1
|
Saha D, Talukdar D, Pal I, Majumdar S, Lepcha G, Sadhu S, Yatirajula SK, Das G, Dey B. Mechanically Flexible Self-Healing Mg(II)-Metallogel: Approach of Triggering the ROS-Induced Apoptosis in Human Breast Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19816-19829. [PMID: 39213656 DOI: 10.1021/acs.langmuir.4c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A self-assembly-directed thixotropic metallohydrogel (i.e., Mg-Tetrakis) of Mg(II)-metal salt and N,N,N',N'-tetrakis(2-hydroxy-ethyl)ethylenediamine (i.e., Tetrakis) was successfully achieved. The organic chemical component N,N,N',N'-tetrakis(2-hydroxy-ethyl)ethylenediamine was used as a low-molecular-weight gelator, and water was employed as the gel-forming solvent. The fabricated supramolecular metallohydrogel promisingly depicted viscoelastic and mechanoelastic behaviors, which are interpreted through various rheological parameters. The thixotropic behavior of the metallohydrogel is also well characterized through this rheological study. Field emission scanning electron microscopy microstructural analyses were performed to visualize the morphological arrangements of the metallohydrogel. The anticancer properties of the synthesized metallogels are investigated through this work. The cytotoxic potential of the metallohydrogel on the MCF-7 breast cancer cell line is critically examined. Reducing the growth of breast cancer cell line MCF-7 through the treatment of gel on the colony formation assay has been explored through the work. The antimigratory potential of the metallohydrogel on the MCF-7 cell was also scrutinized. The anticancer effect of the fabricated metallohydrogel is inspected through various assay formation strategies, like wound healing assay, tumor spheroid inhibition assay, nuclear fragmentation assay, and so on. Quantitative reactive oxygen species analysis of the cancer cells by treatment with the metallohydrogel was also conducted through this study. The mechanistic apoptosis study was executed by studying the expression of various apoptotic markers like BAX, BCL2, PUMA, and NOXA.
Collapse
Affiliation(s)
- Deblina Saha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Debojit Talukdar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Seacom Skills University, Kendradangal, Birbhum, Bolpur 731236, West Bengal, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Bajkul Milani Mahavidyalaya, Purba, Mednipur 721655, West Bengal, India
| | - Subhajoy Sadhu
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
2
|
Saha D, Dey T, Pal I, Kundu A, Majumdar S, Sadhu S, Yatirajula SK, Rath J, Ray SK, Dey B. Solvent-Directed Bioactive Supramolecular Zinc(II)-Metallogels: Exploring Semiconducting Aptitudes of Fabricating p-n Junction and Schottky Devices. ACS APPLIED BIO MATERIALS 2024; 7:5609-5621. [PMID: 39074362 DOI: 10.1021/acsabm.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
α-Ketoglutaric acid-based supramolecular Zn(II) metallogels in N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent (i.e., Zn-α-Glu-DMF and Zn-α-Glu-DMSO) were successfully achieved. Zinc(II) acetate salt and α-ketoglutaric acid directed a three-dimensional noncovalent supramolecular network individually entrapped with N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent to accomplish their respective semisolid flexible metallogel frameworks. The gel features of these synthesized materials were verified by rheological experiments such as amplitude sweep and frequency sweep measurements. The discrete morphological arrangements were analyzed for these metallogel samples through field emission scanning electron microscopic (FESEM) analysis. Highly stacked interconnected blocks of Zn-α-Glu-DMF with hierarchical arrays are found due to the occurrence of diverse noncovalent supramolecular interactions present in the metallogel framework. A distinct spherical shaped microstructure with interconnected hierarchical assembly has been observed for the FESEM pattern of Zn-α-Glu-DMSO. FTIR spectroscopic measurement was carried out to detect some important stretching vibrations of xerogel samples of different metallogels as well as gel-constructing chemical ingredients. A substantial amount of peak shifting of xerogel samples for both metallogels is observed in FTIR analysis, indicating the presence of different noncovalent interactions. ESI-mass analysis portrays a possible metallogel-constructing strategy. The antibacterial potentialities of both metallogels were investigated. These materials exhibited good antimicrobial efficacy toward Gram-positive and Gram-negative bacterial strains (including Escherichia coli, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Salmonella typhimurium). Both synthesized metallogels were successfully implemented to fabricate the photoresponsive semiconducting diode. These materials offer excellent photodiode parameters including an ideality factor and rectification ratio (ON/OFF ratio). Synthesized metallogels are used to successfully fabricate photodiodes with an Al/p-Si/metallogel/Au structure. The ideality factors (η) for Zn-α-Glu-DMF and Zn-α-Glu-DMSO are found as 1.3 and 2.3, respectively, in dark conditions. The rectification ratios for Zn-α-Glu-DMF and Zn-α-Glu-DMSO metallogels are also determined, and these are found as 40 and 10, respectively.
Collapse
Affiliation(s)
- Deblina Saha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Tamal Dey
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Anupam Kundu
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Seacom Skills University, Kendradangal, Bolpur, Birbhum 731236, West Bengal, India
| | - Subhajoy Sadhu
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Samit K Ray
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
3
|
Roy A, Dhibar S, Karmakar K, Bhattacharjee S, Saha B, Ray SJ. Development of a novel self-healing Zn(II)-metallohydrogel with wide bandgap semiconducting properties for non-volatile memory device application. Sci Rep 2024; 14:13109. [PMID: 38849385 PMCID: PMC11161586 DOI: 10.1038/s41598-024-61870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
A rapid and effective strategy has been devised for the swift development of a Zn(II)-ion-based supramolecular metallohydrogel, termed Zn@PEH, using pentaethylenehexamine as a low molecular weight gelator. This process occurs in an aqueous medium at room temperature and atmospheric pressure. The mechanical strength of the synthesized Zn@PEH metallohydrogel has been assessed through rheological analysis, considering angular frequency and oscillator stress dependencies. Notably, the Zn@PEH metallohydrogel exhibits exceptional self-healing abilities and can bear substantial loads, which have been characterized through thixotropic analysis. Additionally, this metallohydrogel displays injectable properties. The structural arrangement resembling pebbles within the hierarchical network of the supramolecular Zn@PEH metallohydrogel has been explored using FESEM and TEM measurements. EDX elemental mapping has confirmed the primary chemical constituents of the metallohydrogel. The formation mechanism of the metallohydrogel has been analyzed via FT-IR spectroscopy. Furthermore, zinc(II) metallohydrogel (Zn@PEH)-based Schottky diode structure has been fabricated in a lateral metal-semiconductor-metal configuration and it's charge transport behavior has also been studied. Notably, the zinc(II) metallohydrogel-based resistive random access memory (RRAM) device (Zn@PEH) demonstrates bipolar resistive switching behavior at room temperature. This RRAM device showcases remarkable switching endurance over 1000 consecutive cycles and a high ON/OFF ratio of approximately 270. Further, 2 × 2 crossbar array of the RRAM devices were designed to demonstrate OR and NOT logic circuit operations, which can be extended for performing higher order computing operations. These structures hold promise for applications in non-volatile memory design, neuromorphic and in-memory computing, flexible electronics, and optoelectronic devices due to their straightforward fabrication process, robust resistive switching behavior, and overall system stability.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801103, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801103, India.
| |
Collapse
|
4
|
Dhibar S, Mohan A, Karmakar K, Mondal B, Roy A, Babu S, Garg P, Ruidas P, Bhattacharjee S, Roy S, Bera A, Ray SJ, Predeep P, Saha B. Novel supramolecular luminescent metallogels containing Tb(iii) and Eu(iii) ions with benzene-1,3,5-tricarboxylic acid gelator: advancing semiconductor applications in microelectronic devices. RSC Adv 2024; 14:12829-12840. [PMID: 38645531 PMCID: PMC11027726 DOI: 10.1039/d3ra07903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
A novel strategy was employed to create supramolecular metallogels incorporating Tb(iii) and Eu(iii) ions using benzene-1,3,5-tricarboxylic acid (TA) as a gelator in N,N-dimethylformamide (DMF). Rheological analysis demonstrated their mechanical robustness under varying stress levels and angular frequencies. FESEM imaging revealed a flake-like hierarchical network for Tb-TA and a rod-shaped architecture for Eu-TA. EDX analysis confirmed essential chemical constituents within the metallogels. FT-IR, PXRD, Raman spectroscopy, and thermogravimetric analysis assessed their gelation process and material properties, showing semiconducting characteristics, validated by optical band-gap measurements. Metal-semiconductor junction-based devices integrating Al metal with Tb(iii)- and Eu(iii)-metallogels exhibited non-linear charge transport akin to a Schottky diode, indicating potential for advanced electronic device development. Direct utilization of benzene-1,3,5-tricarboxylic acid and Tb(iii)/Eu(iii) sources underscores their suitability as semiconducting materials for device fabrication. This study explores the versatile applications of Tb-TA and Eu-TA metallogels, offering insights for material science researchers.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur 495009 Chhattisgarh India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Saranya Babu
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Pradip Ruidas
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Sanjay Roy
- Department of Chemistry, School of Science, Netaji Subhas Open University, Kalyani Regional Centre Kolkata 741251 India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu J&K 181221 India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology Calicut Calicut 673603 Kerala India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
5
|
Jiang Q, Chen J, Liu B, Zhang Y, Qiu Y, Wang H, Liao Y, Xie X. Regulating Gelation and Luminescence Behaviors of Single Pyridine-Functionalized Cyanostilbene via Metal Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7158-7167. [PMID: 38517397 DOI: 10.1021/acs.langmuir.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Luminescent metal-organic gels (LMOGs) have gained much attention due to their crucial role in visual recognition and information encryption. However, it is still a challenge to simplify the design of ligands and enrich the stimuli responses in LMOGs simultaneously. Herein, although a single pyridine ligand cannot form gel alone, after coordination with metal ions, two kinds of LMOGs have been obtained with pyridine-metal complexes, where metal ions can act as cogelators and regulate luminescence of the pyridine-functionalized cyanostilbene ligand at the same time. The effects of metal types on the fluorescence emission color, the fluorescence quantum yield, the fibril network, and the assembly mode of the gel have been investigated systematically. In addition, two competitive ligands were used to regulate the fluorescence and phase transition of the gel. Finally, the logic gates and the information encryption and decryption have been successfully constructed. This kind of material is expected to be applied to fluorescence display, advanced information encryption, high-tech anticounterfeit, and so forth.
Collapse
Affiliation(s)
- Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Beitong Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuping Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Singh V, Dwivedi AD, Pandey R. Anticounterfeiting Feature of a Writable and Self-Erasable Ni(II)-Metallogel Pad via Fluorescent "Turn-On" Detection of Cyanide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5121-5136. [PMID: 38419340 DOI: 10.1021/acs.langmuir.3c03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A Schiff base 5-(2-hydroxy-3-methoxybenzylidieneamino)-1-H-imidazole-4-carboxamide (HL) comprising multibinding sites has been synthesized with the aim of fabricating a supramolecular gel. The gelator HL was characterized by FT-IR, 1H & 13C NMR, and ESI-MS techniques and also formed a [Ni(L)2] complex. The gelation property of HL was investigated with various metal ions, wherein Ni(II) selectively forms a mechanically and thermally stable supramolecular metallogel (MG) in the presence of a triethylamine base in DMF-MeOH media. Characterization of MG was accomplished with different spectro-analytical techniques such as FT-IR, ESI-MS, powder-XRD, SEM, rheological investigations, UV/vis, and fluorescence. The gelator HL displays moderate emission upon addition of Ni2+ and gives "turn-off" fluorescence output by forming the complex [Ni(L)2] (MG) due to the chelation-enhanced quenching of fluorescence (CHEQ). Job plot and ESI-MS data suggested a 2:1 stoichiometry between HL and Ni(II) in MG. Further, MG exhibited highly selective and ultrasensitive "turn-on" fluorescence signaling with CN- in the background presence of several cations and anions. The limit of detection (LoD) of MG was determined to be 6.9 × 10-9 M for CN- using the fluorescence technique. Notably, MG behaves as a fluorescent writable pad material explicitly with CN- under 365 nm UV light but not under ordinary light and the fluorescent text is self-erased after 15 min. Hence, MG can be used as a metallogel pad in the presence of CN- to communicate secret messages. Overall, the present work explores the fabrication of a thermo- and mechanostable Ni(II)-metallogel (MG), which selectively and ultrasensitively detects CN- both in the solution phase and in the gel form, wherein MG behaves as a writable and self-erasable pad with anticounterfeiting features for practical applications.
Collapse
Affiliation(s)
- Vaishali Singh
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar (Garhwal) 246174, India
| | - Ambikesh D Dwivedi
- Department of Chemistry, Banaras Hindu University Varanasi, Varanasi 221005, India
| | - Rampal Pandey
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar (Garhwal) 246174, India
| |
Collapse
|
7
|
Palanisamy J, Rajagopal R, Alfarhan A. Coumarin Linked Cyanine Dye for the Selective Detection of Cyanide Ion in Environmental Water Sample. J Fluoresc 2024:10.1007/s10895-024-03620-0. [PMID: 38466538 DOI: 10.1007/s10895-024-03620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
A benzoxazole-coumarin-based probe BOC, was synthesized and validated for its anion sensing ability and found to be effective in recognizing cyanide ions. Upon addition of cyanide, a spontaneous color change was observed that was visible to the naked eye. The sensitization process takes place with nucleophilic addition, and the cyanide ion added to the probe disrupts the intra molecular charge transfer transition (ICT) between the donor and acceptor units, causing the pink colored probe to become yellow. Ultraviolet and fluorescence methods were applied to measure the detection limits of probes with added cyanide ions, which were found to be 3.47 µM and 2.48 nM. The stoichiometry of the probe with the cyanide ion was determined by the Job's method, NMR titration, and mass spectrometry and was found to be in a 1:1 ratio. The results obtained from the visual and UV-visible spectral studies are justified by theoretical calculations. The cyanide-loaded probe induced visual changes, which enabled the development of a test strip for field application, and the prepared strip can be used to detect the ppm level of cyanide in water samples. The developed probe, BOC, can be used to detect cyanide ions in various water samples.
Collapse
Affiliation(s)
- Jayasudha Palanisamy
- Department of Chemistry, Subramanya College of Arts and Science, Palani, Tamilnadu, 624618, India.
| | - Rajakrishnan Rajagopal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Zheng W, Wang Y, Chen F, Bai B, Wang H, Li M. Solvatochromic and Proton-Responsive characteristics of Bi-1,3,4-Oxadiazole derivatives with symmetric dimethylamino substitution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123800. [PMID: 38145583 DOI: 10.1016/j.saa.2023.123800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
D-A molecules find extensive use in intelligent stimulus-response systems due to their exceptional attributes, including high sensitivity, rapid response, wide compatibility, and structural adaptability. The strength of Intramolecular Charge Transfer (ICT) plays a pivotal role in determining the performance of these devices. To enhance the ICT strength and explore new applications for D-A molecules, we meticulously designed a pair of symmetric dimethylamino-substituted bi-1,3,4-oxadiazole derivatives (DMAOXD and DMAOXDBEN). These symmetric D-A-A-D molecules, with strong electron donor terminals, displayed a modest redshift of less than 25 nm in the UV-vis absorption spectra. However, there was a significant redshift in the emission spectra (140 nm for DMAOXD and 170 nm for DMAOXDBEN) when transitioning from cyclohexane to dimethyl sulfoxide, indicating a pronounced ICT characteristic. Theoretical calculations support the idea that the dimethylaminophenyl unit serves as an electron donor in both DMAOXD and DMAOXDBEN, while the 1,3,4-oxadiazole and central benzene ring act as acceptors. The pronounced ICT characteristic observed in DMAOXD and DMAOXDBEN can be attributed to long-distance electron transfer. Additionally, it's noteworthy that the emission of DMAOXD and DMAOXDBEN solution samples can be quenched by adding trifluoroacetic acid (TFA) and restored by the addition of triethylamine (TEA). Inspired by this, a pattern created with ink samples containing DMAOXD and DMAOXDBEN can be concealed through fumigation with TFA and subsequently revealed by treating them with TEA, suggesting their potential use in data encryption.
Collapse
Affiliation(s)
- Weitao Zheng
- Key Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yuhan Wang
- Key Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Fangyi Chen
- Chongqing College of Electronic Engineering, No.76 University Town East Road, Shapingba District, Chongqing 401331, China
| | - Binglian Bai
- College of Physics, Jilin University, Changchun 130012, China
| | - Haitao Wang
- Key Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Min Li
- Key Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Dhibar S, Roy A, Sarkar T, Das P, Karmakar K, Bhattacharjee S, Mondal B, Chatterjee P, Sarkar K, Ray SJ, Saha B. Rapid Semiconducting Supramolecular Mg(II)-Metallohydrogel: Exploring Its Potential in Nonvolatile Resistive Switching Applications and Antiseptic Wound Healing Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:179-192. [PMID: 38112377 DOI: 10.1021/acs.langmuir.3c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An effective strategy was employed for the rapid development of a supramolecular metallohydrogel of Mg(II) ion (i.e., Mg@PEHA) using pentaethylenehexamine (PEHA) as a low-molecular-weight gelator in aqueous medium under ambient conditions. The mechanical stability of the synthesized Mg@PEHA metallohydrogel was characterized by using rheological analysis, which showed its robustness across different angular frequencies and oscillator stress levels. The metallohydrogel exhibited excellent thixotropic behavior, which signifies that Mg@PEHA has a self-healing nature. Field emission scanning electron microscopy and transmission electron microscopy images were utilized to explore the rectangular pebble-like hierarchical network of the Mg@PEHA metallohydrogel. Elemental mapping through energy-dispersive X-ray spectroscopy analysis confirmed the presence of primary chemical constituents in the metallohydrogel. Fourier transform infrared spectroscopy spectroscopy provided insights into the possible formation strategy of the metallohydrogel. In this work, Schottky diode structures in a metal-semiconductor-metal geometry based on a magnesium(II) metallohydrogel (Mg@PEHA) were constructed, and the charge transport behavior was observed. Additionally, a resistive random access memory (RRAM) device was developed using Mg@PEHA, which displayed bipolar resistive switching behavior at room temperature. The researchers investigated the switching mechanism, which involved the formation or rupture of conduction filaments, to gain insights into the resistive switching process. The RRAM device demonstrated excellent performance with a high ON/OFF ratio of approximately 100 and remarkable endurance of over 5000 switching cycles. RRAM devices exhibit good endurance, meaning they can endure a large number of read and write cycles without significant degradation in performance. RRAM devices have shown promising reliability in terms of long-term performance and stability, making them suitable for critical applications that require reliable memory solutions. Significant inhibitory activity against the drug-resistant Klebsiella pneumonia strain and its biofilm formation ability was demonstrated by Mg@PEHA. The minimum inhibitory concentration value of the metallohydrogel was determined to be 3 mg/mL when it was dissolved in 1% DMSO. To study the antibiofilm activity, an MTT assay was performed, revealing that biofilm inhibition (60%) commenced at 1 mg/mL of Mg@PEHA when dissolved in 1% DMSO. Moreover, in the mouse excisional wound model, Mg@PEHA played a crucial role in preventing postoperative wound infections and promoting wound healing.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Bihar 801106, India
| | - Tuhin Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Priyanka Das
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol 713303 West Bengal, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009 Chhattisgarh, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar 801106, India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104 West Bengal, India
| |
Collapse
|
10
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
11
|
Pal I, Majumdar S, Lepcha G, Ahmed KT, Yatirajula SK, Bhattacharya S, Chakravarti R, Bhattacharya B, Biswas SR, Dey B. Exploration of Variable Solvent Directed Self-Healable Supramolecular M(II)-Metallogels (M = Co, Ni, Zn) of Azelaic Acid: Investigating Temperature-Dependent Ion Conductivity and Antibacterial Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:5442-5457. [PMID: 37997919 DOI: 10.1021/acsabm.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Molecular self-assembly assisted self-healing supramolecular metallogels of azelaic acid with cobalt(II)-, nickel(II)-, and zinc(II)-based metal acetate salts were successfully fabricated. Individually, N,N'-dimethylformamide and dimethyl sulfoxide were immobilized within these distinctly synthesized soft-scaffolds of metallogels to attain their semisolid viscoelastic nature. Rheological experiments such as amplitude sweep, frequency sweep, and thixotropic measurements were executed for these metallogels to ratify their gel features. The different extents of supramolecular interactions operating within these solvent-directed metallogels were clearly reflected in terms of their distinct morphological patterns as investigated through field emission scanning electron microscopy. Comparative infrared (IR) spectral properties of metallogels along with individual metal salts and azelaic acid were analyzed. These experimental data clearly depict the significant shifting of Fourier transform (FT)-IR peaks of xerogel samples of different metallogels from the gel-forming precursors. The networks present within the soft-scaffold are evidently illustrated by the electrospray ionization-mass experimental data. The temperature-dependent ionic conductivity studies with these solvent-directed versatile metallogel systems were investigated through impedance spectroscopy. The temperature-dependent impedance spectroscopic studies clearly demonstrate that the ion-transportation within the gel matrix depends not only on the types of cations but also on the dielectric properties of the immobilized solvents. The antipathogenic effect of these metallogel systems has also been explored by testing their effectiveness against human pathogenic Gram-negative bacteria Klebsiella pneumoniae (MTCC 109) and Vibrio parahemolyticus, and Gram-positive bacteria like Bacillus cereus (MTCC 1272). These gel soft-scaffolds show no significant cytotoxicity against both the human neuroblastoma cell line-SH-SY5Y and the human embryonic kidney cell line-HEK 293.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Kazi Tawsif Ahmed
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | | | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Bireswar Bhattacharya
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
12
|
Karmakar K, Roy A, Dhibar S, Majumder S, Bhattacharjee S, Rahaman SKM, Saha R, Chatterjee P, Ray SJ, Saha B. Exploration of a wide bandgap semiconducting supramolecular Mg(II)-metallohydrogel derived from an aliphatic amine: a robust resistive switching framework for brain-inspired computing. Sci Rep 2023; 13:22318. [PMID: 38102201 PMCID: PMC10724216 DOI: 10.1038/s41598-023-48936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
A rapid metallohydrogelation strategy has been developed of magnesium(II)-ion using trimethylamine as a low molecular weight gelator in water medium at room temperature. The mechanical property of the synthesized metallohydrogel material is established through the rheological analysis. The nano-rose like morphological patterns of Mg(II)-metallohydrogel are characterized through field emission scanning electron microscopic study. The energy dispersive X-ray elemental mapping analysis confirms the primary gel forming elements of Mg(II)-metallohydrogel. The possible metallohydrogel formation strategy has been analyzed through FT-IR spectroscopic study. In this work, magnesium(II) metallohydrogel (Mg@TMA) based metal-semiconductor-metal structures have been developed and charge transport behaviour is studied. Here, it is confirmed that the magnesium(II) metallohydrogel (Mg@TMA) based resistive random access memory (RRAM) device is showing bipolar resistive switching behaviour at room temperature. We have also explored the mechanism of resistive switching behaviour using the formation (rupture) of conductive filaments between the metal electrodes. This RRAM devices exhibit excellent switching endurance over 10,000 switching cycles with a large ON/OFF ratio (~ 100). The easy fabrication techniques, robust resistive switching behaviour and stability of the present system makes these structures preferred candidate for applications in non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics etc.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Shantanu Majumder
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India.
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
13
|
Dhibar S, Pal B, Karmakar K, Roy S, Hafiz SA, Roy A, Bhattacharjee S, Ray SJ, Ray PP, Saha B. A 5-aminoisophthalic acid low molecular weight gelator based novel semiconducting supramolecular Zn(ii)-metallogel: unlocking an efficient Schottky barrier diode for microelectronics. NANOSCALE ADVANCES 2023; 5:6714-6723. [PMID: 38024309 PMCID: PMC10662173 DOI: 10.1039/d3na00671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
A novel method has been successfully developed for creating supramolecular metallogels using zinc(ii) ions and 5-aminoisophthalic acid as the gelator (low molecular weight gelator) in a dimethylformamide (DMF) solvent at room temperature. Comprehensive rheological investigations confirm the robust mechanical strength of the resulting zinc(ii)-metallogel. Microstructural analysis conducted through field-emission scanning electron microscopy (FESEM) unveils a unique flake-like morphology, with energy-dispersive X-ray (EDX) elemental mapping confirming the prevalence of zinc as the primary constituent of the metallogel. To understand the formation mechanism of this metallogel, Fourier-transform infrared (FT-IR) spectroscopy was employed. Notably, these supramolecular zinc(ii)-metallogel assemblies exhibit electrical conductivity reminiscent of metal-semiconductor (MS) junction electronic components. Surprisingly, the metallogel-based thin film device showcases an impressive electrical conductivity of 1.34 × 10-5 S m-1. The semiconductor characteristics of the synthesized zinc(ii)-metallogel devices, including their Schottky barrier diode properties, have been extensively investigated. This multifaceted study opens up a promising avenue for designing functional materials tailored for electronic applications. It harnesses the synergistic properties of supramolecular metallogels and highlights their significant potential in the development of semiconductor devices. This work represents a novel approach to the creation of advanced materials with unique electronic properties, offering exciting prospects for future innovations in electronic and semiconductor technologies.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Baishakhi Pal
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Kalyani Regional Centre, Netaji Subhas Open University West Bengal India
| | - Sk Abdul Hafiz
- Department of Chemistry, KaziNazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | | | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
14
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Solvent-Driven Variations of Third-Order Nonlinear Thermo-Optical Features of Glutaric Acid-Directed Self-Healing Supramolecular Ni(II) Metallogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16584-16595. [PMID: 37934977 DOI: 10.1021/acs.langmuir.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The generation of solvent-directed self-healing supramolecular Ni(II) metallogels of glutaric acid (i.e., Ni-Glu-DMF and Ni-Glu-DMSO) is described in this article. Polar aprotic solvents like N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) are separately entrapped into the Ni(II)-acetate salt and glutaric acid-mediated networks to attain the semisolid flexible scaffolds. The gel nature of the fabricated materials is experimentally proven through different rheological tests such as amplitude sweep, frequency sweep, and thixotropic (time sweep) measurements. The self-repairing strategy and load-bearing features of the synthesized metallogel are studied in this work. The different supramolecular noncovalent interactions working within the soft scaffold are clearly explored. The formation strategy and the microstructural features of these synthesized metallogels are scrutinized through a Fourier transform infrared (FT-IR) spectroscopy study and field-emission scanning electron microscopy (FESEM) morphological analyses. The FT-IR spectroscopy observation displays a considerable amount of shifting of the infrared (IR) peaks of the xerogel samples of both the metallogels Ni-Glu-DMF and Ni-Glu-DMSO. The electrospray ionization (ESI)-mass spectroscopy result demonstrates the plausible construction of the metallogel network. In order to examine the nonlinear optical characteristics of the two synthesized self-healing metallogels Ni-Glu-DMSO and Ni-Glu-DMF, Z-scan measurements are carried out with a continuous wave (CW) diode-pumped solid-state (DPSS) laser at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels were evaluated by analyzing the experimental data from the Sheik-Bahae formalism. The nonlinear thermo-optical study reveals that these solvent-dependent metallogels show negative signs of nonlinear refractive index and nonlinear absorption coefficient. The figure of merit calculated for these compounds shows good agreement for their use in nonlinear photonic devices.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
15
|
Dhibar S, Pal S, Karmakar K, Hafiz SA, Bhattacharjee S, Roy A, Rahaman SKM, Ray SJ, Dam S, Saha B. Two novel low molecular weight gelator-driven supramolecular metallogels efficient in antimicrobial activity applications. RSC Adv 2023; 13:32842-32849. [PMID: 38025858 PMCID: PMC10630960 DOI: 10.1039/d3ra05019j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
A remarkable ultrasonication technique was successfully employed to create two novel metallogels using citric acid as a low molecular weight gelator, in combination with cadmium(ii)-acetate and mercury(ii)-acetate dissolved in N,N-dimethyl formamide at room temperature and under ambient conditions. The mechanical properties of the resulting Cd(ii)- and Hg(ii)-metallogels were rigorously examined through rheological analyses, which revealed their robust mechanical stability under varying angular frequencies and shear strains. Detailed characterization of the chemical constituents within these metallogels was accomplished through EDX mapping experiments, while microstructural features were visualized using field emission scanning electron microscope (FESEM) images. Additionally, FT-IR spectroscopic analysis was employed to elucidate the metallogel formation mechanism. Significantly, the antimicrobial efficacy of these novel metallogels was assessed against a panel of bacteria, including Gram-positive strains such as Bacillus subtilis and Staphylococcus epidermidis, as well as Gram-negative species like Escherichia coli and Pseudomonas aeruginosa. The results demonstrated substantial antibacterial activity, highlighting the potential of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels as effective agents against a broad spectrum of bacteria. In conclusion, this study provides a comprehensive exploration of the synthesis, characterization, and antimicrobial properties of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels, shedding light on their promising applications in combating both Gram-positive and Gram-negative bacterial infections. These findings open up exciting prospects for the development of advanced materials with multifaceted industrial and biomedical uses.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sk Abdul Hafiz
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
16
|
Manna U, Dutta A, Baskey MK. Zn(II)-Coordination Complex(s) from Chiral Bisamides of L-Phenylalanine: Nanoscale-Based Biological Applications and Metallogelation. Inorg Chem 2023; 62:15777-15789. [PMID: 37695678 DOI: 10.1021/acs.inorgchem.3c02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Three 3-pyridyl-containing small organic bisamide molecules attached with innocent L-phenylalanine (PHE) side chain as building blocks and positional isomeric toluoyl terminals (PME, MME, and OME) have rationally been designed and synthesized for developing a new series of ZnII-coordination complexes. One of the unique molecular frameworks, having two hydrogen bond-equipped monodentate metal-coordinating sites and biologically potent chiral PHE moiety, was combined with ZnII halide salts under various conditions to produce the coordination complexes (CC1-CC7), thoroughly characterized by the single-crystal X-ray diffraction (SXRD) technique. Maintaining the similar component ratios of acquired CCs in 1:1 DMSO-water produced low-molecular weight metallogels (LMWGs) of PME/MME as envisaged from a rheology- and crystal engineering-based structural rationale. A structure-property correlation from the basis of PXRD of the bulk and xerogels and SXRD data of the isolated single crystals of reaction products clearly supports the crystal engineering-based design strategy based on which the metallogels are prepared. Hand-ground nanoscale ZnCl2-based coordination complex CC1 of PME was also studied for cytotoxicity (HEK-293 cell line) and anticancer activities (B16-F10 cell line) in the MTT assay.
Collapse
Affiliation(s)
- Utsab Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Abhishek Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Manoj Kumar Baskey
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
17
|
Lepcha G, Majumdar S, Pal B, Ahmed KT, Pal I, Satpati B, Biswas SR, Ray PP, Dey B. Suberic Acid-Based Supramolecular Metallogels of Ni(II), Zn(II), and Cd(II) for Anti-Pathogenic Activity and Semiconducting Diode Fabrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7469-7483. [PMID: 37192598 DOI: 10.1021/acs.langmuir.3c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The importance of three synthesized metallogels of suberic acid distinctly with nickel, zinc, and cadmium acetate salts has been uncovered. For the creation of these soft materials, N,N'-dimethyl formamide was utilized as a source of the trapped solvent. The synthesized metallogels display intriguing viscoelasticity, and the interpretation of experimental parameters obtained from rheological results advocates the gel behavior. Microstructural analysis combined with energy-dispersive X-ray confirms the occurrence of individual gel-developing constituents as observed in different hierarchical microstructural patterns. Significant variations in microstructural arrangements with diverse extent of supramolecular non-covalent patterns inside gel networks were perceived through field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscopy analyses. Fourier transform infrared and electrospray ionization-mass spectral analyses and powder X-ray diffraction analysis of metallogel samples of different gel-establishing ingredients help to investigate the possible supramolecular interactions dictating the metallogel scaffolds. Thermogravimetric analysis of xerogel samples was collected from the synthesized metallogels to understand the thermal stability. These gel materials were characterized by their potential antibacterial efficiency. The potency of metallogels against selective Gram-positive and Gram-negative bacteria was visualized via a spectrophotometer. Human pathogens like Klebsiella pneumoniae (MTCC 109), Salmonella typhi (MTCC 733), Vibrio parahaemolyticus, Bacillus cereus (MTCC 1272), Lactobacillus fermentum (NCDO 955), and Staphylococcus aureus (MTCC 96) are employed in this study. Apart from the biological significance, our metallogels demonstrate as incredible diode performance of fabricated semiconducting systems, which exhibit a considerable amount of non-linearity demonstrating a non-ohmic conduction mechanism at room temperature in dark conditions. Device fabrication was achieved from these metallogels employing the sandwich model with indium tin oxide-coated glass substrates/metallogel/Al structure.
Collapse
Affiliation(s)
- Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Kazi Tawsif Ahmed
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | | | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
18
|
A novel citric acid facilitated supramolecular Zinc(II)-metallogel: Toward semiconducting device applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
A "heat set" Zr-Diimide based Fibrous Metallogel: Multiresponsive Sensor, Column-based Dye Separation, and Iodine Sequestration. J Colloid Interface Sci 2023; 633:441-452. [PMID: 36462267 DOI: 10.1016/j.jcis.2022.11.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Sensing and monitoring hazardous contaminants in water and radioactive iodine sequestration is pivotal due to their detrimental impact on biological ecosystems. In this context, herein, a water stable zirconium-diimide based metallogel (Zr@MG) with fibrous columnar morphology is accomplished through the "heat set" method. The presence of diimide linkage with long aromatic chain manifests active luminescence properties in the linker as well as in the supramolecular framework structure. The as-synthesized Zr@MG xerogel can selectively detectCr2O72- (LOD = 0.52 ppm) and 2,4,6-trinitrophenol (TNP) (LOD = 80.2 ppb) in the aqueous medium. The Zr@MG paper strip-based detection for Cr2O72- and nitro explosive makes this metallogel reliable and an attractive luminescent sensor for practical use. Moreover, a column-based dye separation experiment was performed to show selective capture of positively charged methylene blue (MB) dye with 98 % separation efficiency from the mixture of two dyes. Also, the Zr@MG xerogel showed effective iodine sequestration from the vapor phase (232 wt%).
Collapse
|
20
|
Liu Z, Zhao X, Chu Q, Feng Y. Recent Advances in Stimuli-Responsive Metallogels. Molecules 2023; 28:molecules28052274. [PMID: 36903517 PMCID: PMC10005064 DOI: 10.3390/molecules28052274] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, stimuli-responsive supramolecular gels have received significant attention because their properties can be modulated through external stimuli such as heat, light, electricity, magnetic fields, mechanical stress, pH, ions, chemicals and enzymes. Among these gels, stimuli-responsive supramolecular metallogels have shown promising applications in material science because of their fascinating redox, optical, electronic and magnetic properties. In this review, research progress on stimuli-responsive supramolecular metallogels in recent years is systematically summarized. According to external stimulus sources, stimuli-responsive supramolecular metallogels, including chemical, physical and multiple stimuli-responsive metallogels, are discussed separately. Moreover, challenges, suggestions and opportunities regarding the development of novel stimuli-responsive metallogels are presented. We believe the knowledge and inspiration gained from this review will deepen the current understanding of stimuli-responsive smart metallogels and encourage more scientists to provide valuable contributions to this topic in the coming decades.
Collapse
Affiliation(s)
- Zhixiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (Z.L.); (Y.F.)
| | - Xiaofang Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Qingkai Chu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
- Correspondence: (Z.L.); (Y.F.)
| |
Collapse
|
21
|
Karmakar K, Dey A, Dhibar S, Sahu R, Bhattacharjee S, Karmakar P, Chatterjee P, Mondal A, Saha B. A novel supramolecular Zn(ii)-metallogel: an efficient microelectronic semiconducting device application. RSC Adv 2023; 13:2561-2569. [PMID: 36741164 PMCID: PMC9844075 DOI: 10.1039/d2ra07374a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
A unique strategy for the synthesis of a supramolecular metallogel employing zinc ions and adipic acid in DMF medium has been established at room temperature. Rheological analysis was used to investigate the mechanical characteristics of the supramolecular Zn(ii)-metallogel. Field emission scanning electron microscopy and transmission electron microscopy were used to analyse the hexagonal shape morphological features of the Zn(ii)-metallogel. Interestingly, the electrical conductivity is observed in the electronic device with Zn(ii)-metallogel based metal-semiconductor (MS) junctions. All aspects of the metallogel's electrical properties were investigated. The electrical conductivity of the metallogel-based thin film device was 7.38 × 10-5 S m-1. The synthesised Zn(ii)-metallogel based device was investigated for its semi-conductive properties, such as its Schottky barrier diode nature.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Arka Dey
- Department of Physics, National Institute of Technology Durgapur Durgapur-713209 West Bengal India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Rajib Sahu
- Max-Plank-Institut für Eisenforschung GmbH Max-Plank-Str. 1 40237 Düsseldorf Germany
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Priya Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan Golapbag Burdwan-713104 West Bengal India
| | - Aniruddha Mondal
- Department of Physics, National Institute of Technology Durgapur Durgapur-713209 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
22
|
Dhibar S, Dey A, Dalal A, Bhattacharya S, Sahu R, Sahoo R, Mondal A, Mehebub Rahaman SK, Kundu S, Saha B. An Organic Acid consisted Multiresponsive Self-Healing Supramolecular Cu(II)-Metallogel: Fabrication and Analysis of semiconducting device. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Lepcha G, Singha T, Majumdar S, Pradhan AK, Das KS, Datta PK, Dey B. Adipic acid directed self-healable supramolecular metallogels of Co(II) and Ni(II): intriguing scaffolds for comparative optical-phenomenon in terms of third-order optical non-linearity. Dalton Trans 2022; 51:13435-13443. [PMID: 35993453 DOI: 10.1039/d2dt01983c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two brilliant outcomes of supramolecular self-assembly directed, low molecular weight organic gelator based self-healable Co(II) and Ni(II) metallogels were achieved. Adipic acid as the low molecular weight organic gelator and dimethylformamide (DMF) solvent are employed for the metallogelation process. Rheological analyses of both gel-scaffolds reveal mechanical toughness as well as visco-elasticity. Thixotropic behaviours of both the gels were scrutinized. Morphological variations due to the presence of two different metal ions with diverse metal-ligand coordinating interactions were established. The mechanistic pathways for forming stable metallogels of Co(II)-adipic acid (Co-AA) and Ni(II)-adipic acid (Ni-AA) were judiciously developed through infrared absorption spectral analysis. The nonlinear optical properties, such as the third-order process, of these synthesized metallogels were scrutinized by means of the Z-scan method at a beam excitation wavelength of 750 nm by a femtosecond laser with different excitation intensities ranging from 64 to 140 GW cm-2. The third-order nonlinear optical susceptibility (χ(3)) of the order of 10-14 esu was obtained from the measured Z-scan data. Both the metallogels exhibit positive nonlinear refraction and reverse saturable (RSA) absorption at high-intensity excitation. Co(II) and Ni(II) metallogels show nonlinear refractive indices (n2I) of (3.619 ± 0.146) × 10-6 cm2 GW-1 and (3.472 ± 0.102) × 10-6 cm2 GW-1, respectively, and two photon absorption coefficients (β) of (1.503 ± 0.045) × 10-1 cm GW-1 and (1.381 ± 0.029) × 10-1 cm GW-1 at an excitation intensity of 140 GW cm-2. We also studied the optical limiting properties with a limiting threshold of 9.57 mJ cm-2. Therefore, both metallogels can be considered promising materials for photonic devices: for instance, for optical switching and optical limiting.
Collapse
Affiliation(s)
- Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Amit Kumar Pradhan
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
24
|
Balagurusamy B, Ilayaperumal P, Chellaiah R. Photometric and Colorimetric Cyanide Detection Sensor Using Amine Based Nitrobenzoxadiazole Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202201969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Balajothi Balagurusamy
- Department of Chemistry Bishop Heber College Trichy 620 017 INDIA
- School of Chemistry Bharathidasan University Trichy 620 024 INDIA
| | - Pradeep Ilayaperumal
- Department of Chemistry Bishop Heber College Trichy 620 017 INDIA
- Department of Chemistry Indian Institute of Technology Delhi New Delhi 110 016 INDIA
| | - Raja Chellaiah
- Department of Chemistry Bishop Heber College Trichy 620 017 INDIA
| |
Collapse
|
25
|
Kim G, Gil D, Lee JJ, Kim J, Kim KT, Kim C. An NBD-based fluorescent and colorimetric chemosensor for detecting S 2-: Practical application to zebrafish and water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121207. [PMID: 35395461 DOI: 10.1016/j.saa.2022.121207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
A novel 7-nitro-1,2,3-benzoxadiazole (NBD)-based chemosensor BOP ((5-bromopyridin-2-yl)(4-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)piperazin-1-yl)methanone) was synthesized. BOP could detect S2- through fluorescent quenching and colorimetric change. The detection limit was calculated to be 10.9 µM through fluorescence titration. The reaction mechanism of BOP towards S2- was estimated to be thiolysis of NBD amine, producing the cleavage products, NBD-S- and BP ((5-bromopyridin-2-yl)(piperazin-1-yl)methanone). The thiolysis was demonstrated by 1H NMR titrations, ESI-mass analysis and theoretical calculations. Importantly, BOP was able to successfully monitor S2- in zebrafish and water samples. Additionally, test strips coated with BOP were applied to the in-the-field measurements of S2-.
Collapse
Affiliation(s)
- Gyeongjin Kim
- Department of Fine Chem. and New and Renewable Energy Convergence, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Dongkyun Gil
- Department of Fine Chem. and New and Renewable Energy Convergence, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Jae Jun Lee
- Department of Fine Chem. and New and Renewable Energy Convergence, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Jiwon Kim
- Department of Environ. Engineering, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea
| | - Ki-Tae Kim
- Department of Environ. Engineering, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea.
| | - Cheal Kim
- Department of Fine Chem. and New and Renewable Energy Convergence, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul 01811, Republic of Korea.
| |
Collapse
|
26
|
Isaad J, Achari AE. Sequential colorimetric sensor for copper (II) and cyanide ions via the complexation−decomplexation mechanism based on sugar pyrazolidine-3,5‑dione. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Dawn A, Pajoubpong J, Mesmer A, Mirzamani M, He L, Kumari H. Manipulating Assemblies in Metallosupramolecular Gels, Driven by Isomeric Ligands, Metal Coordination, and Adaptive Binary Gelator Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1705-1715. [PMID: 35078313 DOI: 10.1021/acs.langmuir.1c02738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metallosupramolecular gel (MSG) is a unique combination of metal-ligand coordination chemistry and supramolecular gel chemistry with extraordinary adaptivity and softness. Such materials find broad uses in industry, pharmaceutical and biomedical sectors, and in technology generation among many others. Pyridyl-appended bis(urea) gelator systems have been extensively studied as potential MSG-forming materials in the presence of various metal ions. The previous molecular engineering approaches depicted competitive intermolecular and intramolecular binding modes involving urea and pyridyl groups and further fine-tuned by the presence of various molecular spacers. In those studies, formation of intermolecular hydrogen bonding among urea moieties to form urea tape was found to be the key factor in one-dimensional assembly and gel formation. In the present study, we show how two isomeric pyridyl-appended bis(urea) ligands can be designed appropriately to essentially eliminate the interference of competitive factors, leaving the intermolecular urea assembly practically unaffected even in the presence of metal ions. We found that one of the two ligands (L2) and the mixed ligand (L1 + L2) assemblies formed gel in the presence and absence of various metal ions. A metal ion with a linear coordination geometry significantly strengthened the gels. Moreover, an inherently weak L1 + L2 assembly appears to be more adaptive in accommodating larger metal ions especially with nonlinear coordination geometry preferences. Small-angle neutron scattering and rheological, spectroscopic, and morphological characterizations, collectively, capture a detailed interplay among ligand assembly, metal-ligand coordination, and adaptivity, driven by the pure versus mixed ligand assemblies. The knowledge gathered from the present study would be highly beneficial in engineering the metallosupramolecular polymeric assemblies toward their functional applications.
Collapse
Affiliation(s)
- Arnab Dawn
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| | - Jinnipha Pajoubpong
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| | - Amira Mesmer
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| |
Collapse
|
28
|
Dhibar S, Ojha SK, Mohan A, Prabhakaran SPC, Bhattacharjee S, Karmakar K, Karmakar P, Predeep P, Ojha AK, Saha B. A multistimulus-responsive self-healable supramolecular copper( ii)-metallogel derived from l-(+) tartaric acid: an efficient Schottky barrier diode. NEW J CHEM 2022. [DOI: 10.1039/d2nj03086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A low molecular weight gelator l-(+) tartaric acid- based self-healing supramolecular Cu(ii)-metallogel offers an electronic device of Schottky barrier diode at room temperature.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Saurav Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | | | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol-713303, West Bengal, India
| | - Kripasindhu Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Priya Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | - Animesh Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
29
|
Yao H, Niu YB, Hu YP, Sun XW, Zhang QP, Zhang YM, Wei TB, Lin Q. Metal-ion-mediated synergistic coordination: construction of AIE-metallogel sensor arrays for anions and amino acids. NEW J CHEM 2022. [DOI: 10.1039/d2nj02992h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallogel-based six membered sensor arrays show applications in multi-analyte detection and fluorescence encryption.
Collapse
Affiliation(s)
- Hong Yao
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yan-Bing Niu
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yin-Ping Hu
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Xiao-Wen Sun
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qin-Peng Zhang
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - You-Ming Zhang
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Deputy Director-General of Gansu Natural Energy Research Institute, Renmin Road 23, Lanzhou, Gansu, 730070, P. R. China
| | - Tai-Bao Wei
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qi Lin
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
30
|
Ghosh S, Bhattacharya S, Baildya N, Nath Ghosh N, Ghosh K. Silver‐Ion‐Selective Gelation of Simple Pyridine‐Naphthalimide Conjugates with Multiple Applications: Sensing, Drug Delivery, Dye Adsorption and Ion Conductivity. ChemistrySelect 2021. [DOI: 10.1002/slct.202103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | | | | | | | - Kumaresh Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| |
Collapse
|
31
|
Ramesh S, Kumaresan S. A highly selective coumarin-based chemosensor for naked-eye detection of cyanide anions via nucleophilic addition in pure aqueous environment. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Electronic charge transport phenomena directed smart fabrication of Metal-Semiconductor based electronic junction device by a supramolecular Mn(II)-Metallogel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Gosi M, Marepu N, Sunandamma Y. Cyanine-based Fluorescent Probe for Cyanide Ion Detection. J Fluoresc 2021; 31:1409-1415. [PMID: 34241792 DOI: 10.1007/s10895-021-02771-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Cyanine-based probe-possessing indolium iodide and indole unit were synthesized in two-step with easy available raw material: a potential probe for the cyanide ion detection. The detecting ability of the probe was investigated and confirmed by a visual and instrumental approach. A noticeable color change from orange to colorless obtained only for cyanide ions and other added ions does not impart any changes visually and through UV and Fluorescence technique. To confirm the mechanism of sensing 1H-NMR recorded. From the result, the peak belonging to N-methyl displayed an upfield shift from 4.01 δ ppm to 2.74 δ ppm due to the disappearance of indolium iodide ion and the olefin protons peaks were shifted from 7.19 to 6.17 and 8.70 to 7.20 δ ppm confirms the nucleophilic addition of cyanide ion to the probe. Test kit from filter paper prepared for the real-time monitoring cyanide ion. The prepared strip is effective in detecting cyanide ion with a visual color change.
Collapse
Affiliation(s)
- Mahesh Gosi
- Department of Chemistry, Acharya Nagarjuna University, Nagarjunanagar, Guntur-522510, Andhra Pradesh, India
| | - Nagaraju Marepu
- Department of Chemistry, Acharya Nagarjuna University, Nagarjunanagar, Guntur-522510, Andhra Pradesh, India
| | - Yeturu Sunandamma
- Department of Chemistry, Acharya Nagarjuna University, Nagarjunanagar, Guntur-522510, Andhra Pradesh, India.
| |
Collapse
|
34
|
Park S, Choe D, Lee JJ, Kim C. A benzyl carbazate-based colorimetric chemosensor for relay detection of Cu2+ and S2− in near-perfect aqueous media. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Lee SC, Lee M, Suh B, Lee J, Kim C. A Bithiophene‐based Ratiometric Fluorescent Sensor for Sensing Cd
2+. ChemistrySelect 2021. [DOI: 10.1002/slct.202102503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Su Chan Lee
- Department of Fine Chemistry Seoul National Univ. of Sci. and Tech. (SNUT) Seoul 138-741 Korea
| | - Minji Lee
- Department of Fine Chemistry Seoul National Univ. of Sci. and Tech. (SNUT) Seoul 138-741 Korea
| | - Boeon Suh
- Department of Fine Chemistry Seoul National Univ. of Sci. and Tech. (SNUT) Seoul 138-741 Korea
| | - Jiyoung Lee
- Department of Fine Chemistry Seoul National Univ. of Sci. and Tech. (SNUT) Seoul 138-741 Korea
| | - Cheal Kim
- Department of Fine Chemistry Seoul National Univ. of Sci. and Tech. (SNUT) Seoul 138-741 Korea
| |
Collapse
|
36
|
Chakraborty S, Paul S, Roy P, Rayalu S. Detection of cyanide ion by chemosensing and fluorosensing technology. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Zwicker VE, Sergeant GE, New EJ, Jolliffe KA. A colorimetric sensor array for the classification of biologically relevant tri-, di- and mono-phosphates. Org Biomol Chem 2021; 19:1017-1021. [DOI: 10.1039/d0ob02397c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cyclic tetrapeptide paired with six commercially available indicators provides a chemosensing array able to classify biological phosphate derivatives.
Collapse
Affiliation(s)
| | | | - Elizabeth J. New
- The University of Sydney
- School of Chemistry
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
- The University of Sydney
| | - Katrina A. Jolliffe
- The University of Sydney
- School of Chemistry
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
- The University of Sydney
| |
Collapse
|
39
|
Das P, Majumdar S, Dey A, Mandal S, Mondal A, Chakrabarty S, Ray PP, Dey B. 4,4′-Bipyridine-based Ni( ii)-metallogel for fabricating a photo-responsive Schottky barrier diode device. NEW J CHEM 2021. [DOI: 10.1039/d1nj01629f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
4,4′-Bipyridine-based Ni(ii)-metallogel has been implemented to execute a light-responsive semiconducting Schottky barrier diode device with advanced functionality.
Collapse
Affiliation(s)
- Pubali Das
- Department of Physics, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Arka Dey
- Department of Physics, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Sourav Mandal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Atish Mondal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Sinchan Chakrabarty
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
40
|
Sedghiniya S, Soleimannejad J, Foroutan M, Ebrahimi M, Naeini VF. A V( iii)-induced metallogel with solvent stimuli-responsive properties: structural proof-of-concept with MD simulations. RSC Adv 2021; 11:36801-36813. [PMID: 35494376 PMCID: PMC9043536 DOI: 10.1039/d1ra07055j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
A new solvent stimuli-responsive metallogel (VGel) was synthesized through the introduction of vanadium ions into an adenine (Ade) and 1,3,5-benzene tricarboxylic acid (BTC) organogel, and its supramolecular self-assembly was investigated from a computational viewpoint. A relationship between the synthesized VGel integrity and the self-assembly of its components is demonstrated by a broad range of molecular dynamics (MD) simulations, an aspect that has not yet been explored for such a complex metallogel in particular. MD simulations and Voronoi tessellation assessments, both in agreement with experimental data, confirm the gel formation. Based on excellent water stability and the ethanol/methanol stimuli-responsive feature of the VGel an easy-to-use visualization assay for the detection of counterfeit liquor with a 6% (v/v) methanol limit of detection in 40% (v/v) ethanol is reported. These observations provide a cheap and technically simple method and are a step towards the immersible screening of similar molecules in methanol-spiked beverages. A new solvent stimuli-responsive metallogel (VGel) was synthesized through the introduction of vanadium ions into an adenine (Ade) and BTC organogel, and its supramolecular self-assembly was investigated from a computational viewpoint.![]()
Collapse
Affiliation(s)
- Sima Sedghiniya
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Masumeh Foroutan
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mina Ebrahimi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahid Fadaei Naeini
- Division of Machine Elements, Luleå University of Technology, Luleå, SE-97187, Sweden
| |
Collapse
|
41
|
Efficient colorimetric detection of cyanide ions using hemicyanine-based polymeric probes with detection-induced self-assembly in water. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Kumar V, Upadhyay RK, Bano D, Chandra S, Kumar D, Jit S, Hasan SH. The fabrication and characterization of a supramolecular Cu-based metallogel thin-film based Schottky diode. NEW J CHEM 2021. [DOI: 10.1039/d1nj00394a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of a Cu–H4L metallogel and its application in the fabrication of a Schottky diode are illustrated.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| | | | - Daraksha Bano
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| | - Subhash Chandra
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| | - Deepak Kumar
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| | - Satyabrata Jit
- Department of Electronics Engineering, IIT BHU
- Varanasi-221005
- India
| | - Syed Hadi Hasan
- Department of Chemistry
- Nano-materials Laboratory
- IIT BHU
- Varanasi-221005
- India
| |
Collapse
|
43
|
A rhodanine-based fluorescent chemosensor for sensing Zn2+ and Cd2+: Applications to water sample and cell imaging. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Guan WL, Adam KM, Qiu M, Zhang YM, Yao H, Wei TB, Lin Q. Research progress of redox-responsive supramolecular gel. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1846738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen-Li Guan
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Khalid Mohammed Adam
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Min Qiu
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - You-Ming Zhang
- Gansu Natural Energy Research Institute, Lanzhou, Gansu, China
| | - Hong Yao
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Tai-Bao Wei
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Qi Lin
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
45
|
Shukla J, Kumar Y, Dixit MK, Mahendar C, Sharma VK, Kalam A, Dubey M. Investigation of the Mechanism Behind Conductive Fluorescent and Multistimuli-responsive Li + -enriched Metallogel Formation. Chem Asian J 2020; 15:3020-3028. [PMID: 32749048 DOI: 10.1002/asia.202000630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Abstract
A fluorescent metallogel (2.6 % w/v) has been obtained from two non-fluorescent components viz. phenyl-succinic acid derived pro-ligand H2 PSL and LiOH (2 equiv.) in DMF. Li+ ion not only plays a crucial role in gelation through aggregation, but also contributed towards enhancement of fluorescence by imposing restriction over excited state intramolecular proton transfer (ESIPT) followed by origin of chelation enhanced fluorescence (CHEF) phenomenon. Further, the participation of CHEF followed by aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) in the gelation process have been well established by fluorescence experiments. Transmission electron microscopy (TEM) analysis disclosed the sequential creation of nanonuclei followed by nanoballs and their alignment towards the generation of fibers of about 3, 31 and 40 nm diameter, respectively. The presence of a long-range fibrous morphology inside the metallogel was further attested by scanning electron microscopy (SEM). Rheological studies on the metallogel showed its true gel-phase material nature. Nyquist impedance study shows a resistance value of 7.4 kΩ for the metallogel which upon applying ultrasound increased to 8.5 kΩ, while an elevated temperature of 70 °C caused reduction in the resistance value to 4.8 kΩ. The mechanism behind metallogel formation has been well established by using FTIR, UV-vis, SEM, TEM, PXRD, 1 H NMR, fluorescence and ESI-MS.
Collapse
Affiliation(s)
- Jay Shukla
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Yeeshu Kumar
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Manish K Dixit
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Chinthakuntla Mahendar
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Vinay K Sharma
- Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Abul Kalam
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, KSA
| | - Mrigendra Dubey
- Soft Materials Research Laboratory, Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
46
|
White LJ, Wark C, Croucher L, Draper ER, Hiscock JR. High-throughput characterisation of supramolecular gelation processes using a combination of optical density, fluorescence and UV-Vis absorption measurements. Chem Commun (Camb) 2020; 56:9557-9560. [PMID: 32691764 DOI: 10.1039/d0cc04033a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we showcase the use of high-throughput microplate reader methodologies for the characterisation of supramolecular gels. We demonstrate how UV-Vis absorption, optical density and fluorescence measurements can selectively define gel fibre assembly/disassembly processes, casting a new light on the construction of these materials.
Collapse
Affiliation(s)
- Lisa J White
- School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| | - Catherine Wark
- BMG Labtech, 8 Bell Business Park, Buckinghamshire, HP19 8JR, UK
| | | | - Emily R Draper
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jennifer R Hiscock
- School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| |
Collapse
|
47
|
Dey N, Bhattacharya S. Switchable Optical Probes for Simultaneous Targeting of Multiple Anions. Chem Asian J 2020; 15:1759-1779. [DOI: 10.1002/asia.201901811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry Indian Institute of Science Bangalore 560012
- Present Address: Department of Chemistry Kyoto University Kyoto Prefecture 606-8501 Japan
| | - Santanu Bhattacharya
- Department of Organic Chemistry Indian Institute of Science Bangalore 560012
- Present Address Indian Association of Cultivation of Science Kolkata 700032 India
| |
Collapse
|
48
|
Ghosh S, Panja A, Ghosh K. Selective Dosimetric Sensing of Hg
2+
Ions by Design‐Based Small Molecular Gelator. ChemistrySelect 2020. [DOI: 10.1002/slct.202000528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumit Ghosh
- Department of ChemistryUniversity of Kalyani Kalyani 741235 India
| | - Atanu Panja
- Department of ChemistryUniversity of Kalyani Kalyani 741235 India
| | - Kumaresh Ghosh
- Department of ChemistryUniversity of Kalyani Kalyani 741235 India
| |
Collapse
|
49
|
Ghosh D, Deepa, Damodaran KK. Metal complexation induced supramolecular gels for the detection of cyanide in water. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1751845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Deepa
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Krishna K. Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
50
|
Singh S, Saha P, Dey S, Nandi S. Novel Class of Isoxazole-Based Gelators for the Separation of Bisphenol A from Water and Cleanup of Oil Spills. ACS OMEGA 2020; 5:8613-8618. [PMID: 32337424 PMCID: PMC7178365 DOI: 10.1021/acsomega.0c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
A series of low-molecular-weight gelators based on an isoxazole backbone were synthesized, which showed robust and phase-selective gelation of a series of oils. Due to their excellent phase-selective and cogelation properties, they were employed for the separation of bisphenol and the recovery of oil spills from water. The driving force and morphology of these gels were characterized by spectroscopic and microscopic studies.
Collapse
Affiliation(s)
- Santosh
Kumar Singh
- Department
of Chemistry, Indian Institute of Technology
(Indian School of Mines) Dhanbad, Dhanbad 826004, India
| | - Priyanka Saha
- Environment
Research Group, Research & Development, Tata Steel Limited, Jamshedpur 831001, India
| | - Swapan Dey
- Department
of Chemistry, Indian Institute of Technology
(Indian School of Mines) Dhanbad, Dhanbad 826004, India
| | - Sukhendu Nandi
- Department
of Chemistry, Indian Institute of Technology
(Indian School of Mines) Dhanbad, Dhanbad 826004, India
| |
Collapse
|