract
Owing to their high specific capacity and abundant reserve, CuxS compounds are promising electrode materials for lithium‐ion batteries (LIBs). Carbon compositing could stabilize the CuxS structure and repress capacity fading during the electrochemical cycling, but the corresponding Li+ storage mechanism and stabilization effect should be further clarified. In this study, nanoscale Cu2S was synthesized by CuS co‐precipitation and thermal reduction with polyelectrolytes. High‐temperature synchrotron radiation diffraction was used to monitor the thermal reduction process. During the first cycle, the conversion mechanism upon lithium storage in the Cu2S/carbon was elucidated by operando synchrotron radiation diffraction and in situ X‐ray absorption spectroscopy. The N‐doped carbon‐composited Cu2S (Cu2S/C) exhibits an initial discharge capacity of 425 mAh g−1 at 0.1 A g−1, with a higher, long‐term capacity of 523 mAh g−1 at 0.1 A g−1 after 200 cycles; in contrast, the bare CuS electrode exhibits 123 mAh g−1 after 200 cycles. Multiple‐scan cyclic voltammetry proves that extra Li+ storage can mainly be ascribed to the contribution of the capacitive storage.
Collapse
Affiliation(s)
- Guiying Tian
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China.,Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Chuanfeng Huang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Xianlin Luo
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zijian Zhao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Yong Peng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Yuqin Gao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Na Tang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
| |
Collapse
|
19
|
Just J, Coughlan C, Singh S, Ren H, Müller O, Becker P, Unold T, Ryan KM. Insights into Nucleation and Growth of Colloidal Quaternary Nanocrystals by Multimodal X-ray Analysis. ACS NANO 2021; 15:6439-6447. [PMID: 33770436 PMCID: PMC8291568 DOI: 10.1021/acsnano.0c08617] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Copper chalcogenide nanocrystals find applications in photovoltaic inks, bio labels, and thermoelectric materials. We reveal insights in the nucleation and growth during synthesis of anisotropic Cu2ZnSnS4 nanocrystals by simultaneously performing in situ X-ray absorption spectroscopy (XAS) and small-angle X-ray scattering (SAXS). Real-time XAFS reveals that upon thiol injection into the reaction flask, a key copper thiolate intermediate species is formed within fractions of seconds, which decomposes further within a narrow temperature and time window to form copper sulfide nanocrystals. These nanocrystals convert into Cu2ZnSnS4 nanorods by sequentially incorporating Sn and Zn. Real-time SAXS and ex situ TEM of aliquots corroborate these findings. Our work demonstrates how combined in situ X-ray absorption and small-angle X-ray scattering enables the understanding of mechanistic pathways in colloidal nanocrystal formation.
Collapse
Affiliation(s)
- Justus Just
- MAX
IV Laboratory, Lund University, Fotongatan 2, 22484 Lund, Sweden
| | - Claudia Coughlan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Shalini Singh
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Huan Ren
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Oliver Müller
- Stanford
Synchrotron Radiation Lightsource, SLAC National Acceleration Laboratory, Menlo Park, California 94025, United States
| | - Pascal Becker
- Department
of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Thomas Unold
- Department
of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Kevin M. Ryan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
20
|
Tao H, Tang Y, Zhou M, Wang R, Wang K, Li H, Jiang K. Porous Copper Sulfide Microflowers Grown In Situ on Commercial Copper Foils as Advanced Binder‐Free Electrodes with High Rate and Long Cycle Life for Sodium‐Ion Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202001355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongwei Tao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Yun Tang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Min Zhou
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Ruxing Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Kangli Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Haomiao Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Kai Jiang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| |
Collapse
|
21
|
Lim H, Baker ML, Cowley RE, Kim S, Bhadra M, Siegler MA, Kroll T, Sokaras D, Weng TC, Biswas DR, Dooley DM, Karlin KD, Hedman B, Hodgson KO, Solomon EI. Kβ X-ray Emission Spectroscopy as a Probe of Cu(I) Sites: Application to the Cu(I) Site in Preprocessed Galactose Oxidase. Inorg Chem 2020; 59:16567-16581. [PMID: 33136386 DOI: 10.1021/acs.inorgchem.0c02495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cu(I) active sites in metalloproteins are involved in O2 activation, but their O2 reactivity is difficult to study due to the Cu(I) d10 closed shell which precludes the use of conventional spectroscopic methods. Kβ X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kβ XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kβ XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kβ2,5 emission feature reflects the ionization energy of ligand np valence orbitals, the high-energy Kβ2,5 emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing. A Kβ XES spectrum of the Cu(I) site in preprocessed galactose oxidase (GOpre) supports the 1Tyr/2His structural model that was determined by our previous X-ray absorption spectroscopy and DFT study. The high-energy Kβ2,5 emission feature in the Cu(I)-GOpre data has information about the MO containing mostly Cu 3dx2-y2 character that is the frontier molecular orbital (FMO) for O2 activation, which shows the potential of Kβ XES in probing the Cu(I) FMO associated with small-molecule activation in metalloproteins.
Collapse
Affiliation(s)
- Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael L Baker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ryan E Cowley
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sunghee Kim
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mayukh Bhadra
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Tsu-Chien Weng
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dalia R Biswas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - David M Dooley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States.,University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
22
|
Azzam SA, Boubnov A, Hoffman AS, López-Ausens T, Chiang N, Canning G, Sautet P, Bare SR, Simonetti DA. Insights into Copper Sulfide Formation from Cu and S K edge XAS and DFT studies. Inorg Chem 2020; 59:15276-15288. [PMID: 33001646 DOI: 10.1021/acs.inorgchem.0c02232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An understanding of the fundamentals of the reaction between CuO with trace amounts of H2S to form CuS products is critical for the optimal utilization of this process in sulfur removal applications. Unfortunately, CuS is a complex material, featuring various Cu2-xS compounds (with 0 ≤ x ≤ 1), distorted crystal phases, and varying electronic structures and coordination environments of Cu and S ions. In this work, we combine ex situ and in situ X-ray absorption spectroscopy (XAS) at S and Cu K edges, fixed bed sorption experiments, DFT simulations, and other characterization techniques to speciate the CuS products formed at different temperatures (298-383 K) and from CuO sorbents with different crystallite sizes (2.8-40 nm). The results of our analysis identify the formation of a distorted CuS layer at the surface of CuO crystals with disulfide groups with shorter Cu-S bonds and higher delocalization of the positive charge of the Cu center into (S1-)2. This distorted CuS layer dominates the XAS signal at lower temperatures (298-323 K) and at the initial stages of sulfidation at higher temperatures (353 and 383 K) where conversion is low (<40%). First-principles atomistic simulations confirm the thermodynamic favorability of the formation of surface (S1-)2 on both CuO (111) and (1̅11) surfaces, providing further support for our experimental observations. Furthermore, these simulations reveal that the presence of disulfide bonds stabilized surface hydroxyl groups, leading to lower Gibbs Free Energies of their surface migration.
Collapse
Affiliation(s)
- Sara A Azzam
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Alexey Boubnov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tirso López-Ausens
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Nicole Chiang
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Griffin Canning
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 57131, United States
| | - Philippe Sautet
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90024, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dante A Simonetti
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, Los Angeles, California 90095, United States.,Institute for Carbon Management (ICM), 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Wu H, Or VW, Gonzalez-Calzada S, Grassian VH. CuS nanoparticles in humid environments: adsorbed water enhances the transformation of CuS to CuSO 4. NANOSCALE 2020; 12:19350-19358. [PMID: 32940281 DOI: 10.1039/d0nr05934j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covellite copper sulfide nanoparticles (CuS NPs) have attracted immense research interest due to their widespread use in a range of biological and energy applications. As such, it is crucial to understand the transformations of these nanomaterials and how these transformations influence the behavior of these nanoparticles in environmental and biological systems. This study specifically focuses on understanding the role of water vapor and adsorbed water in the transformation of CuS NP surfaces to CuSO4 in humid environments. Surface sulfide ions are oxidized to sulfate by oxygen in the presence of water vapor, as detected by atomic force microscopy based photothermal infrared spectroscopy (AFM-PTIR) and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. These results show that the transformation of CuS to CuSO4 is highly dependent on relative humidity (RH). While sulfide to sulfate conversion is not observed to a great extent at low RH (<20%), there is significant conversion at higher RH (>80%). X-ray photoelectron spectroscopy (XPS) analysis confirms that sulfide is irreversibly oxidized to sulfate. Furthermore, it shows that initially, the Cu ions possess the original oxidation state similar to the original covellite, i.e. Cu+, but they are oxidized to Cu2+ at higher RH. The formation of CuSO4 has also been confirmed by HRTEM. These analyses show that adsorbed water on the NP surfaces enhances the conversion of sulfide to sulfate and the oxidation of Cu+ to Cu2+ in the presence of molecular oxygen.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - Victor W Or
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Vicki H Grassian
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA. and Departments of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Biomineralization of Cu 2S Nanoparticles by Geobacter sulfurreducens. Appl Environ Microbiol 2020; 86:AEM.00967-20. [PMID: 32680873 PMCID: PMC7480366 DOI: 10.1128/aem.00967-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms. Biomineralization of Cu has been shown to control contaminant dynamics and transport in soils. However, very little is known about the role that subsurface microorganisms may play in the biogeochemical cycling of Cu. In this study, we investigate the bioreduction of Cu(II) by the subsurface metal-reducing bacterium Geobacter sulfurreducens. Rapid removal of Cu from solution was observed in cell suspensions of G. sulfurreducens when Cu(II) was supplied, while transmission electron microscopy (TEM) analyses showed the formation of electron-dense nanoparticles associated with the cell surface. Energy-dispersive X-ray spectroscopy (EDX) point analysis and EDX spectrum image maps revealed that the nanoparticles are rich in both Cu and S. This finding was confirmed by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses, which identified the nanoparticles as Cu2S. Biomineralization of CuxS nanoparticles in soils has been reported to enhance the colloidal transport of a number of contaminants, including Pb, Cd, and Hg. However, formation of these CuxS nanoparticles has only been observed under sulfate-reducing conditions and could not be repeated using isolates of implicated organisms. As G. sulfurreducens is unable to respire sulfate, and no reducible sulfur was supplied to the cells, these data suggest a novel mechanism for the biomineralization of Cu2S under anoxic conditions. The implications of these findings for the biogeochemical cycling of Cu and other metals as well as the green production of Cu catalysts are discussed. IMPORTANCE Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms.
Collapse
|
25
|
Paliwal SS, Maurya V, Joshi KB. First-principles study of electronic structure and fermiology of covellite mineral and its B1, B3 phases. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:295501. [PMID: 32150738 DOI: 10.1088/1361-648x/ab7df5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the first-principles calculations under the framework of density functional theory to explore the Fermi surface and electronic properties of covellite mineral. The correlation effects are considered applying the +U correction in the density functional theory. Lattice parameters are determined and the possibility of pressure induced phase transitions to the hypothetical B1 and B3 crystals is examined. All calculations show impending B18 → B1 and B3 → B1 phase transitions. Using generalized gradient approximation these are found to occur at 7.4 and 6.48 GPa, respectively. Electronic bands structures of the three crystals highlight metallic properties. Two copper atoms situated at distinct locations in covellite exhibit a distinct role. The Fermi surfaces of all phases are presented. The calculations of B18 map out corrugated cylindrical Fermi surface signifying inter-layer interaction mediated by the S(II)-S(II) bond. The +U correction shows anisotropy in the Fermi surface noted in experiment. It also indicates stronger inter-layer interaction. Applying Debye-Slater and the Debye-Grüneisen models the thermal expansion coefficient, heat capacity and entropy are found and their temperature dependence is discussed.
Collapse
Affiliation(s)
- S S Paliwal
- Department of Physics, M L Sukhadia University, Udaipur-313001, India
| | | | | |
Collapse
|
26
|
Smolentsev G, Milne CJ, Guda A, Haldrup K, Szlachetko J, Azzaroli N, Cirelli C, Knopp G, Bohinc R, Menzi S, Pamfilidis G, Gashi D, Beck M, Mozzanica A, James D, Bacellar C, Mancini GF, Tereshchenko A, Shapovalov V, Kwiatek WM, Czapla-Masztafiak J, Cannizzo A, Gazzetto M, Sander M, Levantino M, Kabanova V, Rychagova E, Ketkov S, Olaru M, Beckmann J, Vogt M. Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nat Commun 2020; 11:2131. [PMID: 32358505 PMCID: PMC7195477 DOI: 10.1038/s41467-020-15998-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
OLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu–C and Cu–P bonds represents an underexplored type of luminophore. To investigate the charge transfer and structural rearrangements in this material, we apply complementary pump-probe X-ray techniques: absorption, emission, and scattering including pump-probe measurements at the X-ray free-electron laser SwissFEL. We find that the excitation leads to charge movement from C- and P- coordinated Cu sites and from the phosphorus atoms to phenyl rings; the Cu core slightly rearranges with 0.05 Å increase of the shortest Cu–Cu distance. The use of a Cu cluster bonded to the ligands through C and P atoms is an efficient way to keep structural rigidity of luminophores. Obtained data can be used to verify computational methods for the development of luminophores. OLED materials based on thermally activated delayed fluorescence have promising efficiency. Here, the authors investigate an organometallic multicore Cu complex as luminophore, by pump-probe X-ray techniques at three different facilities deriving a complete picture of the charge transfer in the triplet excited state.
Collapse
Affiliation(s)
| | | | - Alexander Guda
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Kristoffer Haldrup
- Physics Department, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | | | | | - Gregor Knopp
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rok Bohinc
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Samuel Menzi
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Dardan Gashi
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Martin Beck
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Daniel James
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institute, 5232, Villigen, Switzerland.,Laboratory for Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Giulia F Mancini
- Paul Scherrer Institute, 5232, Villigen, Switzerland.,Laboratory for Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Andrei Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Victor Shapovalov
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | | | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, 3012, Bern, Switzerland
| | - Michela Gazzetto
- Institute of Applied Physics, University of Bern, 3012, Bern, Switzerland
| | - Mathias Sander
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Matteo Levantino
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Victoria Kabanova
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Elena Rychagova
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russia
| | - Sergey Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russia
| | - Marian Olaru
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany
| | - Jens Beckmann
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany
| | - Matthias Vogt
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany. .,Martin-Luther-Universität Halle-Wittenberg Naturwissenschaftliche Fakultät II, Institut für Chemie, Anorganische Chemie, D-06120, Halle, Germany.
| |
Collapse
|
27
|
Wang Y, Feng X, Xiong Y, Stoupin S, Huang R, Zhao M, Xu M, Zhang P, Zhao J, Abruña HD. An Innovative Lithium Ion Battery System Based on a Cu 2S Anode Material. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17396-17405. [PMID: 32208634 DOI: 10.1021/acsami.9b21982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cu2S is considered as one of the potential anode paradigms for advanced rechargeable batteries because of its high theoretical capacity (∼335 mAh·g-1), high and flat charge/discharge voltage plateaus (∼1.7 V vs Li+/Li), stable cycling performance, and its elemental abundance. However, many studies have shown that Cu2S exhibits a dramatic capacity fade in carbonate-based electrolytes, which has precluded its commercialization when paired with high voltage cathodes in state-of-the-art lithium ion batteries. Here, we report on a fundamental mechanistic study of the electrochemical processes of Cu2S in both ether- and carbonate-based electrolytes employing operando synchrotron X-ray methods. Based on our findings, we developed a Cu2S/C composite material that suppresses its failure mechanism in carbonate-based electrolytes and further demonstrated its feasibility in lithium ion full cells for the first time. Our experiment provides the basis for the utilization of Cu2S in industrial-scale applications for large-scale electrical energy storage.
Collapse
Affiliation(s)
- Yunhui Wang
- College of Chemistry and Chemical Engineering, College of Energy, State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology (Ministry of Education), Xiamen University, Xiamen, Fujian 361005, China
| | - Xinran Feng
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Stanislav Stoupin
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Rong Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Min Zhao
- College of Chemistry and Chemical Engineering, College of Energy, State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology (Ministry of Education), Xiamen University, Xiamen, Fujian 361005, China
| | - Mingsheng Xu
- College of Chemistry and Chemical Engineering, College of Energy, State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology (Ministry of Education), Xiamen University, Xiamen, Fujian 361005, China
| | - Peng Zhang
- College of Chemistry and Chemical Engineering, College of Energy, State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology (Ministry of Education), Xiamen University, Xiamen, Fujian 361005, China
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Jinbao Zhao
- College of Chemistry and Chemical Engineering, College of Energy, State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology (Ministry of Education), Xiamen University, Xiamen, Fujian 361005, China
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Jin K, Zhou M, Zhao H, Zhai S, Ge F, Zhao Y, Cai Z. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.182] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Pleyer HL, Strasdeit H, Fox S. A Possible Prebiotic Ancestry of Porphyrin-Type Protein Cofactors. ORIGINS LIFE EVOL B 2018; 48:347-371. [PMID: 30547367 DOI: 10.1007/s11084-018-9567-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
In previous experiments that simulated conditions on primordial volcanic islands, we demonstrated the abiotic formation of hydrophobic porphyrins. The present study focused on the question whether such porphyrins can be metalated by prebiotically plausible metal ion sources. We used water-insoluble octaethylporphyrin (H2oep) as a model compound. Experiments were conducted in a nitrogen atmosphere under cyclic wet-dry conditions in order to simulate the fluctuating environment in prebiotic rock pools. Wetting-drying proved to be a crucial factor. Significant yields of the metalloporphyrins (20-78% with respect to H2oep) were obtained from the soluble salts MCl2 (M = Mg, Fe, Co, Ni and Cu) in freshwater. Even almost insoluble minerals and rocks metalated the porphyrin. Basalt (an iron source, 11% yield), synthetic jaipurite (CoS, 33%) and synthetic covellite (CuS, 57%) were most efficient. Basalt, magnetite and FeCl2 gave considerably higher yields in artificial seawater than in freshwater. From iron sources, the highest yields, however, were obtained in an acidic medium (hydrochloric acid with an initial pH of 2.1). Under these conditions, iron meteorites also metalated the porphyrin. Acidic conditions were considered because they are known to occur during eruptions on volcanic islands. Octaethylporphyrinatomagnesium(II) did not form in acidic medium and was unstable towards dissolved Fe2+. It is therefore questionable whether magnesium porphyrins, i.e. possible ancestors of chlorophyll, could have accumulated in primordial rock pools. However, abiotically formed ancestors of the modern cofactors heme (Fe), B12 (Co), and F430 (Ni) may have been available to hypothetical protometabolisms and early organisms.
Collapse
Affiliation(s)
- Hannes Lukas Pleyer
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Henry Strasdeit
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Stefan Fox
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
30
|
Lesyuk R, Klein E, Yaremchuk I, Klinke C. Copper sulfide nanosheets with shape-tunable plasmonic properties in the NIR region. NANOSCALE 2018; 10:20640-20651. [PMID: 30393791 PMCID: PMC6250125 DOI: 10.1039/c8nr06738d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/11/2018] [Indexed: 05/28/2023]
Abstract
2D copper sulfide nanocrystals are promising building blocks of plasmonic materials in the near-infrared (NIR) spectral region. We demonstrate precise shape and size control (hexagonal/triangle) of colloidal plasmonic copper sulfide (covellite) nano-prisms simply by tuning the precursor concentration without the introduction of additional ligands. The ultra-thin 2D nanocrystals possess sizes between 13 and 100 nm and triangular or hexangular shapes. We also demonstrate CuS nanosheets (NSs) with lateral sizes up to 2 microns using a syringe pump. Based on the experimental findings and DFT simulations, we propose a qualitative and quantitative mechanism for the formation of different shapes. The analysis of the spectral features in the NIR region of the synthesized CuS nanocrystals has been performed with respect to the shape and the size of particles by the discrete dipole approximation method and the Drude-Sommerfeld theory.
Collapse
Affiliation(s)
- Rostyslav Lesyuk
- Institute of Physical Chemistry
, University of Hamburg
,
Martin-Luther-King-Platz 6
, 20146 Hamburg
, Germany
- Pidstryhach Institute for applied problems of mechanics and mathematics of NAS of Ukraine
,
Naukowa str. 3b
, 79060 Lviv
, Ukraine
| | - Eugen Klein
- Institute of Physical Chemistry
, University of Hamburg
,
Martin-Luther-King-Platz 6
, 20146 Hamburg
, Germany
| | - Iryna Yaremchuk
- Department of Photonics
, Lviv Polytechnic National University
,
S. Bandera Str. 12
, Lviv 79013
, Ukraine
| | - Christian Klinke
- Institute of Physical Chemistry
, University of Hamburg
,
Martin-Luther-King-Platz 6
, 20146 Hamburg
, Germany
- Department of Chemistry
, Swansea University – Singleton Park
,
Swansea SA2 8PP
, UK
.
| |
Collapse
|
31
|
Havryliuk Y, Valakh MY, Dzhagan V, Greshchuk O, Yukhymchuk V, Raevskaya A, Stroyuk O, Selyshchev O, Gaponik N, Zahn DRT. Raman characterization of Cu 2ZnSnS 4 nanocrystals: phonon confinement effect and formation of Cu x S phases. RSC Adv 2018; 8:30736-30746. [PMID: 35548720 PMCID: PMC9085493 DOI: 10.1039/c8ra05390a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/26/2018] [Indexed: 11/30/2022] Open
Abstract
A Raman spectroscopic study of Cu2ZnSnS4 (CZTS) nanocrystals (NCs) produced by a "green" synthesis in aqueous solutions is reported. Size-selected CZTS NCs reveal phonon confinement that manifests itself in an upward shift of the main phonon peak by about 3-4 cm-1 by varying the NC diameter from 3 to 2 nm. A non-monotonous shift and narrowing of the main peak are attributed to the special shape of the phonon dispersion in this material. Moreover, the method of sample preparation, the nature of the supporting substrate and the photoexcitation regime are found to crucially influence the Raman spectra of the CZTS samples. Particularly, the possible oxidation and hydrolysis of CZTS NCs with the concomitant formation of a Cu-S phase are systematically investigated. The nature of the film support is found to strongly affect the amount of admixture copper sulfide phases with the Cu2-x S/CuS content being the highest for oxidized silicon and glass and notably lower for ITO and even less for gold supports. The effect is assumed to originate from the different hydrophilicity of the supporting surfaces, resulting in a different morphology and surface area of the NC film exposed to the atmosphere, as well as the degree of the NC oxidation/hydrolysis. The amount of copper sulfide increases with the laser power. This effect is interpreted as a result of photochemical/photocatalytic transformations of the CZTS NCs.
Collapse
Affiliation(s)
- Ye Havryliuk
- V. E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine 03028 Kyiv Ukraine
| | - M Ya Valakh
- V. E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine 03028 Kyiv Ukraine
| | - V Dzhagan
- V. E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine 03028 Kyiv Ukraine
| | - O Greshchuk
- V. E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine 03028 Kyiv Ukraine
| | - V Yukhymchuk
- V. E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine 03028 Kyiv Ukraine
| | - A Raevskaya
- L. V. Pysarzhevsky Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine 03028 Kyiv Ukraine
- Physical Chemistry, TU Dresden 01062 Dresden Germany
| | - O Stroyuk
- L. V. Pysarzhevsky Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine 03028 Kyiv Ukraine
- Physical Chemistry, TU Dresden 01062 Dresden Germany
| | - O Selyshchev
- Semiconductor Physics, Chemnitz University of Technology 09107 Chemnitz Germany
| | - N Gaponik
- Physical Chemistry, TU Dresden 01062 Dresden Germany
| | - D R T Zahn
- Semiconductor Physics, Chemnitz University of Technology 09107 Chemnitz Germany
| |
Collapse
|
32
|
Barman SK, Huda MN. Stability enhancement of Cu 2S against Cu vacancy formation by Ag alloying. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:165701. [PMID: 29443013 DOI: 10.1088/1361-648x/aaaf4e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.
Collapse
Affiliation(s)
- Sajib K Barman
- Department of Physics, University of Texas at Arlington, 502 Yates St., Science Hall, Room 108, Arlington, TX 76019, United States of America
| | | |
Collapse
|
33
|
Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chem Rev 2018; 118:3121-3207. [PMID: 29400955 DOI: 10.1021/acs.chemrev.7b00613] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals (NCs) that results in resonant absorption, scattering, and near field enhancement around the NC can be tuned across a wide optical spectral range from visible to far-infrared by synthetically varying doping level, and post synthetically via chemical oxidation and reduction, photochemical control, and electrochemical control. In this review, we will discuss the fundamental electromagnetic dynamics governing light matter interaction in plasmonic semiconductor NCs and the realization of various distinctive physical properties made possible by the advancement of colloidal synthesis routes to such NCs. Here, we will illustrate how free carrier dielectric properties are induced in various semiconductor materials including metal oxides, metal chalcogenides, metal nitrides, silicon, and other materials. We will highlight the applicability and limitations of the Drude model as applied to semiconductors considering the complex band structures and crystal structures that predominate and quantum effects that emerge at nonclassical sizes. We will also emphasize the impact of dopant hybridization with bands of the host lattice as well as the interplay of shape and crystal structure in determining the LSPR characteristics of semiconductor NCs. To illustrate the discussion regarding both physical and synthetic aspects of LSPR-active NCs, we will focus on metal oxides with substantial consideration also of copper chalcogenide NCs, with select examples drawn from the literature on other doped semiconductor materials. Furthermore, we will discuss the promise that LSPR in doped semiconductor NCs holds for a wide range of applications such as infrared spectroscopy, energy-saving technologies like smart windows and waste heat management, biomedical applications including therapy and imaging, and optical applications like two photon upconversion, enhanced luminesence, and infrared metasurfaces.
Collapse
Affiliation(s)
- Ankit Agrawal
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Shin Hum Cho
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Omid Zandi
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Sandeep Ghosh
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Robert W Johns
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
34
|
Ou W, Zou Y, Wang K, Gong W, Pei R, Chen L, Pan Z, Fu D, Huang X, Zhao Y, Lu W, Jiang J. Active Manipulation of NIR Plasmonics: the Case of Cu 2-xSe through Electrochemistry. J Phys Chem Lett 2018; 9:274-280. [PMID: 29293337 DOI: 10.1021/acs.jpclett.7b03305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Active control of nanocrystal optical and electrical properties is crucial for many of their applications. By electrochemical (de)lithiation of Cu2-xSe, a highly doped semiconductor, dynamic and reversible manipulation of its NIR plasmonics has been achieved. Spectroelectrochemistry results show that NIR plasmon red-shifted and reduced in intensity during lithiation, which can be reversed with perfect on-off switching over 100 cycles. Electrochemical impedance spectroscopy reveals that a Faradaic redox process during Cu2-xSe (de)lithiation is responsible for the optical modulation, rather than simple capacitive charging. XPS analysis identifies a reversible change in the redox state of selenide anion but not copper cation, consistent with DFT calculations. Our findings open up new possibilities for dynamical manipulation of vacancy-induced surface plasmon resonances and have important implications for their use in NIR optical switching and functional circuits.
Collapse
Affiliation(s)
- Weihui Ou
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yu Zou
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Kewei Wang
- Nano-Devices and Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Wenbin Gong
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Renjun Pei
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Liwei Chen
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Zhenghui Pan
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Dongdong Fu
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Xin Huang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Yanfei Zhao
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Weibang Lu
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Jiang Jiang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| |
Collapse
|
35
|
An C, Ni Y, Wang Z, Li X, Liu X. Facile fabrication of CuS microflower as a highly durable sodium-ion battery anode. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00117k] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CuS micro-flower was synthesized by dealloying and adopted as an anode in SIB with high rate and stable cycle performances.
Collapse
Affiliation(s)
- Cuihua An
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Yang Ni
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Zhifeng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Xudong Li
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Xizheng Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| |
Collapse
|
36
|
Tarachand T, Hussain S, Lalla NP, Kuo YK, Lakhani A, Sathe VG, Deshpande U, Okram GS. Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method. Phys Chem Chem Phys 2018; 20:5926-5935. [DOI: 10.1039/c7cp07986a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single crystalline hexagonal nanodisks (NDs) of covellite CuS and temperature dependent thermoelectric figure of merit of Ag-doped CuS nanocomposites.
Collapse
Affiliation(s)
- Tarachand Tarachand
- UGC-DAE Consortium for Scientific Research, University Campus
- Indore-452001
- India
| | - S. Hussain
- UGC-DAE Consortium for Scientific Research
- Kalpakkam Node
- Kokilamedu-603104
- India
| | - N. P. Lalla
- UGC-DAE Consortium for Scientific Research, University Campus
- Indore-452001
- India
| | - Y.-K. Kuo
- Department of Physics
- National Dong Hwa University
- Taiwan
| | - A. Lakhani
- UGC-DAE Consortium for Scientific Research, University Campus
- Indore-452001
- India
| | - V. G. Sathe
- UGC-DAE Consortium for Scientific Research, University Campus
- Indore-452001
- India
| | - U. Deshpande
- UGC-DAE Consortium for Scientific Research, University Campus
- Indore-452001
- India
| | - G. S. Okram
- UGC-DAE Consortium for Scientific Research, University Campus
- Indore-452001
- India
| |
Collapse
|
37
|
Operando Multi-modal Synchrotron Investigation for Structural and Chemical Evolution of Cupric Sulfide (CuS) Additive in Li-S battery. Sci Rep 2017; 7:12976. [PMID: 29021527 PMCID: PMC5636834 DOI: 10.1038/s41598-017-12738-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/18/2017] [Indexed: 11/08/2022] Open
Abstract
Conductive metal sulfides are promising multi-functional additives for future lithium-sulfur (Li-S) batteries. These can increase the sulfur cathode's electrical conductivity to improve the battery's power capability, as well as contribute to the overall cell-discharge capacity. This multi-functional electrode design showed initial promise; however, complicated interactions at the system level are accompanied by some detrimental side effects. The metal sulfide additives with a chemical conversion as the reaction mechanism, e.g., CuS and FeS2, can increase the theoretical capacity of the Li-S system. However, these additives may cause undesired parasitic reactions, such as the dissolution of the additive in the electrolyte. Studying such complex reactions presents a challenge because it requires experimental methods that can track the chemical and structural evolution of the system during an electrochemical process. To address the fundamental mechanisms in these systems, we employed an operando multimodal x-ray characterization approach to study the structural and chemical evolution of the metal sulfide-utilizing powder diffraction and fluorescence imaging to resolve the former and absorption spectroscopy the latter-during lithiation and de-lithiation of a Li-S battery with CuS as the multi-functional cathode additive. The resulting elucidation of the structural and chemical evolution of the system leads to a new description of the reaction mechanism.
Collapse
|
38
|
Li Y, Wang Y, Pattengale B, Yin J, An L, Cheng F, Li Y, Huang J, Xi P. High-index faceted CuFeS 2 nanosheets with enhanced behavior for boosting hydrogen evolution reaction. NANOSCALE 2017; 9:9230-9237. [PMID: 28654106 DOI: 10.1039/c7nr03182c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A rational design of highly active and robust catalysts based on earth-abundant elements for hydrogen evolution reaction (HER) is essential for future renewable energy applications. Herein, we report the synthesis of a new class of ultrathin metallic CuFeS2 nanosheets (NSs) with abundant exposed high-index {02[combining macron]4} facets. They serve as a robust catalyst for the HER with a lower onset potential of 28.1 mV, an overpotential of only 88.7 mV (at j = 10 mA cm-2) and remarkable long-term stability in 0.5 M H2SO4, which make them the best system among all the reported non-noble metal catalysts. The theoretical calculations reveal that the mechanistic origin for such a high HER activity should be attributed to the excess S2- active sites on the exposed {02[combining macron]4} high-index facets of CuFeS2 NSs, which have a rather favorable Gibbs free energy for atomic hydrogen adsorption. The present work highlights the importance of designing ultrathin metallic chalcopyrite nanosheets with high-index facets in order to increase the number of active sites for boosting the HER performance.
Collapse
Affiliation(s)
- Yuxuan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
40
|
Shavi R, Hiremath V, Sharma A, Won SO, Seo JG. Synergistic activating effect of promoter and oxidant in single step conversion of methane into methanol over a tailored polymer-Ag coordination complex. RSC Adv 2017. [DOI: 10.1039/c7ra02700a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Single-step conversion of methane to its oxygenated derivatives, such as methanol, is a challenging topic in C1 chemistry.
Collapse
Affiliation(s)
- Raghavendra Shavi
- Department of Energy Science and Technology
- Myongji University
- Yongin-si
- South Korea
| | - Vishwanath Hiremath
- Department of Energy Science and Technology
- Myongji University
- Yongin-si
- South Korea
| | - Aditya Sharma
- X-ray Open Laboratory
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul-02792
- South Korea
| | - Sung Ok Won
- X-ray Open Laboratory
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul-02792
- South Korea
| | - Jeong Gil Seo
- Department of Energy Science and Technology
- Myongji University
- Yongin-si
- South Korea
| |
Collapse
|
41
|
Kalanur SS, Seo H. Tuning plasmonic properties of CuS thin films via valence band filling. RSC Adv 2017. [DOI: 10.1039/c6ra27076j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tuning plasmonic properties of CuS thin films via electrochemical reduction by decreasing hole concentration in the valence band.
Collapse
Affiliation(s)
- Shankara S. Kalanur
- Department of Energy Systems Research
- Ajou University
- Suwon 443-739
- Republic of Korea
| | - Hyungtak Seo
- Department of Energy Systems Research
- Ajou University
- Suwon 443-739
- Republic of Korea
- Department of Materials Science and Engineering
| |
Collapse
|
42
|
Lima FA, Saleta ME, Pagliuca RJS, Eleotério MA, Reis RD, Fonseca Júnior J, Meyer B, Bittar EM, Souza-Neto NM, Granado E. XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1538-1549. [PMID: 27787261 DOI: 10.1107/s160057751601403x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage-ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X-ray spectrum (above ∼10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi-purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X-ray absorption spectroscopy at energies above 18 keV and high-resolution diffraction experiments. More recently, new setups and photon-hungry experiments such as total X-ray scattering, X-ray diffraction under high pressures, resonant X-ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.
Collapse
Affiliation(s)
- F A Lima
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - M E Saleta
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - R J S Pagliuca
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - M A Eleotério
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - R D Reis
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - J Fonseca Júnior
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - B Meyer
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - E M Bittar
- Centro Brasileiro de Pesquisas Físicas, Rua Doutor Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro (RJ), Brazil
| | - N M Souza-Neto
- Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas (SP), Brazil
| | - E Granado
- Instituto de Física `Gleb Wataghin', Universidade de Campinas, CEP 13083-859, Campinas (SP), Brazil
| |
Collapse
|
43
|
Xu W, Liang Y, Su Y, Zhu S, Cui Z, Yang X, Inoue A, Wei Q, Liang C. Synthesis and properties of morphology controllable copper sulphide nanosheets for supercapacitor application. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.118] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Soares AL, Dos Santos EC, Morales-García Á, Duarte HA, De Abreu HA. The Stability and Structural, Electronic and Topological Properties of Covellite (001) Surfaces. ChemistrySelect 2016. [DOI: 10.1002/slct.201600422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio L. Soares
- GPQIT.; Departamento de Química.; ICEx.; Universidade Federal de Minas Gerais.; Belo Horizonte. 31.270-901. Minas Gerais Brazil
| | - Egon C. Dos Santos
- GPQIT.; Departamento de Química.; ICEx.; Universidade Federal de Minas Gerais.; Belo Horizonte. 31.270-901. Minas Gerais Brazil
| | - Ángel Morales-García
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University in Prague; Hlavova 2030 128 43 Prague 2 Czech Republic
| | - Hélio A. Duarte
- GPQIT.; Departamento de Química.; ICEx.; Universidade Federal de Minas Gerais.; Belo Horizonte. 31.270-901. Minas Gerais Brazil
| | - Heitor A. De Abreu
- GPQIT.; Departamento de Química.; ICEx.; Universidade Federal de Minas Gerais.; Belo Horizonte. 31.270-901. Minas Gerais Brazil
| |
Collapse
|
45
|
Fujimori T, Nakamura M, Takaoka M, Shiota K, Kitajima Y. Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations. JOURNAL OF HAZARDOUS MATERIALS 2016; 311:43-50. [PMID: 26954475 DOI: 10.1016/j.jhazmat.2016.02.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen and sulfur (N/S)-containing compounds inhibit the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs) in thermal processes. However, few studies have examined the inhibition mechanisms of N/S-containing compounds. In the present study, we focused on thiourea [(NH2)2CS] as such a compound and investigated its inhibition effects and mechanisms. The production of PCDD/Fs, polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs) were inhibited by >99% in the model fly ash in the presence of 1.0% thiourea after heating at 300 °C. Experimental results using real fly ash series were indicative of the thermal destruction of these chlorinated aromatics by thiourea. Multielement characterization using K-edge X-ray absorption fine structures of copper, chlorine, sulfur, nitrogen, and carbon revealed three possible inhibition paths, namely, (a) sulfidization of the copper catalyst to CuS, Cu2S, and CuSO4; (b) blocking the chlorination of carbon via the reaction of chlorine with N-containing compounds to generate ammonium chloride and other minor compounds; and (c) changing the carbon frame involved in attacking the carbon matrix by sulfur and nitrogen. Thus, thiourea plays a role as a sulfur and nitrogen donor to achieve multiple and synergistic inhibition of chlorinated aromatics. Our results suggest that other N/S-containing inhibitors function based on similar mechanisms.
Collapse
Affiliation(s)
- Takashi Fujimori
- Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan.
| | - Madoka Nakamura
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan
| | - Masaki Takaoka
- Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan
| | - Kenji Shiota
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan
| | - Yoshinori Kitajima
- Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
46
|
Mikhlin Y, Vorobyev S, Saikova S, Tomashevich Y, Fetisova O, Kozlova S, Zharkov S. Preparation and characterization of colloidal copper xanthate nanoparticles. NEW J CHEM 2016. [DOI: 10.1039/c6nj00098c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Colloids formed by the direct interaction of aqueous Cu2+ ions and xanthates were characterized along with their precipitates incorporating dixanthogen.
Collapse
Affiliation(s)
- Yuri Mikhlin
- Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
- Russia
| | - Sergey Vorobyev
- Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
- Russia
- Siberian Federal University
- Krasnoyarsk
| | | | - Yevgeny Tomashevich
- Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
- Russia
| | - Olga Fetisova
- Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
- Russia
| | - Svetlana Kozlova
- Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
- Russia
| | - Sergey Zharkov
- Siberian Federal University
- Krasnoyarsk
- Russia
- Kirensky Institute of Physics of the Siberian Branch of the Russian Academy of Sciences
- Krasnoyarsk
| |
Collapse
|
47
|
Mikhlin Y, Romanchenko A, Tomashevich Y, Shurupov V. Near-surface Regions of Electrochemically Polarized Chalcopyrite (CuFeS2) as Studied Using XPS and XANES. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.phpro.2016.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Nanoporous CuS with excellent photocatalytic property. Sci Rep 2015; 5:18125. [PMID: 26648397 PMCID: PMC4673457 DOI: 10.1038/srep18125] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 11/24/2022] Open
Abstract
We present the rational synthesis of nanoporous CuS for the first time by chemical dealloying method. The morphologies of the CuS catalysts are controlled by the composition of the original amorphous alloys. Nanoporous Cu2S is firstly formed during the chemical dealloying process, and then the Cu2S transforms into CuS. The nanoporous CuS exhibits excellent photocatalytic activity for the degradation of the methylene blue (MB), methyl orange (MO) and rhodamine B (RhB). The excellent photocatalytic activity of the nanoporous CuS is mainly attributed to the large specific surface area, high adsorbing capacity of dyes and low recombination of the photo generated electrons and holes. In the photo degradation process, both chemical and photo generated hydroxyl radicals are generated. The hydroxyl radicals are favor in the oxidation of the dye molecules. The present modified dealloying method may be extended for the preparation of other porous metal sulfide nanostructures.
Collapse
|
49
|
Ludwig J, An L, Pattengale B, Kong Q, Zhang X, Xi P, Huang J. Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks. J Phys Chem Lett 2015; 6:2671-5. [PMID: 26266846 DOI: 10.1021/acs.jpclett.5b01078] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CuS nanocrystals are potential materials for developing low-cost solar energy conversion devices. Understanding the underlying dynamics of photoinduced carriers in CuS nanocrystals is essential to improve their performance in these devices. In this work, we investigated the photoinduced hole dynamics in CuS nanodisks (NDs) using the combination of transient optical (OTA) and X-ray (XTA) absorption spectroscopy. OTA results show that the broad transient absorption in the visible region is attributed to the photoinduced hot and trapped holes. The hole trapping process occurs on a subpicosecond time scale, followed by carrier recombination (~100 ps). The nature of the hole trapping sites, revealed by XTA, is characteristic of S or organic ligands on the surface of CuS NDs. These results not only suggest the possibility to control the hole dynamics by tuning the surface chemistry of CuS but also represent the first time observation of hole dynamics in semiconductor nanocrystals using XTA.
Collapse
Affiliation(s)
- John Ludwig
- †Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Li An
- ‡Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and The Research Center of Biomedical Nanotechnology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Brian Pattengale
- †Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Qingyu Kong
- §X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Xiaoyi Zhang
- §X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Pinxian Xi
- ‡Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and The Research Center of Biomedical Nanotechnology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jier Huang
- †Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
50
|
Liu J, Zhao Q, Liu JL, Wu YS, Cheng Y, Ji MW, Qian HM, Hao WC, Zhang LJ, Wei XJ, Wang SG, Zhang JT, Du Y, Dou SX, Zhu HS. Heterovalent-Doping-Enabled Efficient Dopant Luminescence and Controllable Electronic Impurity Via a New Strategy of Preparing II-VI Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2753-2761. [PMID: 25821075 DOI: 10.1002/adma.201500247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Substitutional heterovalent doping represents an effective method to control the optical and electronic properties of nanocrystals (NCs). Highly monodisperse II-VI NCs with deep substitutional dopants are presented. The NCs exhibit stable, dominant, and strong dopant fluorescence, and control over n- and p-type electronic impurities is achieved. Large-scale, bottom-up superlattices of the NCs will speed up their application in electronic devices.
Collapse
Affiliation(s)
- Jian Liu
- Research Center of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|