1
|
Doran MM, Bermingham KP, Tricklebank MD, Lowry JP. Characterisation of a microelectrochemical biosensor for real-time detection of brain extracellular d-serine. Talanta 2024; 278:126458. [PMID: 38955102 DOI: 10.1016/j.talanta.2024.126458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
A modified development protocol and concomitant characterisation of a first generation biosensor for the detection of brain extracellular d-serine is reported. Functional parameters important for neurochemical monitoring, including sensor sensitivity, O2 interference, selectivity, shelf-life and biocompatibility were examined. Construction and development involved the enzyme d-amino acid oxidase (DAAO), utilising a dip-coating immobilisation method employing a new extended drying approach. The resultant Pt-based polymer enzyme composite sensor achieved high sensitivity to d-serine (0.76 ± 0.04 nA mm-2. μM-1) and a low μM limit of detection (0.33 ± 0.02 μM). The in-vitro response time was within the solution stirring time, suggesting potential sub-second in-vivo response characteristics. Oxygen interference studies demonstrated a 1 % reduction in current at 50 μM O2 when compared to atmospheric O2 levels (200 μM), indicating that the sensor can be used for reliable neurochemical monitoring of d-serine, free from changes in current associated with physiological O2 fluctuations. Potential interference signals generated by the principal electroactive analytes present in the brain were minimised by using a permselective layer of poly(o-phenylenediamine), and although several d-amino acids are possible substrates for DAAO, their physiologically relevant signals were small relative to that for d-serine. Additionally, changing both temperature and pH over possible in vivo ranges (34-40 °C and 7.2-7.6 respectively) resulted in no significant effect on performance. Finally, the biosensor was implanted in the striatum of freely moving rats and used to monitor physiological changes in d-serine over a two-week period.
Collapse
Affiliation(s)
- Michelle M Doran
- Neurochemistry Laboratory, Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Kobi P Bermingham
- Neurochemistry Laboratory, Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mark D Tricklebank
- Department of Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - John P Lowry
- Neurochemistry Laboratory, Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
2
|
Liu Y, Liu Z, Zhou Y, Tian Y. Implantable Electrochemical Sensors for Brain Research. JACS AU 2023; 3:1572-1582. [PMID: 37388703 PMCID: PMC10301805 DOI: 10.1021/jacsau.3c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Implantable electrochemical sensors provide reliable tools for in vivo brain research. Recent advances in electrode surface design and high-precision fabrication of devices led to significant developments in selectivity, reversibility, quantitative detection, stability, and compatibility of other methods, which enabled electrochemical sensors to provide molecular-scale research tools for dissecting the mechanisms of the brain. In this Perspective, we summarize the contribution of these advances to brain research and provide an outlook on the development of the next generation of electrochemical sensors for the brain.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Zhichao Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Yi Zhou
- School
of Basic Medical Sciences, Chengdu University
of Traditional Chinese Medicine, Sichuan 611137, People’s Republic of China
| | - Yang Tian
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| |
Collapse
|
3
|
Liu S, Kumari S, He H, Mishra P, Singh BN, Singh D, Liu S, Srivastava P, Li C. Biosensors integrated 3D organoid/organ-on-a-chip system: A real-time biomechanical, biophysical, and biochemical monitoring and characterization. Biosens Bioelectron 2023; 231:115285. [PMID: 37058958 DOI: 10.1016/j.bios.2023.115285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
As a full-fidelity simulation of human cells, tissues, organs, and even systems at the microscopic scale, Organ-on-a-Chip (OOC) has significant ethical advantages and development potential compared to animal experiments. The need for the design of new drug high-throughput screening platforms and the mechanistic study of human tissues/organs under pathological conditions, the evolving advances in 3D cell biology and engineering, etc., have promoted the updating of technologies in this field, such as the iteration of chip materials and 3D printing, which in turn facilitate the connection of complex multi-organs-on-chips for simulation and the further development of technology-composite new drug high-throughput screening platforms. As the most critical part of organ-on-a-chip design and practical application, verifying the success of organ model modeling, i.e., evaluating various biochemical and physical parameters in OOC devices, is crucial. Therefore, this paper provides a logical and comprehensive review and discussion of the advances in organ-on-a-chip detection and evaluation technologies from a broad perspective, covering the directions of tissue engineering scaffolds, microenvironment, single/multi-organ function, and stimulus-based evaluation, and provides a more comprehensive review of the progress in the significant organ-on-a-chip research areas in the physiological state.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India
| | - Hongyi He
- West China School of Medicine & West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Parichita Mishra
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India
| | - Sutong Liu
- Juxing College of Digital Economics, Haikou University of Economics, Haikou, 570100, China
| | - Pradeep Srivastava
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India.
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong(Shenzhen), Shenzhen, 518172, China.
| |
Collapse
|
4
|
Wang S, Liu Y, Zhu A, Tian Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal Chem 2023; 95:388-406. [PMID: 36625112 DOI: 10.1021/acs.analchem.2c04541] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrochemical biosensors provide powerful tools for dissecting the dynamically changing neurochemical signals in the living brain, which contribute to the insight into the physiological and pathological processes of the brain, due to their high spatial and temporal resolutions. Recent advances in the integration of in vivo electrochemical sensors with cross-disciplinary advances have reinvigorated the development of in vivo sensors with even better performance. In this Review, we summarize the recent advances in molecular design, electrode materials, and electrochemical devices for in vivo electrochemical sensors from molecular to macroscopic dimensions, highlighting the methods to obtain high performance for fulfilling the requirements for determination in the complex brain through flexible and smart design of molecules, materials, and devices. Also, we look forward to the development of next-generation in vivo electrochemical biosensors.
Collapse
Affiliation(s)
- Shidi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
5
|
Design optimisation and characterisation of an amperometric glutamate oxidase-based composite biosensor for neurotransmitter l-glutamic acid. Anal Chim Acta 2022; 1224:340205. [DOI: 10.1016/j.aca.2022.340205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
|
6
|
Song H, Liu Y, Fang Y, Zhang D. Carbon-Based Electrochemical Sensors for In Vivo and In Vitro Neurotransmitter Detection. Crit Rev Anal Chem 2021; 53:955-974. [PMID: 34752170 DOI: 10.1080/10408347.2021.1997571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
As essential neurological chemical messengers, neurotransmitters play an integral role in the maintenance of normal mammalian physiology. Aberrant neurotransmitter activity is associated with a range of neurological conditions including Parkinson's disease, Alzheimer's disease, and Huntington's disease. Many studies to date have tested different approaches to detecting neurotransmitters, yet the detection of these materials within the brain, due to the complex environment of the brain and the rapid metabolism of neurotransmitters, remains challenging and an area of active research. There is a clear need for the development of novel neurotransmitter sensing technologies capable of rapidly and sensitively monitoring specific analytes within the brain without adversely impacting the local microenvironment in which they are implanted. Owing to their excellent sensitivity, portability, ease-of-use, amenability to microprocessing, and low cost, electrochemical sensors methods have been widely studied in the context of neurotransmitter monitoring. The present review, thus, surveys current progress in this research field, discussing developed electrochemical neurotransmitter sensors capable of detecting dopamine (DA), serotonin (5-HT), acetylcholine (Ach), glutamate (Glu), nitric oxide (NO), adenosine (ADO), and so on. Of these technologies, those based on carbon nanostructures-modified electrodes including carbon nanotubes (CNTs), graphene (GR), gaphdiyne (GDY), carbon nanofibers (CNFs), and derivatives thereof hold particular promise owing to their excellent biocompatibility and electrocatalytic performance. The continued development of these and related technologies is, thus, likely to lead to major advances in the clinical diagnosis of neurological diseases and the detection of novel biomarkers thereof.
Collapse
Affiliation(s)
- Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
7
|
Santos RM, Sirota A. Phasic oxygen dynamics confounds fast choline-sensitive biosensor signals in the brain of behaving rodents. eLife 2021; 10:61940. [PMID: 33587035 PMCID: PMC7932690 DOI: 10.7554/elife.61940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cholinergic fast time-scale modulation of cortical physiology is critical for cognition, but direct local measurement of neuromodulators in vivo is challenging. Choline oxidase (ChOx)-based electrochemical biosensors have been used to capture fast cholinergic signals in behaving animals. However, these transients might be biased by local field potential and O2-evoked enzymatic responses. Using a novel Tetrode-based Amperometric ChOx (TACO) sensor, we performed highly sensitive and selective simultaneous measurement of ChOx activity (COA) and O2. In vitro and in vivo experiments, supported by mathematical modeling, revealed that non-steady-state enzyme responses to O2 give rise to phasic COA dynamics. This mechanism accounts for most of COA transients in the hippocampus, including those following locomotion bouts and sharp-wave/ripples. Our results suggest that it is unfeasible to probe phasic cholinergic signals under most behavioral paradigms with current ChOx biosensors. This confound is generalizable to any oxidase-based biosensor, entailing rigorous controls and new biosensor designs.
Collapse
Affiliation(s)
- Ricardo M Santos
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Banerjee S, McCracken S, Hossain MF, Slaughter G. Electrochemical Detection of Neurotransmitters. BIOSENSORS 2020; 10:E101. [PMID: 32824869 PMCID: PMC7459656 DOI: 10.3390/bios10080101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023]
Abstract
Neurotransmitters are important chemical messengers in the nervous system that play a crucial role in physiological and physical health. Abnormal levels of neurotransmitters have been correlated with physical, psychotic, and neurodegenerative diseases such as Alzheimer's, Parkinson's, dementia, addiction, depression, and schizophrenia. Although multiple neurotechnological approaches have been reported in the literature, the detection and monitoring of neurotransmitters in the brain remains a challenge and continues to garner significant attention. Neurotechnology that provides high-throughput, as well as fast and specific quantification of target analytes in the brain, without negatively impacting the implanted region is highly desired for the monitoring of the complex intercommunication of neurotransmitters. Therefore, it is crucial to develop clinical assessment techniques that are sensitive and reliable to monitor and modulate these chemical messengers and screen diseases. This review focuses on summarizing the current electrochemical measurement techniques that are capable of sensing neurotransmitters with high temporal resolution in real time. Advanced neurotransmitter sensing platforms that integrate nanomaterials and biorecognition elements are explored.
Collapse
Affiliation(s)
| | | | | | - Gymama Slaughter
- Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA; (S.B.); (S.M.); (M.F.H.)
| |
Collapse
|
9
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
10
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Scida K, Plaxco KW, Jamieson BG. High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Transl Res 2019; 213:50-66. [PMID: 31361988 DOI: 10.1016/j.trsl.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
The beautiful and complex brain machinery is perfectly synchronized, and our bodies have evolved to protect it against a myriad of potential threats. Shielded physically by the skull and chemically by the blood brain barrier, the brain processes internal and external information so that we can efficiently relate to the world that surrounds us while simultaneously and unconsciously controlling our vital functions. When coupled with the brittle nature of its internal chemical and electric signals, the brain's "armor" render accessing it a challenging and delicate endeavor that has historically limited our understanding of its structural and neurochemical intricacies. In this review, we briefly summarize the advancements made over the past 10 years to decode the brain's neurochemistry and neuropharmacology in situ, at the site of interest in the brain, with special focus on what we consider game-changing emerging technologies (eg, genetically encoded indicators and electrochemical aptamer-based sensors) and the challenges these must overcome before chronic, in situ chemosensing measurements become routine.
Collapse
Affiliation(s)
- Karen Scida
- Diagnostic Biochips, Inc., Glen Burnie, Maryland
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | | |
Collapse
|
12
|
Love Wave Surface Acoustic Wave Sensor with Laser-Deposited Nanoporous Gold Sensitive Layer. SENSORS 2019; 19:s19204492. [PMID: 31623258 PMCID: PMC6833045 DOI: 10.3390/s19204492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
Abstract
Laser-deposited gold immobilization layers with different porosities were incorporated into Love Wave Surface Acoustic Wave sensors (LW-SAWs). Acetylcholinesterase (AChE) enzyme was immobilized onto three gold interfaces with different morphologies, and the sensor response to chloroform was measured. The response of the sensors to various chloroform concentrations indicates that their sensing properties (sensitivity, limit of detection) are considerably improved when the gold layers are porous, in comparison to a conventional dense gold layer. The results obtained can be used to improve properties of SAW-based biosensors by controlling the nanostructure of the gold immobilization layer, in combination with other enzymes and proteins, since the design of the present sensor is the same as that for a Love Wave biosensor.
Collapse
|
13
|
Bottari F, Moro G, Sleegers N, Florea A, Cowen T, Piletsky S, Nuijs ALN, De Wael K. Electropolymerized o‐Phenylenediamine on Graphite Promoting the Electrochemical Detection of Nafcillin. ELECTROANAL 2019. [DOI: 10.1002/elan.201900397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabio Bottari
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
| | - Giulia Moro
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
- LSE Research group, Department of Molecular Science and NanosystemsCa' Foscari University of Venice Via Torino 155 30172 Mestre Italy
| | - Nick Sleegers
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
| | - Anca Florea
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
| | - Todd Cowen
- Department of ChemistryUniversity of Leicester LE1 7RH Leicester UK
| | - Sergey Piletsky
- Department of ChemistryUniversity of Leicester LE1 7RH Leicester UK
| | - Alexander L. N. Nuijs
- Department of Pharmaceutical SciencesToxicological Centre Universiteitsplein 1 Antwerp 2610 Belgium
| | - Karolien De Wael
- AXES research group, Department of ChemistryUniversity of Antwerp Groenenborgerlaan 171-2020 Antwerp Belgium
| |
Collapse
|
14
|
Wang B, Wen X, Chiou P, Maidment NT. Pt Nanoparticle‐modified Carbon Fiber Microelectrode for Selective Electrochemical Sensing of Hydrogen Peroxide. ELECTROANAL 2019. [DOI: 10.1002/elan.201900362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Wang
- Shirley and Stephan Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los Angeles Los Angeles, CA USA
| | - Ximiao Wen
- Department of Mechanical EngineeringUniversity of California, Los Angeles Los Angeles, CA USA
| | - Pei‐Yu Chiou
- Department of Mechanical EngineeringUniversity of California, Los Angeles Los Angeles, CA USA
| | - Nigel T. Maidment
- Shirley and Stephan Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los Angeles Los Angeles, CA USA
| |
Collapse
|
15
|
Ou Y, Buchanan AM, Witt CE, Hashemi P. Frontiers in Electrochemical Sensors for Neurotransmitter Detection: Towards Measuring Neurotransmitters as Chemical Diagnostics for Brain Disorders. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:2738-2755. [PMID: 32724337 PMCID: PMC7386554 DOI: 10.1039/c9ay00055k] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is extremely challenging to chemically diagnose disorders of the brain. There is hence great interest in designing and optimizing tools for direct detection of chemical biomarkers implicated in neurological disorders to improve diagnosis and treatment. Tools that are capable of monitoring brain chemicals, neurotransmitters in particular, need to be biocompatible, perform with high spatiotemporal resolution, and ensure high selectivity and sensitivity. Recent advances in electrochemical methods are addressing these criteria; the resulting devices demonstrate great promise for in vivo neurotransmitter detection. None of these devices are currently used for diagnostic purposes, however these cutting-edge technologies are promising more sensitive, selective, faster, and less invasive measurements. Via this review we highlight significant technical advances and in vivo studies, performed in the last 5 years, that we believe will facilitate the development of diagnostic tools for brain disorders.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Colby E. Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| |
Collapse
|
16
|
Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G. Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2037. [PMID: 31052309 PMCID: PMC6539656 DOI: 10.3390/s19092037] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010-2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.
Collapse
Affiliation(s)
- Zahra Tavakolian-Ardakani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | - Oana Hosu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | | | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Instituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136 Roma, Italy.
| |
Collapse
|
17
|
Wang B, Feng L, Koo B, Monbouquette HG. A Complete Electroenzymatic Choline Microprobe Based on Nanostructured Platinum Microelectrodes and an IrOx On‐probe Reference Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo Wang
- Chemical and Biomolecular Engineering DepartmentUniversity of California Los Angeles CA 90095 USA
| | - Lili Feng
- Chemical and Biomolecular Engineering DepartmentUniversity of California Los Angeles CA 90095 USA
| | - Bonhye Koo
- Chemical and Biomolecular Engineering DepartmentUniversity of California Los Angeles CA 90095 USA
| | - Harold G. Monbouquette
- Chemical and Biomolecular Engineering DepartmentUniversity of California Los Angeles CA 90095 USA
| |
Collapse
|
18
|
Lendor S, Hassani SA, Boyaci E, Singh V, Womelsdorf T, Pawliszyn J. Solid Phase Microextraction-Based Miniaturized Probe and Protocol for Extraction of Neurotransmitters from Brains in Vivo. Anal Chem 2019; 91:4896-4905. [DOI: 10.1021/acs.analchem.9b00995] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sofia Lendor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Seyed-Alireza Hassani
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, Tennessee 37240, United States
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario M6J 1P3, Canada
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, Tennessee 37240, United States
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario M6J 1P3, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
19
|
|
20
|
Dinca V, Viespe C, Brajnicov S, Constantinoiu I, Moldovan A, Bonciu A, Toader CN, Ginghina RE, Grigoriu N, Dinescu M, Scarisoreanu ND. MAPLE Assembled Acetylcholinesterase⁻Polyethylenimine Hybrid and Multilayered Interfaces for Toxic Gases Detection. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4265. [PMID: 30518102 PMCID: PMC6308966 DOI: 10.3390/s18124265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
Developing a controlled method for obtaining hybrid enzymatic-based interfaces for sensing application require the use of a multiuse, reusable sensor. By controlling the interface characteristics in terms of the surface chemistry, thickness, and roughness, a tailored response toward various toxic compounds can be obtained, regarding both materials used as active surfaces and fabrication methods. Herein, we report a preliminary study on using a laser-based method (i.e., matrix-assisted pulsed laser evaporation, or MAPLE) for obtaining active polymeric⁻enzymatic interfaces as hybrid or layered coatings for detecting toxic vapors. The MAPLE fabrication consisted of the simultaneous alternating evaporation of layers of polyethylenimine (PEI) and acetylcholinesterase (AchE) in order to obtain active surfaces as both hybrid PEI-AchE and a PEI/AchE layered coating, respectively. The deposition processes of the polymer and enzyme were carried out using a double-target system and a Nd:YAG pulsed laser, operating at 0.45 J/cm² fluences with a wavelength of 266 nm and a repetition rate of 10 Hz. Fourier transform infrared spectroscopy revealed no significant changes in the functional groups of both hybrid and layered coatings compared with the initial material. The thickness and roughness, as well as the morphologies of the coatings revealed by atomic force microscopy and scanning electron microscopy showed coatings thicker than two μm that had smooth surfaces and average roughness values below six nm. The sensors were tested with simulants for nerve gases and pesticides containing phosphonate ester groups, namely dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP), and a different sensitivity was shown to the selected chemical agents for each of the sensors. The best sensitivities for DMMP and DIMP obtained by using a PEI-AchE coated sensor are 65 kHz and 200 kHz, respectively, whereas the best sensitivity when using multilayered interfaces is 30 kHz and 10 KHz for DIMP and DMMP, respectively.
Collapse
Affiliation(s)
- Valentina Dinca
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO, Bucharest 077125, Romania.
| | - Cristian Viespe
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO, Bucharest 077125, Romania.
| | - Simona Brajnicov
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO, Bucharest 077125, Romania.
| | - Izabela Constantinoiu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO, Bucharest 077125, Romania.
| | - Antoniu Moldovan
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO, Bucharest 077125, Romania.
| | - Anca Bonciu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO, Bucharest 077125, Romania.
| | | | | | - Nicoleta Grigoriu
- Scientific Research Center for CBRN Defense and Ecology, Bucharest 041309, Romania.
| | - Maria Dinescu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO, Bucharest 077125, Romania.
| | - Nicu Doinel Scarisoreanu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO, Bucharest 077125, Romania.
| |
Collapse
|
21
|
Characterisation of a Platinum-based Electrochemical Biosensor for Real-time Neurochemical Analysis of Choline. ELECTROANAL 2018. [DOI: 10.1002/elan.201800642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
El Harrad L, Bourais I, Mohammadi H, Amine A. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. SENSORS (BASEL, SWITZERLAND) 2018; 18:E164. [PMID: 29315246 PMCID: PMC5795370 DOI: 10.3390/s18010164] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
A large number of enzyme inhibitors are used as drugs to treat several diseases such as gout, diabetes, AIDS, depression, Parkinson's and Alzheimer's diseases. Electrochemical biosensors based on enzyme inhibition are useful devices for an easy, fast and environment friendly monitoring of inhibitors like drugs. In the last decades, electrochemical biosensors have shown great potentials in the detection of different drugs like neostigmine, ketoconazole, donepezil, allopurinol and many others. They attracted increasing attention due to the advantage of being high sensitive and accurate analytical tools, able to reach low detection limits and the possibility to be performed on real samples. This review will spotlight the research conducted in the past 10 years (2007-2017) on inhibition based enzymatic electrochemical biosensors for the analysis of different drugs. New assays based on novel bio-devices will be debated. Moreover, the exploration of the recent graphical approach in diagnosis of reversible and irreversible inhibition mechanism will be discussed. The accurate and the fast diagnosis of inhibition type will help researchers in further drug design improvements and the identification of new molecules that will serve as new enzyme targets.
Collapse
Affiliation(s)
- Loubna El Harrad
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Ilhame Bourais
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| |
Collapse
|
23
|
Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G, Phillips KG, Isaac JTR, Lowry JP, Mellor JR. Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales. Cell Rep 2017; 18:905-917. [PMID: 28122241 PMCID: PMC5289927 DOI: 10.1016/j.celrep.2016.12.085] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/05/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023] Open
Abstract
Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance.
Collapse
Affiliation(s)
- Leonor M Teles-Grilo Ruivo
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK; Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Keeley L Baker
- Department of Chemistry, Maynooth University, Co. Kildare, Ireland
| | - Michael W Conway
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Peter J Kinsley
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Gary Gilmour
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Keith G Phillips
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - John T R Isaac
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - John P Lowry
- Department of Chemistry, Maynooth University, Co. Kildare, Ireland.
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
24
|
Doran MM, Finnerty NJ, Lowry JP. In-Vitro
Development and Characterisation of a Superoxide Dismutase-Based Biosensor. ChemistrySelect 2017. [DOI: 10.1002/slct.201700793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michelle M. Doran
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| | - Niall J. Finnerty
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| | - John P. Lowry
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| |
Collapse
|
25
|
Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L. In Vivo Analysis with Electrochemical Sensors and Biosensors. Anal Chem 2016; 89:300-313. [DOI: 10.1021/acs.analchem.6b04308] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meining Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|