1
|
Hu C, Li S, Zhou J, Wei D, Liu X, Chen Z, Peng H, Liu X, Deng Y. In vitro SELEX and application of an African swine fever virus (ASFV) p30 protein specific aptamer. Sci Rep 2024; 14:4078. [PMID: 38374125 PMCID: PMC10876938 DOI: 10.1038/s41598-024-53619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
The African swine fever virus (ASFV) has caused severe economic losses in the pig industry. To monitor ASFV spread, the p30 protein has been identified as an ideal infection marker due to its early and long-term expression during the ASFV infection period. Timely monitoring of ASFV p30 enables the detection of ASFV infection and assessment of disease progression. Aptamers are an outstanding substitute for antibodies to develop an efficient tool for ASFV p30 protein detection. In this study, a series of aptamer candidates were screened by in vitro magnetic bead-based systematic evolution of ligands by exponential enrichment (MB-SELEX). An aptamer (Atc-20) finally showed high specificity and affinity (Kd = 140 ± 10 pM) against ASFV p30 protein after truncation and affinity assessment. Furthermore, an aptamer/antibody heterogeneous sandwich detection assay was designed based on Atc20, achieving a linear detection of ASFV p30 ranging from 8 to 125 ng/ml and a detection limit (LOD) of 0.61 ng/ml. This assay showed good analytical performances and effectively detected p30 protein in diluted serum samples, presenting promising potential for the development of ASFV biosensors.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Hunan, 412007, Zhuzhou, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Hunan, 412007, Zhuzhou, China
| | - Jie Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Hunan, 412007, Zhuzhou, China
| | - Dan Wei
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Hunan, 412007, Zhuzhou, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Hunan, 412007, Zhuzhou, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Hunan, 412007, Zhuzhou, China
| | - Hongquan Peng
- Department of Nephrology, Kiang Wu Hospital, Macau, SAR, China
| | - Xun Liu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Hunan, 412007, Zhuzhou, China.
- Institute for Future Sciences, University of South China, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Kulabhusan PK, Pishva P, Çapkın E, Tambe P, Yüce M. Aptamer-based Emerging Tools for Viral Biomarker Detection: A Focus on SARS-CoV-2. Curr Med Chem 2023; 30:910-934. [PMID: 35156569 DOI: 10.2174/1568009622666220214101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Viral infections can cause fatal illnesses to humans as well as animals. Early detection of viruses is therefore crucial to provide effective treatment to patients. Recently, the Covid-19 pandemic has undoubtedly given an alarming call to develop rapid and sensitive detection platforms. The viral diagnostic tools need to be fast, affordable, and easy to operate with high sensitivity and specificity equivalent or superior to the currently used diagnostic methods. The present detection methods include direct detection of viral antigens or measuring the response of antibodies to viral infections. However, the sensitivity and quantification of the virus are still a significant challenge. Detection tools employing synthetic binding molecules like aptamers may provide several advantages over the conventional methods that use antibodies in the assay format. Aptamers are highly stable and tailorable molecules and are therefore ideal for detection and chemical sensing applications. This review article discusses various advances made in aptamer-based viral detection platforms, including electrochemical, optical, and colorimetric methods to detect viruses, specifically SARS-Cov-2. Considering the several advantages, aptamers could be game-changing in designing high-throughput biosensors for viruses and other biomedical applications in the future.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Parsa Pishva
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Prajakta Tambe
- Wellcome-- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research, and Application Centre, Istanbul, 34956, Turkey
| |
Collapse
|
3
|
Villamil Giraldo AM, Mannsverk S, Kasson PM. Measuring single-virus fusion kinetics using an assay for nucleic acid exposure. Biophys J 2022; 121:4467-4475. [PMID: 36330566 PMCID: PMC9748363 DOI: 10.1016/j.bpj.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The kinetics by which individual enveloped viruses fuse with membranes provide an important window into viral-entry mechanisms. We have developed a real-time assay using fluorescent probes for single-virus genome exposure than can report on stages of viral entry including or subsequent to fusion pore formation and prior to viral genome trafficking. We accomplish this using oxazole yellow nucleic-acid-binding dyes, which can be encapsulated in the lumen of target membranes to permit specific detection of fusion events. Since increased fluorescence of the dye occurs only when it encounters viral genome via a fusion pore and binds, this assay excludes content leakage without fusion. Using this assay, we show that influenza virus fuses with liposomes of different sizes with indistinguishable kinetics by both testing liposomes extruded through pores of different radii and showing that the fusion kinetics of individual liposomes are uncorrelated with the size of the liposome. These results suggest that the starting curvature of such liposomes does not control the rate-limiting steps in influenza entry.
Collapse
Affiliation(s)
- Ana M Villamil Giraldo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Steinar Mannsverk
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
4
|
Gopinath SCB, Ismail ZH, Sekiguchi K. Biosensing epidemic and pandemic respiratory viruses: Internet of Things with Gaussian noise channel algorithmic model. Biotechnol Appl Biochem 2022; 69:2507-2516. [PMID: 34894363 DOI: 10.1002/bab.2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022]
Abstract
The current world condition is dire due to epidemics and pandemics as a result of novel viruses, such as influenza and the coronavirus, causing acute respiratory syndrome. To overcome these critical situations, the current research seeks to generate a common surveillance system with the assistance of a controlled Internet of Things operated under a Gaussian noise channel. To create the model system, a study with an analysis of H1N1 influenza virus determination on an interdigitated electrode (IDE) sensor was validated by current-volt measurements. The preliminary data were generated using hemagglutinin as the target against gold-conjugated aptamer/antibody as the probe, with the transmission pattern showing consistency with the Gaussian noise channel algorithm. A good fit with the algorithmic values was found, displaying a similar pattern to that output from the IDE, indicating reliability. This study can be a model for the surveillance of varied pathogens, including the emergence and reemergence of novel strains.
Collapse
Affiliation(s)
- Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of applied Sciences, AIMST University, Semeling, Kedah, 08100, Malaysia
| | - Zool H Ismail
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, Kuala Lumpur, 51400, Malaysia
| | - Kazuma Sekiguchi
- Advanced Control Systems Laboratory, Department of Mechanical Systems Engineering, Tokyo City University (TCU), Tamazutsumi Setagaya-ku, Tokyo, 158-8557, Japan
| |
Collapse
|
5
|
Chen R, Chen X, Liu H, Fang L, Chen B, Luan T. Developing a robust method integrating with selective membrane-based preconcentration and signal amplification for field virus detection. Anal Chim Acta 2022; 1229:340360. [PMID: 36156222 DOI: 10.1016/j.aca.2022.340360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022]
Abstract
Infectious diseases caused by viruses have attracted global concern owing to their rapid spread and catastrophic consequences. Therefore, developing fast and reliable on-site virus detection methods is essential for the prevention and treatment of virus-related diseases. In this study, immunoassays on a membrane, combining virus preconcentration with nanoparticle-based signal amplification, were used to realize the rapid and accurate visual detection of viruses. The biotin-streptavidin scaffolds for target virus preconcentration were established on a membrane, and subsequently a Zika aptamer (Apt) immobilized on the membrane recognized and captured the nonstructural protein 1 of Zika virus (ZIKV-NS1). The probe for detection was synthesized by conjugating the Zika Apt with a high level of horseradish peroxidase on gold nanoparticles. The ZIKV-loaded membrane was incubated with the probes, and the viral signal was amplified as the signal of horseradish peroxidase. In the presence of 3,3,5',5'-tetramethyl benzidine and hydrogen peroxide, the green color of the probe-coated membrane indicated the level of ZIKV-NS1. Our developed method could reach a detection limit of 5 ng mL-1, and the whole procedure could be completed within 1 h. Analyses of rabbit serum and environmental water samples demonstrated that an immunoassay-based approach on the membrane could accurately determine the level of ZIKV-NS1 against the complicated matrix. Our results suggest that this virus detection method has a high potential for application in clinical and environmental settings.
Collapse
Affiliation(s)
- Ruohong Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xingni Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hongtao Liu
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ling Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510276, China.
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Abstract
Acute kidney injury (AKI) is one of the most prevalent and complex clinical syndromes with high morbidity and mortality. The traditional diagnosis parameters are insufficient regarding specificity and sensitivity, and therefore, novel biomarkers and their facile and rapid applications are being sought to improve the diagnostic procedures. The biosensors, which are employed on the basis of electrochemistry, plasmonics, molecular probes, and nanoparticles, are the prominent ways of developing point-of-care devices, along with the mutual integration of efficient surface chemistry strategies. In this manner, biosensing platforms hold pivotal significance in detecting and quantifying novel AKI biomarkers to improve diagnostic interventions, potentially accelerating clinical management to control the injury in a timely manner. In this review, novel diagnostic platforms and their manufacturing processes are presented comprehensively. Furthermore, strategies to boost their effectiveness are also indicated with several applications. To maximize these efforts, we also review various biosensing approaches with a number of biorecognition elements (e.g., antibodies, aptamers, and molecular imprinting molecules), as well as benchmark their features such as robustness, stability, and specificity of these platforms.
Collapse
Affiliation(s)
- Esma Derin
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring. Anal Chim Acta 2022; 1192:339388. [DOI: 10.1016/j.aca.2021.339388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
|
8
|
Hu B, Liu R, Liu Q, Lin Z, Shi Y, Li J, Wang L, Li L, Xiao X, Wu Y. Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. J Mater Chem B 2022; 10:2357-2383. [DOI: 10.1039/d1tb02549j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of nanoparticles affect their fates in biological systems. Based on nanotechnology and methodology, pioneering works have explored the effects of chemical surface patterns on the behavior of...
Collapse
|
9
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
10
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
11
|
|
12
|
A Ocsoy M, Yusufbeyoglu S, Ildiz N, Ulgen A, Ocsoy I. DNA Aptamer-Conjugated Magnetic Graphene Oxide for Pathogenic Bacteria Aggregation: Selective and Enhanced Photothermal Therapy for Effective and Rapid Killing. ACS OMEGA 2021; 6:20637-20643. [PMID: 34396009 PMCID: PMC8359158 DOI: 10.1021/acsomega.1c02832] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), often called "superbug", is a nosocomial and multidrug resistance bacterium that shows resistance to β-lactam antibiotics. There has been high demand to develop an alternative treatment model to antibiotics for efficiently fighting MRSA. Herein, we developed DNA aptamer-conjugated magnetic graphene oxide (Apt@MGO) as a multifunctional and biocompatible nanoplatform for selective and rapid eradication of MRSA and evaluated heat generation and cell death performance of Apt@MGO for the first time under dispersed and aggregated states. The aptamer sequence was specifically selected for MRSA and acted as a molecular targeting probe for selective MRSA recognition and antibiotic-free therapy. Magnetic graphene oxide (MGO) serves as a nanoplatform for aptamer conjugation and as a photothermal agent by converting near-infrared (NIR) light to heat. Iron oxide nanoparticles (Fe3O4 NPs) are formed on GO to prepare MGO, which shows magnetic properties for collecting MRSA cells in a certain area in the reaction tube by an external magnet. The collected MGO induces remarkably high local heating and eventual MRSA cell death under NIR laser irradiation. We demonstrate that Apt@MGO resulted in ∼78% MRSA and over >97% MRSA cell inactivation in dispersed and aggregated states, respectively, under 200 seconds (sn) exposure of NIR irradiation (808 nm, 1.1 W cm-2). An in vitro study highlights that Apt@MGO is considered a targeted, biocompatible, and light-activated photothermal agent for efficient and rapid killing of MRSA in the aggregated state under NIR light.
Collapse
Affiliation(s)
- Muserref A Ocsoy
- Department
of Physics, Faculty of Science, Erciyes
University, 38039 Kayseri, Turkey
| | - Sadi Yusufbeyoglu
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Department
of Pharmacognosy, Faculty of Gülhane Pharmacy, University of Health Sciences, 06010 Ankara, Turkey
| | - Nilay Ildiz
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ahmet Ulgen
- Department
of Chemistry, Faculty of Science, Erciyes
University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
13
|
Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol 2021. [DOI: 10.1002/rmv.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - George P Simon
- Department of Materials Science and Engineering Monash University Clayton VIC Australia
| | - Warren Batchelor
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| |
Collapse
|
14
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
15
|
Cavallo FR, Mirza KB, de Mateo S, Nikolic K, Rodriguez-Manzano J, Toumazou C. Aptasensor for Quantification of Leptin Through PCR Amplification of Short DNA-Aptamers. ACS Sens 2021; 6:709-715. [PMID: 33650854 DOI: 10.1021/acssensors.0c02605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein quantification is traditionally performed through enzyme-linked immunosorbent assay (ELISA), which involves long preparation times. To overcome this, new approaches use aptamers as an alternative to antibodies. In this paper, we present a new approach to quantify proteins with short DNA aptamers through polymerase chain reaction (PCR) resulting in shorter protocol times with comparatively improved limits of detection. The proposed method includes a novel way to quantify both the target protein and the corresponding short DNA-aptamers simultaneously, which also allows us to fully characterize the performance of aptasensors. Human leptin is used as a target protein to validate this technique, because it is considered an important biomarker for obesity-related studies. In our experiments, we achieved the lowest limit of detection of 100 pg/mL within less than 2 h, a limit affected by the dissociation constant of the leptin aptamer, which could be improved by selecting a more specific aptamer. Because of the simple and inexpensive approach, this technique can be employed for Lab-On-Chip implementations and for rapid "on-site" quantification of proteins.
Collapse
Affiliation(s)
| | - Khalid B. Mirza
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sara de Mateo
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Konstantin Nikolic
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
- School of Computing and Engineering, University of West London, London W5 5RF, United Kingdom
| | - Jesus Rodriguez-Manzano
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Infectious Disease, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christofer Toumazou
- Centre for Bio-Inspired Technology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Erdem Ö, Derin E, Sagdic K, Yilmaz EG, Inci F. Smart materials-integrated sensor technologies for COVID-19 diagnosis. EMERGENT MATERIALS 2021; 4:169-185. [PMID: 33495747 PMCID: PMC7817967 DOI: 10.1007/s42247-020-00150-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 05/05/2023]
Abstract
After the first case has appeared in China, the COVID-19 pandemic continues to pose an omnipresent threat to global health, affecting more than 70 million patients and leading to around 1.6 million deaths. To implement rapid and effective clinical management, early diagnosis is the mainstay. Today, real-time reverse transcriptase (RT)-PCR test is the major diagnostic practice as a gold standard method for accurate diagnosis of this disease. On the other side, serological assays are easy to be implemented for the disease screening. Considering the limitations of today's tests including lengthy assay time, cost, the need for skilled personnel, and specialized infrastructure, both strategies, however, have impediments to be applied to the resource-scarce settings. Therefore, there is an urgent need to democratize all these practices to be applicable across the globe, specifically to the locations comprising of very limited infrastructure. In this regard, sensor systems have been utilized in clinical diagnostics largely, holding great potential to have pivotal roles as an alternative or complementary options to these current tests, providing crucial fashions such as being suitable for point-of-care settings, cost-effective, and having short turnover time. In particular, the integration of smart materials into sensor technologies leverages their analytical performances, including sensitivity, linear dynamic range, and specificity. Herein, we comprehensively review major smart materials such as nanomaterials, photosensitive materials, electrically sensitive materials, their integration with sensor platforms, and applications as wearable tools within the scope of the COVID-19 diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Esma Derin
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Kutay Sagdic
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eylul Gulsen Yilmaz
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
17
|
Bhardwaj SK, Bhardwaj N, Kumar V, Bhatt D, Azzouz A, Bhaumik J, Kim KH, Deep A. Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. ENVIRONMENT INTERNATIONAL 2021; 146:106183. [PMID: 33113463 DOI: 10.1016/j.envint.2020.106183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
Airborne pathogens are small microbes that can cause a multitude of diseases (e.g., the common cold, flu, asthma, anthrax, tuberculosis, botulism, and pneumonia). As pathogens are transmitted from infected hosts via a number of routes (e.g., aerosolization, sneezing, and coughing), there is a great demand to accurately monitor their presence and behavior. Despite such need, conventional detection methods (e.g., colony counting, immunoassays, and various molecular techniques) generally suffer from a number of demerits (e.g., complex, time-consuming, and labor-intensive nature). To help overcome such limitations, nanomaterial-based biosensors have evolved as alternative candidates to realize portable, rapid, facile, and direct on-site identification of target microbes. In this review, nano-biosensors developed for the detection of airborne pathogens are listed and discussed in reference to conventional options. The prospects for the development of advanced nano-biosensors with enhanced accuracy and portability are also discussed.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh 160025, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Deepanshu Bhatt
- Central Scientific Instruments Organisation, Sector 30 C, Chandigarh 160030, India
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tétouan, Morocco
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organisation, Sector 30 C, Chandigarh 160030, India.
| |
Collapse
|
18
|
Torrini F, Palladino P, Brittoli A, Baldoneschi V, Minunni M, Scarano S. Characterization of troponin T binding aptamers for an innovative enzyme-linked oligonucleotide assay (ELONA). Anal Bioanal Chem 2019; 411:7709-7716. [PMID: 31300860 DOI: 10.1007/s00216-019-02014-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022]
Abstract
Early diagnosis of acute myocardial infarction (AMI) is of outmost importance to reduce the mortality rate, and cardiac troponins are considered the gold standard biomarkers of myocardial necrosis. In this scenario, the characterization of two troponin T (TnT)-binding aptamers as viable alternative to antibodies employed on clinical immunoassays is here reported for the first time. Their recognition ability was first investigated through surface plasmon resonance (SPR). Subsequently, an enzyme-linked oligonucleotide assay (ELONA) was developed on common 96-well polystyrene plates, both by direct and sandwich detection strategies for comparison. In both cases, the assay exhibits a detection ability of TnT in the range of low nanomolar but a great advantage on serum interference was obtained by using both aptamers in a sandwich format, with excellent reproducibility and recovery values. Despite the sensitivity needing to be enhanced to the low picomolar range, these results are encouraging for the development of new, low-cost, and rapid antibody-free colorimetric assays for AMI studies based on aptamer-Troponin T recognition.
Collapse
Affiliation(s)
- Francesca Torrini
- Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Pasquale Palladino
- Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Alvaro Brittoli
- Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Veronica Baldoneschi
- Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Maria Minunni
- Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Simona Scarano
- Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
19
|
Zou X, Wu J, Gu J, Shen L, Mao L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol 2019; 10:1462. [PMID: 31333603 PMCID: PMC6618307 DOI: 10.3389/fmicb.2019.01462] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Viral infections can cause serious diseases for humans and animals. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro technology known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Similar to antibodies, aptamers bind specifically to their targets. However, compared with antibody, aptamers are easy to synthesize and modify and can bind to a broad range of targets. Thus, aptamers are promising for detecting viruses and treating viral infections. In this review, we briefly introduce aptamer-based biosensors (aptasensors) and describe their applications in rapid detection of viruses and as antiviral agents in treating infections. We summarize available data about the use of aptamers to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to different viruses that have been screened out but have not yet been used for detecting viruses or treating viral infections. Finally, we analyze barriers and developing perspectives in the application of aptamer-based virus detection and therapeutics.
Collapse
Affiliation(s)
- Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Luo L, Yang J, Liang K, Chen C, Chen X, Cai C. Fast and sensitive detection of Japanese encephalitis virus based on a magnetic molecular imprinted polymer-resonance light scattering sensor. Talanta 2019; 202:21-26. [PMID: 31171172 DOI: 10.1016/j.talanta.2019.04.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 10/27/2022]
Abstract
A magnetic surface molecularly imprinted-resonance light scattering sensor was developed for rapid and highly sensitive detection of Japanese encephalitis virus (JEV). To prepare the surface imprinted polymer, Fe3O4 microspheres were selected as imprinting substrates which coated by silicon. Aminopropyl-triethoxysilane (APTES) as functional monomers for fixing template molecules JEV through a polymerization process of tetraethyl-orthosilicate (TEOS). The target virus JEV could be captured by the imprinted particles fastly and selectively, resulting in an increase of the RLS intensity. The results of RLS analysis proved that the obtained imprinted nanoparticles exhibited excellent specific recognition ability and high selectivity for the template virus (JEV). Furthermore, the response time of the sensor is within 20 min, which is much shorter than the previous works. The sensor with convenient separation and the limit of detection was 1.3 pM. These experimental results show that the proposed strategy is expected to achieve rapid and sensitive detection of JEV in practical applications.
Collapse
Affiliation(s)
- Lianghui Luo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Junyu Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Kunsong Liang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xiaoming Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
21
|
Chong C, Low C. Synthetic antibody: Prospects in aquaculture biosecurity. FISH & SHELLFISH IMMUNOLOGY 2019; 86:361-367. [PMID: 30502461 DOI: 10.1016/j.fsi.2018.11.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/12/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The emerging technology of aptamers that is also known as synthetic antibodies is rivalling antibodies research in the recent years. The unique yet important features of aptamers are advancing antibodies in diverse applications, which include disease diagnosis, prophylactic and therapeutic. The versatility of aptamer has further extended its application to function as gene expression modulator, known as synthetic riboswitches. This report reviewed and discussed the applications of aptamers technology in the biosecurity of aquaculture, the promising developments in biosensor detection for disease diagnosis as well as prophylactic and therapeutic measurements. The application of aptamers technology in immunophenotyping study of aquatic animal is highlighted. Lastly, the future perspective of aptamers in the management of aquatic animal health is discussed, special emphasis on the potential application of aptamers as synthetic riboswitches to enhance host immunity, as well as the growth performance.
Collapse
Affiliation(s)
- ChouMin Chong
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - ChenFei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
22
|
Wang T, Yin H, Zhang Y, Wang L, Du Y, Zhuge Y, Ai S. Electrochemical aptasensor for ampicillin detection based on the protective effect of aptamer-antibiotic conjugate towards DpnII and Exo III digestion. Talanta 2019; 197:42-48. [PMID: 30771956 DOI: 10.1016/j.talanta.2019.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 01/21/2023]
Abstract
A simple and sensitive electrochemical method was developed for ampicillin detection based on the protective effect of aptamer-antibiotic conjugate towards endonuclease DpnII activity. Without ampicillin, DNA aptamer firstly hybridizes with the capture probe to form double strand DNA (dsDNA) structure. Then, dsDNA is cleaved by DpnII restriction endonuclease to form two dsDNA fragments. In which, one fragment is released from electrode surface and the other fragment is kept on electrode surface. Then, the dsDNA fragment kept on electrode surface is further digested by Exo III, which leads to the release of the dsDNA fragment from electrode surface. Thus, the electrochemical signal increases due to the decrease of the interface electron transfer resistance causing by the release of dsDNA from electrode surface. However, the formation of dsDNA is blocked when forming aptamer-ampicillin conjugate, which makes the obstruction of the digestion of DpnII and Exo III towards capture probe. Thus, a weak electrochemical signal is achieved due to the increase of the interface electron transfer resistance causing by the dsDNA on the electrode surface. Based on the relationship between ampicillin concentration and the decrease of the electrochemical signal, antibiotic is detected with low detection limit of 32 pM under optimal conditions, which is lower than the mandated maximum residue limit of European Union (9.93 nM). The developed method also presents good detection selectivity. Moreover, the applicability is confirmed by detecting antibiotic in milk and water samples with satisfactory results.
Collapse
Affiliation(s)
- Tingting Wang
- College of Resources and Environment, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China.
| | - Yuting Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| | - Linkui Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| | - Yue Du
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| | - Yuping Zhuge
- College of Resources and Environment, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Tai'an, Shandong, PR China
| |
Collapse
|
23
|
|
24
|
Pashchenko O, Shelby T, Banerjee T, Santra S. A Comparison of Optical, Electrochemical, Magnetic, and Colorimetric Point-of-Care Biosensors for Infectious Disease Diagnosis. ACS Infect Dis 2018; 4:1162-1178. [PMID: 29860830 PMCID: PMC6736529 DOI: 10.1021/acsinfecdis.8b00023] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Each year, infectious diseases are responsible for millions of deaths, most of which occur in the rural areas of developing countries. Many of the infectious disease diagnostic tools used today require a great deal of time, a laboratory setting, and trained personnel. Due to this, the need for effective point-of-care (POC) diagnostic tools is greatly increasing with an emphasis on affordability, portability, sensitivity, specificity, timeliness, and ease of use. In this Review, we discuss the various diagnostic modalities that have been utilized toward this end and are being further developed to create POC diagnostic technologies, and we focus on potential effectiveness in resource-limited settings. The main modalities discussed herein are optical-, electrochemical-, magnetic-, and colorimetric-based modalities utilized in diagnostic technologies for infectious diseases. Each of these modalities feature pros and cons when considering application in POC settings but, overall, reveal a promising outlook for the future of this field of technological development.
Collapse
Affiliation(s)
- Oleksandra Pashchenko
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas, 66762
| | - Tyler Shelby
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas, 66762
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas, 66762
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas, 66762
| |
Collapse
|
25
|
Zhang L, Yuan Y, Zhang Y, Liu Z, Xiao W, Nie J, Li J. Equipment-Free Quantitative Aptamer-Based Colorimetric Assay Based on Target-Mediated Viscosity Change. ACS OMEGA 2018; 3:1451-1457. [PMID: 30023804 PMCID: PMC6044812 DOI: 10.1021/acsomega.7b01814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we describe an aptamer-based colorimetric assay (ABCA), which integrates enzyme-loaded microparticles for signal amplification with distance measurement for equipment-free quantitative readout. The distance measurement readout is on the basis of target-induced selective reduction in viscosity of reaction solution. Its utility is well demonstrated with inexpensive, sensitive, and selective detection of adenosine (model analyte) in buffer samples and real samples of human serum and urine with the naked eye. This ABCA method just requires operators to simply count the number of colored distance-relevant marked bars on the calibrated glass microsyringes (testing containers) to provide quantitative results. It thus holds great promise for wide applications particularly in limited-resource settings.
Collapse
|
26
|
Lu T, Ma Q, Yan W, Wang Y, Zhang Y, Zhao L, Chen H. Selection of an aptamer against Muscovy duck parvovirus for highly sensitive rapid visual detection by label-free aptasensor. Talanta 2017; 176:214-220. [PMID: 28917743 DOI: 10.1016/j.talanta.2017.08.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 01/17/2023]
Abstract
Muscovy duck parvovirus (MDPV) causes high mortality and morbidity in ducks. This study investigated a novel aptamer-based, label-free aptasensor detection of MDPV. In this study, we developed an ssDNA aptamer using the filtration partition and lambda exonuclease method with an affinity-based monitor and counter-screening process. After 15 rounds of SELEX (systematic evolution of ligands by exponential enrichment), the ssDNA aptamer Apt-10, which specifically bound to MDPV with high affinity (Kd = 467nM) was successfully screened, and the aptamer was also found to be good specific to MDPV. The selected Apt-10 aptamer can be used to distinguish MDPV and goose parvovirus (GPV). Three-dimensional structural analysis of the Apt-10 aptamer indicated that it folded into a compact stem-loop motif, which was related to its high affinity. Finally, a label-free detection method based on unmodified gold nanoparticles and Apt-10 aptamer was developed for MDPV determination. The concentration of Apt-10 aptamer at 5μM was optimal for MDPV determination in the label-free aptasensor. Excellent linearity was acquired and the lowest detection limit was 1.5 or 3 EID50 (50% egg infection dose) of MDPV, respectively, depending upon spectrophotometry or the naked eye were used. These results show the potential of the aptamer for the rapid detection of MDPV and antiviral research.
Collapse
Affiliation(s)
- Taofeng Lu
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qin Ma
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wenzhuo Yan
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuanzhi Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuanyuan Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
27
|
Le TT, Chang P, Benton DJ, McCauley JW, Iqbal M, Cass AEG. Dual Recognition Element Lateral Flow Assay Toward Multiplex Strain Specific Influenza Virus Detection. Anal Chem 2017; 89:6781-6786. [PMID: 28558471 PMCID: PMC5514394 DOI: 10.1021/acs.analchem.7b01149] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Different influenza
virus strains have caused a number of recent
outbreaks killing scores of people and causing significant losses
in animal farming. Simple, rapid, sensitive, and specific detection
of particular strains, such as a pandemic strain versus a previous
seasonal influenza, plays a crucial role in the monitoring, controlling,
and management of outbreaks. In this paper we describe a dual recognition
element lateral flow assay (DRELFA) which pairs a nucleic acid aptamer
with an antibody for use as a point-of-care platform which can detect
particular strains of interest. The combination is used to overcome
the individual limitations of antibodies’ cross-reactivity
and aptamers’ slow binding kinetics. In the detection of influenza
viruses, we show that DRELFA can discriminate a particular virus strain
against others of the same subtype or common respiratory diseases
while still exhibiting fast binding kinetic of the antibody-based
lateral flow assay (LFA). The improvement in specificity that DRELFA
exhibits is an advantage over the currently available antibody-based
LFA systems for influenza viruses, which offer discrimination between
influenza virus types and subtypes. Using quantitative real-time PCR
(qRT-PCR), it showed that the DRELFA is very effective in localizing
the analyte to the test line (consistently over 90%) and this is crucial
for the sensitivity of the device. In addition, color intensities
of the test lines showed a good correlation between the DRELFA and
the qRT-PCR over a 50-fold concentration range. Finally, lateral flow
strips with a streptavidin capture test line and an anti-antibody
control line are universally applicable to specific detection of a
wide range of different analytes.
Collapse
Affiliation(s)
- Thao T Le
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| | - Pengxiang Chang
- Avian Viral Diseases Program, Pirbright Institute , Woking GU24 0NF, U.K
| | - Donald J Benton
- Worldwide Influenza Centre, Francis Crick Institute , London NW1 1AT, U.K
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute , London NW1 1AT, U.K
| | - Munir Iqbal
- Avian Viral Diseases Program, Pirbright Institute , Woking GU24 0NF, U.K
| | - Anthony E G Cass
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
28
|
Zheng L, Wei J, Lv X, Bi Y, Wu P, Zhang Z, Wang P, Liu R, Jiang J, Cong H, Liang J, Chen W, Cao H, Liu W, Gao GF, Du Y, Jiang X, Li X. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens Bioelectron 2017; 91:46-52. [PMID: 27987410 DOI: 10.1016/j.bios.2016.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
Accurate diagnosis of influenza viruses is difficult and generally requires a complex process because of viral diversity and rapid mutability. In this study, we report a simple and rapid strategy for the detection and differentiation of influenza viruses using glycan-functionalized gold nanoparticles (gGNPs). This method is based on the aggregation of gGNP probes on the viral surface, which is mediated by the specific binding of the virus to the glycans. Using a set of gGNPs bearing different glycan structures, fourteen influenza virus strains, including the major subtypes currently circulating in human and avian populations, were readily differentiated from each other and from a human respiratory syncytial virus in a single-step colorimetric procedure. The results presented here demonstrate the potential of this gGNP-based system in the development of convenient and portable sensors for the clinical diagnosis and surveillance of influenza viruses.
Collapse
Affiliation(s)
- Longtang Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Zhongguancun, Beijing 100190, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Peixing Wu
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou 730050, China
| | - Zhenxing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Pengfei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Ruichen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Jingwen Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Haolong Cong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Jingnan Liang
- Core Facility, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China
| | - Wenwen Chen
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Zhongguancun, Beijing 100190, China
| | - Xingyu Jiang
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China.
| |
Collapse
|
29
|
Zhang Y, Gao D, Fan J, Nie J, Le S, Zhu W, Yang J, Li J. Naked-eye quantitative aptamer-based assay on paper device. Biosens Bioelectron 2016; 78:538-546. [PMID: 26684676 DOI: 10.1016/j.bios.2015.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
This work initially describes the design of low-cost, naked-eye quantitative aptamer-based assays by using microfluidic paper-based analytical device (μPAD). Two new detection motifs are proposed for quantitative μPAD measurement without using external electronic readers, which depend on the length of colored region in a strip-like μPAD and the number of colorless detection microzones in a multi-zone μPAD. The length measuring method is based on selective color change of paper from colorless to blue-black via formation of iodine-starch complex. The counting method is conducted on the basis of oxidation-reduction reaction between hydrogen peroxide and potassium permanganate. Their utility is well demonstrated with sensitive, specific detection of adenosine as a model analyte with the naked eye in buffer samples and undiluted human serum. These equipment-free quantitative methods proposed thus hold great potential for the development of more aptamer-based assays that are simple, cost-efficient, portable, and user-friendly for various point-of-care applications particularly in resource-constrained environments.
Collapse
Affiliation(s)
- Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Dong Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jinlong Fan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Shangwang Le
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Wenyuan Zhu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jiani Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| |
Collapse
|
30
|
Unique Properties of Core Shell Ag@Au Nanoparticles for the Aptasensing of Bacterial Cells. CHEMOSENSORS 2016. [DOI: 10.3390/chemosensors4030016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Li LL, Li K, Liu YH, Xu HR, Yu XQ. Red emission fluorescent probes for visualization of monoamine oxidase in living cells. Sci Rep 2016; 6:31217. [PMID: 27499031 PMCID: PMC4976310 DOI: 10.1038/srep31217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022] Open
Abstract
Here we report two novel red emission fluorescent probes for the highly sensitive and selective detection of monoamine oxidase (MAO) with large Stokes shift (227 nm). Both of the probes possess solid state fluorescence and can accomplish the identification of MAO on test papers. The probe MAO-Red-1 exhibited a detection limit down to 1.2 μg mL−1 towards MAO-B. Moreover, the cleavage product was unequivocally conformedby HPLC and LCMS and the result was in accordance with the proposed oxidative deamination mechanism. The excellent photostability of MAO-Red-1 was proved both in vitro and in vivo through fluorescent kinetic experiment and laser exposure experiment of confocal microscopy, respectively. Intracellular experiments also confirmed the low cytotoxity and exceptional cell imaging abilities of MAO-Red-1. It was validated both in HeLa and HepG2 cells that MAO-Red-1 was capable of reporting MAO activity through the variation of fluorescence intensity.
Collapse
Affiliation(s)
- Ling-Ling Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| | - Hao-Ran Xu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
32
|
Wang CC, Wu SM, Li HW, Chang HT. Biomedical Applications of DNA-Conjugated Gold Nanoparticles. Chembiochem 2016; 17:1052-62. [PMID: 26864481 DOI: 10.1002/cbic.201600014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 01/07/2023]
Abstract
Gold nanoparticles (AuNPs) are useful for diagnostic and biomedical applications, mainly because of their ease in preparation and conjugation, biocompatibility, and size-dependent optical properties. However, bare AuNPs do not possess specificity for targets. AuNPs conjugated with DNA aptamers offer specificity for various analytes, such as proteins and small molecules/ions. Although DNA aptamers themselves have therapeutic and target-recognizing properties, they are susceptible to degradation in vivo. When DNA aptamers are conjugated to AuNPs, their stability and cell uptake efficiency both increase, making aptamer-AuNPs suitable for biomedical applications. Additionally, drugs can be efficiently conjugated with DNA aptamer-AuNPs to further enhance their therapeutic efficiency. This review focuses on the applications of DNA aptamer-based AuNPs in several biomedical areas, including anticoagulation, anticancer, antibacterial, and antiviral applications.
Collapse
Affiliation(s)
- Chun-Chi Wang
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shou-Mei Wu
- School of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
33
|
Beier R, Labudde D. Numeric promoter description - A comparative view on concepts and general application. J Mol Graph Model 2015; 63:65-77. [PMID: 26655334 DOI: 10.1016/j.jmgm.2015.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 11/25/2022]
Abstract
Nucleic acid molecules play a key role in a variety of biological processes. Starting from storage and transfer tasks, this also comprises the triggering of biological processes, regulatory effects and the active influence gained by target binding. Based on the experimental output (in this case promoter sequences), further in silico analyses aid in gaining new insights into these processes and interactions. The numerical description of nucleic acids thereby constitutes a bridge between the concrete biological issues and the analytical methods. Hence, this study compares 26 descriptor sets obtained by applying well-known numerical description concepts to an established dataset of 38 DNA promoter sequences. The suitability of the description sets was evaluated by computing partial least squares regression models and assessing the model accuracy. We conclude that the major importance regarding the descriptive power is attached to positional information rather than to explicitly incorporated physico-chemical information, since a sufficient amount of implicit physico-chemical information is already encoded in the nucleobase classification. The regression models especially benefited from employing the information that is encoded in the sequential and structural neighborhood of the nucleobases. Thus, the analyses of n-grams (short fragments of length n) suggested that they are valuable descriptors for DNA target interactions. A mixed n-gram descriptor set thereby yielded the best description of the promoter sequences. The corresponding regression model was checked and found to be plausible as it was able to reproduce the characteristic binding motifs of promoter sequences in a reasonable degree. As most functional nucleic acids are based on the principle of molecular recognition, the findings are not restricted to promoter sequences, but can rather be transferred to other kinds of functional nucleic acids. Thus, the concepts presented in this study could provide advantages for future nucleic acid-based technologies, like biosensoring, therapeutics and molecular imaging.
Collapse
Affiliation(s)
- Rico Beier
- University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
| | - Dirk Labudde
- University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
| |
Collapse
|
34
|
van den Kieboom CH, van der Beek SL, Mészáros T, Gyurcsányi RE, Ferwerda G, de Jonge MI. Aptasensors for viral diagnostics. Trends Analyt Chem 2015; 74:58-67. [PMID: 32287539 PMCID: PMC7112930 DOI: 10.1016/j.trac.2015.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We discuss progress in aptamer-based detection of viruses. We consider the use of aptasensors for point-of-care diagnostics of viruses. Aptamers have distinct advantages over antibodies for virus recognition. There is strong demand for multiplexed diagnostic measurement of pathogens.
Novel viral diagnostic tools need to be affordable, fast, accurate and easy to use with sensitivity and specificity equivalent or superior to current standards. At present, viral diagnostics are based on direct detection of viral components or indirect detection by measuring antibodies generated in response to viral infection. While sensitivity of detection and quantification are still important challenges, we expect major advances from new assay formats and synthetic binding molecules, such as aptamers. Compared to traditional antibody-based detection, aptamers could provide faster adaptation to continuously evolving virus strains and higher discriminating capacity between specific virus serotypes. Aptamers are very stable and easily modifiable, so are ideal molecules for detection and chemical sensing applications. Here, we review the use of aptasensors for detection of viral pathogens and consider the feasibility of aptasensors to become standard devices for point-of-care diagnostics of viruses.
Collapse
Affiliation(s)
- Corné H van den Kieboom
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.,MTA-BME Research Group for Technical Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Róbert E Gyurcsányi
- MTA-BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
35
|
Argoubi W, Saadaoui M, Ben Aoun S, Raouafi N. Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1840-1852. [PMID: 26425435 PMCID: PMC4578399 DOI: 10.3762/bjnano.6.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
The demand for on-site nanodevices is constantly increasing. The technology development for the design of such devices is highly regarded. In this work, we report the design of a disposable platform that is structured with cauliflower-shaped gold nanoparticles (cfAuNPs) and we show its applications in immunosensing and enzyme-based detection. The electrochemical reduction of Au(III) allows for the electrodeposition of highly dispersed cauliflower-shaped gold nanoparticles on the surface of screen-printed carbon electrodes (SPCEs). The nanostructures were functionalized using ferrocenylmethyl lipoic acid ester which allowed for the tethering of the ferrocene group to gold, which serves as an electrochemical transducer/mediator. The bioconjugation of the surface with anti-human IgG antibody (α-hIgG) or horseradish peroxidase (HRP) enzyme yields biosensors, which have been applied for the selective electrochemical detection of human IgG (hIgG) or H2O2 as model analytes, respectively. Parameters such as the number of sweeps, amount of charge generated from the oxidation of the electrodeposited gold, time of incubation and concentration of the ferrocene derivatives have been studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Selectivity and specificity tests have been also performed in the presence of potentially interfering substances to either hIgG or H2O2. Results showed that the devised immunosensor is endowed with good selectivity and specificity in the presence of several folds of competitive analytes. The enzyme-based platform showed a good catalytic activity towards H2O2 oxidation which predestined it to potential applications pertaining to enzymatic kinetics studies. The levels of hIgG in human serum and H2O2 in honey were successfully determined and served as assessment tools of the applicability of the platforms for real samples analysis.
Collapse
Affiliation(s)
- Wicem Argoubi
- University of Tunis El-Manar, Chemistry Department, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), campus universitaire de Tunis El-Manar 2092, Tunis, Tunisia
| | - Maroua Saadaoui
- University of Tunis El-Manar, Chemistry Department, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), campus universitaire de Tunis El-Manar 2092, Tunis, Tunisia
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, PO. Box 30002 Al-Madinah Al-Munawarah, Saudi Arabia
| | - Noureddine Raouafi
- University of Tunis El-Manar, Chemistry Department, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), campus universitaire de Tunis El-Manar 2092, Tunis, Tunisia
| |
Collapse
|
36
|
Yang ZH, Zhuo Y, Yuan R, Chai YQ. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens Bioelectron 2015; 69:321-7. [DOI: 10.1016/j.bios.2015.01.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 12/23/2022]
|
37
|
Liu Y, Zhang L, Wei W, Zhao H, Zhou Z, Zhang Y, Liu S. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Analyst 2015; 140:3989-95. [PMID: 25899840 DOI: 10.1039/c5an00407a] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Early and accurate diagnosis is considered the key issue to prevent the further spread of viruses and facilitate influenza therapy. Herein, we report a colorimetric immunosensor for influenza A virus (IAV) based on gold nanoparticles (AuNPs) modified with monoclonal anti-hemagglutinin antibody (mAb). The immunosensor allows for a fast, simple, and selective detection of IAV. In this assay, influenza-specific antibodies are conjugated to AuNPs to create mAb-AuNP probes. Since IAV has multiple recognition sites for probes on the surface, the mAb-AuNP probes can be specifically arranged on the virus surface due to their very specific antigen recognition. In this case, this aggregation of the mAb-AuNP probes produces a red shift in the absorption spectrum due to plasmon coupling between adjacent AuNPs, and it can be detected with the naked eye as a color change from red to purple and quantified with the absorption spectral measurements. The aggregate formation is also confirmed with transmission electron microscopy (TEM) imaging and dynamic light scattering (DLS). Under the optimal conditions, the present immunoassay can sensitively measure H3N2 IAV (A/Brisbane/10/2007) with a detection limit of 7.8 hemagglutination units (HAU). This proposed immunosensor revealed high specificity, accuracy, and good stability. Notably, it is a single-step detection using AuNP probes and UV-vis spectrophotometer for readout, and no additional amplification, e.g., enzymatic, is needed to read the result. This assay depends on an ordered AuNP structure covering the virus surface and can be applied to any virus pathogen by incorporating the appropriate pathogen-specific antibody.
Collapse
Affiliation(s)
- Yuanjian Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, PR China.
| | | | | | | | | | | | | |
Collapse
|