1
|
Zeng WJ, Yang HJ, Gu YJ, Yang MN, Sun MR, Cheng SK, Hou YY, Gu W. High taurocholic acid concentration induces ferroptosis by downregulating FTH1 expression in intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2025; 25:21. [PMID: 39789492 PMCID: PMC11715977 DOI: 10.1186/s12884-025-07143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder associated with pregnancy and is usually diagnosed based on high serum bile acid. However, the pathogenesis of ICP is unclear. Ferroptosis has been reported as an iron-dependent mechanism of cell death. Although the role of Ferritin Heavy Chain 1 (FTH1) in ferroptosis has been extensively studied in various diseases, its mechanism in ICP through ferroptosis is yet to be analyzed. METHODS Placental tissues from patients with ICP and healthy controls were employed to verify the expression of FTH1. Taurocholic acid (TCA)-induced HTR-8/SVneo cells were established as an in vitro model for ICP, and ferroptosis-related experiments were performed. In particular, HTR-8/SVneo cells with or without overexpressing FTH1 and HTR-8/SVneo cells with or without TCA induction were investigated to explore the relationship between FTH1 and ferroptosis during ICP in vitro, respectively. RESULTS FTH1 was significantly downregulated in the ICP group compared with the control group. Furthermore, FTH1 and ferroptosis-related protein levels were downregulated, while the intracellular iron, reactive oxygen species, and lipid peroxidation levels were upregulated in the TCA-induced HTR-8/SVneo cells. In contrast, ferroptosis was inhibited by overexpression of FTH1 in TCA-induced HTR-8/SVneo cells. CONCLUSIONS A high concentration of TCA in HTR-8/SVneo cells decreased the expression of FTH1. Overexpression of FTH1 could prevent cell death from ferroptosis induced by TCA. Thus, inhibiting the downregulation of FTH1 could be a potential therapeutic target for ICP treatment.
Collapse
Affiliation(s)
- Wei-Jian Zeng
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Hua-Jing Yang
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Ying-Jie Gu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Meng-Nan Yang
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Meng-Ru Sun
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Sheng-Kai Cheng
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Yan-Yan Hou
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China.
| | - Wei Gu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China.
| |
Collapse
|
2
|
Fei X, Dou Y, Yang Y, Zheng B, Luo P, Dai S, Zhang J, Peng K, Jiang X, Yu Y, Wei J. Lipocalin-2 inhibition alleviates neural injury by microglia ferroptosis suppression after experimental intracerebral hemorrhage in mice via enhancing ferritin light chain expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167435. [PMID: 39067535 DOI: 10.1016/j.bbadis.2024.167435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Microglia play pivotal roles in post-intracerebral hemorrhage (ICH) neural injury. Iron metabolism, which is dysregulated after ICH, participates in microglial dysfunction. Previous studies have shown that iron metabolism-related lipocalin-2 (LCN2) is involved in regulating microglial function following ICH. In this study, we investigated the role of LCN2 in microglial function following ICH. METHODS The BV2 (microglia) cell line, transfected with LCN2 for overexpression/interference, received a blood infusion from C57BL/6 mice in vitro. For the in vivo study of LCN2 function, an LCN2 knockout was conducted in mice. Liproxstatin-1 and RSL3 were used to manipulate ferroptosis and to study the effects of LCN2 on microglia after ICH. A BV2 (microglia) cell line, transfected with ferritin light chain (FTL) for overexpression/interference, was co-cultured with primary cultured neurons for a study on the mechanism of LCN2. Behavioral tests were conducted pre-ICH and on days 3, 7, and 28 post-ICH, and the brains and cultured cells were collected for protein, histological, and morphological studies. RESULTS Brain LCN2 expression was upregulated in microglia, astrocytes, and neurons and played hazardous roles after ICH. In microglia, LCN2 promoted ferroptosis, which facilitated neural injury after ICH. LCN2-mediated FTL deficiency was shown to be responsible for microglial ferroptosis-induced neural injury. CONCLUSION Our study suggests that LCN2-enhanced microglial ferroptosis plays a detrimental role by inducing FTL deficiency after ICH. The current study reveals a novel molecular mechanism involved in the pathophysiological progression of ICH.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuefan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Buyi Zheng
- Department of Neurosurgery, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Peng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Health Service, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Cao S, Ma D, Ji S, Zhou M, Zhu S. Self-Assembled Ferritin Nanoparticles for Delivery of Antigens and Development of Vaccines: From Structure and Property to Applications. Molecules 2024; 29:4221. [PMID: 39275069 PMCID: PMC11397193 DOI: 10.3390/molecules29174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Ferritin, an iron storage protein, is ubiquitously distributed across diverse life forms, fulfilling crucial roles encompassing iron retention, conversion, orchestration of cellular iron metabolism, and safeguarding cells against oxidative harm. Noteworthy attributes of ferritin include its innate amenability to facile modification, scalable mass production, as well as exceptional stability and safety. In addition, ferritin boasts unique physicochemical properties, including pH responsiveness, resilience to elevated temperatures, and resistance to a myriad of denaturing agents. Therefore, ferritin serves as the substrate for creating nanomaterials typified by uniform particle dimensions and exceptional biocompatibility. Comprising 24 subunits, each ferritin nanocage demonstrates self-assembly capabilities, culminating in the formation of nanostructures akin to intricate cages. Recent years have witnessed the ascendance of ferritin-based self-assembled nanoparticles, owing to their distinctive physicochemical traits, which confer substantial advantages and wide-ranging applications within the biomedical domain. Ferritin is highly appealing as a carrier for delivering drug molecules and antigen proteins due to its distinctive structural and biochemical properties. This review aims to highlight recent advances in the use of self-assembled ferritin as a novel carrier for antigen delivery and vaccine development, discussing the molecular mechanisms underlying its action, and presenting it as a promising and effective strategy for the future of vaccine development.
Collapse
Affiliation(s)
- Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Dongxue Ma
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China; (D.M.); (S.J.)
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China; (D.M.); (S.J.)
| | - Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| |
Collapse
|
4
|
Agostini F, Sgalletta B, Bisaglia M. Iron Dyshomeostasis in Neurodegeneration with Brain Iron Accumulation (NBIA): Is It the Cause or the Effect? Cells 2024; 13:1376. [PMID: 39195264 DOI: 10.3390/cells13161376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Iron is an essential metal ion implicated in several cellular processes. However, the reactive nature of iron renders this metal ion potentially dangerous for cells, and its levels need to be tightly controlled. Alterations in the intracellular concentration of iron are associated with different neuropathological conditions, including neurodegeneration with brain iron accumulation (NBIA). As the name suggests, NBIA encompasses a class of rare and still poorly investigated neurodegenerative disorders characterized by an abnormal accumulation of iron in the brain. NBIA is mostly a genetic pathology, and to date, 10 genes have been linked to familial forms of NBIA. In the present review, after the description of the principal mechanisms implicated in iron homeostasis, we summarize the research data concerning the pathological mechanisms underlying the genetic forms of NBIA and discuss the potential involvement of iron in such processes. The picture that emerges is that, while iron overload can contribute to the pathogenesis of NBIA, it does not seem to be the causal factor in most forms of the pathology. The onset of these pathologies is rather caused by a combination of processes involving the interplay between lipid metabolism, mitochondrial functions, and autophagic activity, eventually leading to iron dyshomeostasis.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Bibiana Sgalletta
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| |
Collapse
|
5
|
Punchai S, Chaiyagot N, Artkaew N, Jusakul A, Cha’on U, Thanan R, Vaeteewoottacharn K, Lert-Itthiporn W. Iron-induced kidney cell damage: insights into molecular mechanisms and potential diagnostic significance of urinary FTL. Front Mol Biosci 2024; 11:1352032. [PMID: 38449697 PMCID: PMC10916690 DOI: 10.3389/fmolb.2024.1352032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Iron overload can lead to organ and cell injuries. Although the mechanisms of iron-induced cell damage have been extensively studied using various cells, little is known about these processes in kidney cells. Methods: In this study, we first examined the correlation between serum iron levels and kidney function. Subsequently, we investigated the molecular impact of excess iron on kidney cell lines, HEK293T and HK-2. The presence of the upregulated protein was further validated in urine. Results: The results revealed that excess iron caused significant cell death accompanied by morphological changes. Transcriptomic analysis revealed an up-regulation of the ferroptosis pathway during iron treatment. This was confirmed by up-regulation of ferroptosis markers, ferritin light chain (FTL), and prostaglandin-endoperoxide synthase 2 (PTGS2), and down-regulation of acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4) using real-time PCR and Western blotting. In addition, excess iron treatment enhanced protein and lipid oxidation. Supportively, an inverse correlation between urinary FTL protein level and kidney function was observed. Conclusion: These findings suggest that excess iron disrupts cellular homeostasis and affects key proteins involved in kidney cell death. Our study demonstrated that high iron levels caused kidney cell damage. Additionally, urinary FTL might be a useful biomarker to detect kidney damage caused by iron toxicity. Our study also provided insights into the molecular mechanisms of iron-induced kidney injury, discussing several potential targets for future interventions.
Collapse
Affiliation(s)
- Soraya Punchai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nachayada Chaiyagot
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nadthanicha Artkaew
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha’on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Ng SW, Lee C, Ng A, Ng SK, Arcuri F, House MD, Norwitz ER. Ferroportin expression and regulation in human placenta/fetal membranes: Implications for ferroptosis and adverse pregnancy outcomes. Reprod Biol 2023; 23:100816. [PMID: 37890398 DOI: 10.1016/j.repbio.2023.100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Iron overload is associated with pregnancy complications. Ferroportin (FPN) is the only known iron exporter in mammalian cells. We hypothesize that FPN is functionally important in ferrotopsis, a process of iron-dependent non-apoptotic programmed cell death, and may have a critical role to play in pregnancy success. We investigated the expression of FPN in placenta/fetal membranes by immunohistochemistry in tissues collected from pregnancies with/without preeclampsia (PE) and spontaneous preterm birth (SPTB). FPN was highly expressed in both trophoblasts and decidual cells found in placenta/fetal membranes. Staining was significantly reduced in fetal membranes from SPTB versus healthy pregnancies (P = 0.046). FPN expression in immortalized human endometrial stromal cells (HESC) increased with in vitro decidualization induction using 1 μM of medroxyprogesterone acetate and 0.5 mM of dibutyryl-cAMP. In addition, both HESC cells and immortalized extravillous trophoblast SW71 cells with FPN knockdown showed significant sensitivity to ferroptosis inducer, erastin (P < 0.001 and P = 0.009, respectively). The survival of both HESC and SW71 cells was not negatively affected by iron supplementation with ferric ammonium citrate in the medium. However, SW71 cells were more sensitive than HESC cells to physiologic iron in the presence of a non-lethal dose of erastin (P < 0.001). Taken together, our data demonstrating increased sensitivity of FPN knockdown HESC and SW71 cells to erastin and increased sensitivity of trophoblasts to iron overload under ferroptotic stress support the hypothesis that FPN protects against ferroptosis during pregnancy.
Collapse
Affiliation(s)
- Shu-Wing Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA.
| | - Chungyan Lee
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Allen Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Shu-Kay Ng
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
| | - Felice Arcuri
- Department of Molecular & Developmental Medicine, University of Siena, Siena, Italy
| | - Michael D House
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | |
Collapse
|
7
|
Shan Y, Guan C, Wang J, Qi W, Chen A, Liu S. Impact of ferroptosis on preeclampsia: A review. Biomed Pharmacother 2023; 167:115466. [PMID: 37729725 DOI: 10.1016/j.biopha.2023.115466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Preeclampsia (PE) is usually associated with the accumulation of reactive oxygen species (ROS) resulting from heightened oxidative stress (OS). Ferroptosis is a unique type of lipid peroxidation-induced iron-dependent cell death distinct from traditional apoptosis, necroptosis, and pyroptosis and most likely contributes considerable to PE pathogenesis. At approximately 10-12 weeks of gestation, trophoblasts create an environment rich in oxygen and iron. In patients with PE, ferroptosis-related genes such as HIF1 and MAPK8 are downregulated, whereas PLIN2 is upregulated. Furthermore, miR-30b-5p overexpression inhibits solute carrier family 11 member 2, resulting in a decrease in glutathione levels and an increase in the labile iron pool. At the maternal-fetal interface, physiological hypoxia/reperfusion and excessive iron result in lipid peroxidation and ROS production. Owing to the high expression of Fpn and polyunsaturated fatty acid-containing phospholipid-related enzymes, including acyl-CoA synthetase long-chain family member 4, lysophosphatidylcholine acyl-transferase 3, and spermidine/spermine N1-acetyltransferase 1, trophoblasts become more susceptible to OS and ROS damage. In stage 1, the injured trophoblasts exhibit poor invasion and incomplete uterine spiral artery remodeling caused by ferroptosis, leading to placental ischemia and hypoxia. Subsequently, ferroptosis marked by OS occurs in stage 2, eventually causing PE. We aimed to explore the new therapeutic target of PE through OS in ferroptosis.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengcheng Guan
- Laboratory Department, Qingdao Haici Hospital, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihong Qi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Masison J, Mendes P. Modeling the iron storage protein ferritin reveals how residual ferrihydrite iron determines initial ferritin iron sequestration kinetics. PLoS One 2023; 18:e0281401. [PMID: 36745660 PMCID: PMC9901743 DOI: 10.1371/journal.pone.0281401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Computational models can be created more efficiently by composing them from smaller, well-defined sub-models that represent specific cellular structures that appear often in different contexts. Cellular iron metabolism is a prime example of this as multiple cell types tend to rely on a similar set of components (proteins and regulatory mechanisms) to ensure iron balance. One recurrent component, ferritin, is the primary iron storage protein in mammalian cells and is necessary for cellular iron homeostasis. Its ability to sequester iron protects cells from rising concentrations of ferrous iron limiting oxidative cell damage. The focus of the present work is establishing a model that tractably represents the ferritin iron sequestration kinetics such that it can be incorporated into larger cell models, in addition to contributing to the understanding of general ferritin iron sequestration dynamics within cells. The model's parameter values were determined from published kinetic and binding experiments and the model was validated against independent data not used in its construction. Simulation results indicate that FT concentration is the most impactful on overall sequestration dynamics, while the FT iron saturation (number of iron atoms sequestered per FT cage) fine tunes the initial rates. Finally, because this model has a small number of reactions and species, was built to represent important details of FT kinetics, and has flexibility to include subtle changes in subunit composition, we propose it to be used as a building block in a variety of specific cell type models of iron metabolism.
Collapse
Affiliation(s)
- Joseph Masison
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Pedro Mendes
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
9
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
10
|
Bandyopadhyay A, Ahamed F, Palepu S, Ghosh T, Yadav V. Association of Serum Hepcidin With Preeclampsia: A Systematic Review and Meta-Analysis. Cureus 2022; 14:e26699. [PMID: 35959172 PMCID: PMC9359713 DOI: 10.7759/cureus.26699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2022] [Indexed: 11/05/2022] Open
Abstract
The objective of the present systematic review and meta-analysis was to compare the levels of serum hepcidin in women who developed pre-eclampsia with those who did not. The databases PubMed, Embase, Scopus, Cochrane, and references of retrieved articles published till September 2020 were searched with no language restriction. Mean differences in iron regulating protein (hepcidin) were compared using a random-effects model based on the level of heterogeneity. A total of 760 individuals were included in the analysis from seven studies. The pooled estimate showed that mean hepcidin levels were significantly higher in women who developed pre-eclampsia [0.3 ng/ml, 95% confidence interval (CI): 0.01-0.59, p=0.003] as compared to women who did not develop pre-eclampsia. Further research can be done to assess the levels of various iron parameters in different trimesters of pregnancy and their association with pre-eclampsia.
Collapse
Affiliation(s)
| | - Farhad Ahamed
- Community Medicine and Family Medicine, All India Institute of Medical Sciences, Kalyani, Kalyani, IND
| | - Sarika Palepu
- Community Medicine and Family Medicine, All India Institute of Medical Sciences, Kalyani, Kalyani, IND
| | - Tandra Ghosh
- Physiology, All India Institute of Medical Sciences, Kalyani, Kalyani, IND
| | - Vikas Yadav
- Community and Family Medicine, National Institute for Research in Environmental Health, Bhopal, IND
| |
Collapse
|
11
|
Song X, Zheng Y, Liu Y, Meng H, Yu R, Zhang C. Conversion of recombinant human ferritin light chain inclusion bodies into uniform nanoparticles in Escherichia coli for facile production. Eng Life Sci 2022; 22:453-463. [PMID: 35663479 PMCID: PMC9162929 DOI: 10.1002/elsc.202100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Prokaryotic expression systems are widely used to produce many types of biologics because of their extreme conveniences and unmatchable cost. However, production of recombinant human ferritin light chain (rhFTL) protein is largely restrained because its expression in Escherichia coli tends to form inclusion bodies (IBs). In this study, a prokaryotic expression vector (FTL-pBV220) harboring the rhFTL gene was constructed using a pBV220 plasmid. The tag-free rhFTL was highly expressed and almost entirely converted to soluble form, and thus the rhFTL was successfully self-assembled into uniform nanoparticles in E. coli. To establish a simplified downstream process, a precipitation procedure based on the optimized incubation temperature, pH condition, and ionic strength was developed to remove impurities from the crude lysate supernatant. The rhFTL retained in the clarified supernatant was subsequently purified in a single step using Capto Butyl column resulting in a considerable recovery and high purity. The purified rhFTL was characterized and verified by mass spectrometry and spectral and morphological analyses. The results revealed that rhFTL exhibited highly ordered and fairly compact structures and the spherical structures were preserved.
Collapse
Affiliation(s)
- Xiaotong Song
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| | - Yongxiang Zheng
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| | - Yongdong Liu
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingBeijingP. R. China
| | - Huan Meng
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| | - Rong Yu
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| | - Chun Zhang
- Department of BiopharmaceuticsKey Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengduP. R. China
| |
Collapse
|
12
|
Smith GL, Srivastava AK, Reutovich AA, Hunter NJ, Arosio P, Melman A, Bou-Abdallah F. Iron Mobilization from Ferritin in Yeast Cell Lysate and Physiological Implications. Int J Mol Sci 2022; 23:ijms23116100. [PMID: 35682778 PMCID: PMC9181690 DOI: 10.3390/ijms23116100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Most in vitro iron mobilization studies from ferritin have been performed in aqueous buffered solutions using a variety of reducing substances. The kinetics of iron mobilization from ferritin in a medium that resembles the complex milieu of cells could dramatically differ from those in aqueous solutions, and to our knowledge, no such studies have been performed. Here, we have studied the kinetics of iron release from ferritin in fresh yeast cell lysates and examined the effect of cellular metabolites on this process. Our results show that iron release from ferritin in buffer is extremely slow compared to cell lysate under identical experimental conditions, suggesting that certain cellular metabolites present in yeast cell lysate facilitate the reductive release of ferric iron from the ferritin core. Using filtration membranes with different molecular weight cut-offs (3, 10, 30, 50, and 100 kDa), we demonstrate that a cellular component >50 kDa is implicated in the reductive release of iron. When the cell lysate was washed three times with buffer, or when NADPH was omitted from the solution, a dramatic decrease in iron mobilization rates was observed. The addition of physiological concentrations of free flavins, such as FMN, FAD, and riboflavin showed about a two-fold increase in the amount of released iron. Notably, all iron release kinetics occurred while the solution oxygen level was still high. Altogether, our results indicate that in addition to ferritin proteolysis, there exists an auxiliary iron reductive mechanism that involves long-range electron transfer reactions facilitated by the ferritin shell. The physiological implications of such iron reductive mechanisms are discussed.
Collapse
Affiliation(s)
- Gideon L. Smith
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Ayush K. Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Aliaksandra A. Reutovich
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Nathan J. Hunter
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Paolo Arosio
- Department of Molecular & Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Artem Melman
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
- Correspondence:
| |
Collapse
|
13
|
Zeng F, Yi C, Zhang W, Cheng S, Sun C, Luo F, Feng Z, Hu W. A new ferritin SjFer0 affecting the growth and development of Schistosoma japonicum. Parasit Vectors 2022; 15:177. [PMID: 35610663 PMCID: PMC9128280 DOI: 10.1186/s13071-022-05247-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Schistosomiasis, an acute and chronic parasitic disease, causes substantial morbidity and mortality in tropical and subtropical regions of the world. Iron is an essential constituent of numerous macromolecules involving in important cellular reactions in virtually all organisms. Trematodes of the genus Schistosoma live in iron-rich blood, feed on red blood cells and store abundant iron in vitelline cells. Ferritins are multi-meric proteins that store iron inside cells. Three ferritin isoforms in Schistosoma japonicum are known, namely SjFer0, SjFer1 and SjFer2; however, their impact on the growth and development of the parasites is still unknown. In this study we report on and characterize the ferritins in S. japonicum. METHODS A phylogenetic tree of the SjFer0, SjFer1 and SjFer2 genes was constructed to show the evolutionary relationship among species of genus Schistosoma. RNA interference in vivo was used to investigate the impact of SjFer0 on schistosome growth and development. Immunofluorescence assay was applied to localize the expression of the ferritins. RNA-sequencing was performed to characterize the iron transport profile after RNA interference. RESULTS SjFer0 was found to have low similarity with SjFer1 and SjFer2 and contain an additional signal peptide sequence. Phylogenetic analysis revealed that SjFer0 can only cluster with some ferritins of other trematodes and tapeworms, suggesting that this ferritin branch might be unique to these parasites. RNA interference in vivo showed that SjFer0 significantly affected the growth and development of schistosomula but did not affect egg production of adult female worms. SjFer1 and SjFer2 had no significant impact on growth and development. The immunofluorescence study showed that SjFer0 was widely expressed in the somatic cells and vitelline glands but not in the testicle or ovary. RNA-sequencing indicated that, in female, the ion transport process and calcium ion binding function were downregulated after SjFer0 RNA interference. Among the differentially downregulated genes, Sj-cpi-2, annexin and insulin-like growth factor-binding protein may be accounted for the suppression of schistosome growth and development. CONCLUSIONS The results indicate that SjFer0 affects the growth and development of schistosomula but does not affect egg production of adult female worms. SjFer0 can rescue the growth of the fet3fet4 double mutant Saccharomyces cerevisiae (strain DEY1453), suggesting being able to promote iron absorption. The RNA interference of SjFer0 inferred that the suppression of worm growth and development may via down-regulating Sj-cpi-2, annexin, and IGFBP.
Collapse
Affiliation(s)
- Fanyuan Zeng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Shaoyun Cheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Zheng Feng
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030, People's Republic of China.
| |
Collapse
|
14
|
Duarte TL, Talbot NP, Drakesmith H. NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis. Antioxid Redox Signal 2021; 35:433-452. [PMID: 32791852 DOI: 10.1089/ars.2020.8148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Oxygen metabolism and iron homeostasis are closely linked. Iron facilitates the oxygen-carrying capacity of blood, and its deficiency causes anemia. Conversely, excess free iron is detrimental for stimulating the formation of reactive oxygen species, causing tissue damage. The amount and distribution of iron thus need to be tightly regulated by the liver-expressed hormone hepcidin. This review analyzes the roles of key oxygen-sensing pathways in cellular and systemic regulation of iron homeostasis; specifically, the prolyl hydroxylase domain (PHD)/hypoxia-inducible factor (HIF) and the Kelch-like ECH-associated protein 1/NF-E2 p45-related factor 2 (KEAP1/NRF2) pathways, which mediate tissue adaptation to low and high oxygen, respectively. Recent Advances: In macrophages, NRF2 regulates genes involved in hemoglobin catabolism, iron storage, and iron export. NRF2 was recently identified as the molecular sensor of iron-induced oxidative stress and is responsible for BMP6 expression by liver sinusoidal endothelial cells, which in turn activates hepcidin synthesis by hepatocytes to restore systemic iron levels. Moreover, NRF2 orchestrates the activation of antioxidant defenses that are crucial to protect against iron toxicity. On the contrary, low iron/hypoxia stabilizes renal HIF2a via inactivation of iron-dependent PHD dioxygenases, causing an erythropoietic stimulus that represses hepcidin via an inhibitory effect of erythroferrone on bone morphogenetic proteins. Intestinal HIF2a is also stabilized, increasing the expression of genes involved in dietary iron absorption. Critical Issues: An intimate crosstalk between oxygen-sensing pathways and iron regulatory mechanisms ensures that fluctuations in systemic iron levels are promptly detected and restored. Future Directions: The realization that redox-sensitive transcription factors regulate systemic iron levels suggests novel therapeutic approaches. Antioxid. Redox Signal. 35, 433-452.
Collapse
Affiliation(s)
- Tiago L Duarte
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
15
|
Rourk C, Huang Y, Chen M, Shen C. Indication of Strongly Correlated Electron Transport and Mott Insulator in Disordered Multilayer Ferritin Structures (DMFS). MATERIALS 2021; 14:ma14164527. [PMID: 34443050 PMCID: PMC8399281 DOI: 10.3390/ma14164527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
Electron tunneling in ferritin and between ferritin cores (a transition metal (iron) oxide storage protein) in disordered arrays has been extensively documented, but the electrical behavior of those structures in circuits with more than two electrodes has not been studied. Tests of devices using a layer-by-layer deposition process for forming multilayer arrays of ferritin that have been previously reported indicate that strongly correlated electron transport is occurring, consistent with models of electron transport in quantum dots. Strongly correlated electrons (electrons that engage in strong electron-electron interactions) have been observed in transition metal oxides and quantum dots and can create unusual material behavior that is difficult to model, such as switching between a low resistance metal state and a high resistance Mott insulator state. This paper reports the results of the effect of various degrees of structural homogeneity on the electrical characteristics of these ferritin arrays. These results demonstrate for the first time that these structures can provide a switching function associated with the circuit that they are contained within, consistent with the observed behavior of strongly correlated electrons and Mott insulators.
Collapse
Affiliation(s)
- Christopher Rourk
- Independent Researcher, Dallas, TX 75205, USA
- Correspondence: (C.R.); (C.S.)
| | - Yunbo Huang
- Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences, 1219 Zhongguan Road, Zhenhai District, Ningbo 315201, China; (Y.H.); (M.C.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjing Chen
- Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences, 1219 Zhongguan Road, Zhenhai District, Ningbo 315201, China; (Y.H.); (M.C.)
| | - Cai Shen
- Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences, 1219 Zhongguan Road, Zhenhai District, Ningbo 315201, China; (Y.H.); (M.C.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (C.R.); (C.S.)
| |
Collapse
|
16
|
Nash B, Irollo E, Brandimarti R, Meucci O. Opioid Modulation of Neuronal Iron and Potential Contributions to NeuroHIV. Methods Mol Biol 2021; 2201:139-162. [PMID: 32975796 DOI: 10.1007/978-1-0716-0884-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Opioid use has substantially increased over recent years and remains a major driver of new HIV infections worldwide. Clinical studies indicate that opioids may exacerbate the symptoms of HIV-associated neurocognitive disorders (HAND), but the mechanisms underlying opioid-induced cognitive decline remain obscure. We recently reported that the μ-opioid agonist morphine increased neuronal iron levels and levels of ferritin proteins that store iron, suggesting that opioids modulate neuronal iron homeostasis. Additionally, increased iron and ferritin heavy chain protein were necessary for morphine's ability to reduce the density of thin and mushroom dendritic spines in cortical neurons, which are considered critical mediators of learning and memory, respectively. As altered iron homeostasis has been reported in HAND and related neurocognitive disorders like Alzheimer's, Parkinson's, and Huntington's disease, understanding how opioids regulate neuronal iron metabolism may help identify novel drug targets in HAND with potential relevance to these other neurocognitive disorders. Here, we review the known mechanisms of opioid-mediated regulation of neuronal iron and corresponding cellular responses and discuss the implications of these findings for patients with HAND. Furthermore, we discuss a new molecular approach that can be used to understand if opioid modulation of iron affects the expression and processing of amyloid precursor protein and the contributions of this pathway to HAND.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elena Irollo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Renato Brandimarti
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Olimpia Meucci
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Blue light-triggered Fe 2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy. Biomaterials 2021; 271:120739. [PMID: 33690102 DOI: 10.1016/j.biomaterials.2021.120739] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/23/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Site-specific Fe2+ generation is promising for tumor therapy. Up to now, reported materials or systems for Fe2+ delivery do not naturally exist in the body, and their biological safety and toxicity are concerned. Herein, inspired by the natural biomineral ferrihydrite in ferritin, we synthesized monodispersed ferrihydrite nanoparticles and demonstrated a light triggered Fe2+ generation on tumor sites. Ferrihydrite nanoparticles of 20-30 nm in diameter possessed high cellular uptake efficiency and good biocompatibility. Under common blue light illumination, a large amount of Fe2+ could be released from ferrihydrite and promote the iron/reactive oxygen species (ROS)-related irreversible DNA fragmentation and glutathione peroxidase 4 (GPX4) inhibition, which led to the apoptosis- and ferroptosis-depended cancer cell proliferation inhibition. On mice, this method induced tumor associated macrophage (TAM) polarization from the tumor-promoting M2 type to the tumor-killing M1 type. With the intravenous pre-injection of ferrihydrite, the combinational effects of the light/Fe2+-approach attenuated pulmonary metastasis on mice. These results demonstrated a novel external light controlled Fe2+-generation approach based on biomineral, which will fully tap the anti-cancer potential of Fe2+ in chemo-dynamic, photo-dynamic and immune-activating therapies.
Collapse
|
18
|
Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020; 9:cells9122591. [PMID: 33287315 PMCID: PMC7761773 DOI: 10.3390/cells9122591] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.
Collapse
Affiliation(s)
- Myriam Y. Hsu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Erica Mina
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy
- Correspondence: (A.R.); (P.E.P.)
| | - Paolo E. Porporato
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
- Correspondence: (A.R.); (P.E.P.)
| |
Collapse
|
19
|
McNally JR, Mehlenbacher MR, Luscieti S, Smith GL, Reutovich AA, Maura P, Arosio P, Bou-Abdallah F. Mutant L-chain ferritins that cause neuroferritinopathy alter ferritin functionality and iron permeability. Metallomics 2020; 11:1635-1647. [PMID: 31513212 DOI: 10.1039/c9mt00154a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, the iron storage and detoxification protein ferritin is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light). The two subunits co-assemble in various ratios, with a tissue specific distribution, to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunits possess ferroxidase centers that catalyze the rapid oxidation of ferrous ions, whereas the L-subunit does not have such centers and is believed to play an important role in electron transfer reactions that occur during the uptake and release of iron. Pathogenic mutations on the L-chain lead to neuroferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin inclusion bodies and iron in the central nervous system. Here, we have characterized the thermal stability, iron loading capacity, iron uptake, and iron release properties of ferritin heteropolymers carrying the three pathogenic L-ferritin mutants (L154fs, L167fs, and L148fs, which for simplicity we named Ln1, Ln2 and Ln3, respectively), and a non-pathogenic variant (L135P) bearing a single substitution on the 3-fold axes of L-subunits. The UV-Vis data show a similar iron loading capacity (ranging between 1800 to 2400 Fe(iii)/shell) for all ferritin samples examined in this study, with Ln2 holding the least amount of iron (i.e. 1800 Fe(iii)/shell). The three pathogenic L-ferritin mutants revealed higher rates of iron oxidation and iron release, suggesting that a few mutated L-chains on the heteropolymer have a significant effect on iron permeability through the ferritin shell. DSC thermograms showed a strong destabilization effect, the severity of which depends on the location of the frameshift mutations (i.e. wt heteropolymer ferritin ≅ homopolymer H-chain > L135P > Ln2 > Ln1 > Ln3). Variant L135P had only minor effects on the protein functionality and stability, suggesting that local melting of the 3-fold axes in this variant may not be responsible for neuroferritinopathy-like disorders. The data support the hypothesis that hereditary neuroferritinopathies are due to alterations of ferritin functionality and lower physical stability which correlate with the frameshifts introduced at the C-terminal sequence and explain the dominant transmission of the disorder.
Collapse
Affiliation(s)
- Justin R McNally
- Department of Chemistry, State University of New York, Potsdam, New York 13676, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Johnson TS, Li S, Franz E, Huang Z, Dan Li S, Campbell MJ, Huang K, Zhang Y. PseudoFuN: Deriving functional potentials of pseudogenes from integrative relationships with genes and microRNAs across 32 cancers. Gigascience 2019; 8:5480571. [PMID: 31029062 PMCID: PMC6486473 DOI: 10.1093/gigascience/giz046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Long thought “relics” of evolution, not until recently have pseudogenes been of medical interest regarding regulation in cancer. Often, these regulatory roles are a direct by-product of their close sequence homology to protein-coding genes. Novel pseudogene-gene (PGG) functional associations can be identified through the integration of biomedical data, such as sequence homology, functional pathways, gene expression, pseudogene expression, and microRNA expression. However, not all of the information has been integrated, and almost all previous pseudogene studies relied on 1:1 pseudogene–parent gene relationships without leveraging other homologous genes/pseudogenes. Results We produce PGG families that expand beyond the current 1:1 paradigm. First, we construct expansive PGG databases by (i) CUDAlign graphics processing unit (GPU) accelerated local alignment of all pseudogenes to gene families (totaling 1.6 billion individual local alignments and >40,000 GPU hours) and (ii) BLAST-based assignment of pseudogenes to gene families. Second, we create an open-source web application (PseudoFuN [Pseudogene Functional Networks]) to search for integrative functional relationships of sequence homology, microRNA expression, gene expression, pseudogene expression, and gene ontology. We produce four “flavors” of CUDAlign-based databases (>462,000,000 PGG pairwise alignments and 133,770 PGG families) that can be queried and downloaded using PseudoFuN. These databases are consistent with previous 1:1 PGG annotation and also are much more powerful including millions of de novo PGG associations. For example, we find multiple known (e.g., miR-20a-PTEN-PTENP1) and novel (e.g., miR-375-SOX15-PPP4R1L) microRNA-gene-pseudogene associations in prostate cancer. PseudoFuN provides a “one stop shop” for identifying and visualizing thousands of potential regulatory relationships related to pseudogenes in The Cancer Genome Atlas cancers. Conclusions Thousands of new PGG associations can be explored in the context of microRNA-gene-pseudogene co-expression and differential expression with a simple-to-use online tool by bioinformaticians and oncologists alike.
Collapse
Affiliation(s)
- Travis S Johnson
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, USA.,Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Sihong Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, USA
| | - Eric Franz
- Ohio Supercomputer Center, 1224 Kinnear Road, Columbus, OH 43212, USA
| | - Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907, USA.,Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Shuyu Dan Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 500 West 12 th Avenue, Columbus, OH 43210, USA
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Indianapolis, IN 46202, USA.,Regenstrief Institute, Indiana University, 1101 West 10 th Street, Indianapolis, IN 46262, USA
| | - Yan Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center (OSUCCC - James), 460 West 10 th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Maity B, Hishikawa Y, Lu D, Ueno T. Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Wu B, Wu Y, Tang W. Heme Catabolic Pathway in Inflammation and Immune Disorders. Front Pharmacol 2019; 10:825. [PMID: 31396090 PMCID: PMC6667928 DOI: 10.3389/fphar.2019.00825] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, the heme catabolic pathway is considered to play an important regulatory role in cell protection, apoptosis, inflammation, and other physiological and pathological processes. An appropriate amount of heme forms the basic elements of various life activities, while when released in large quantities, it can induce toxicity by mediating oxidative stress and inflammation. Heme oxygenase (HO) -1 can catabolize free heme into carbon monoxide (CO), ferrous iron, and biliverdin (BV)/bilirubin (BR). The diverse functions of these metabolites in immune systems are fascinating. Decades work shows that administration of degradation products of heme such as CO and BV/BR exerts protective activities in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS) and other immune disorders. This review elaborates the molecular and biochemical characterization of heme catabolic pathway, discusses the signal transduction and immunomodulatory mechanism in inflammation and summarizes the promising therapeutic strategies based on this pathway in inflammatory and immune disorders.
Collapse
Affiliation(s)
- Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Ng SW, Norwitz SG, Norwitz ER. The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia. Int J Mol Sci 2019; 20:E3283. [PMID: 31277367 PMCID: PMC6651445 DOI: 10.3390/ijms20133283] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for the survival of most organisms, including humans. Demand for iron increases significantly during pregnancy to support growth and development of the fetus. Paradoxically, epidemiologic studies have shown that excessive iron intake and/or high iron status can be detrimental to pregnancy and is associated with reproductive disorders ranging from endometriosis to preeclampsia. Reproductive complications resulting from iron deficiency have been reviewed elsewhere. Here, we focus on reproductive disorders associated with iron overload and the contribution of ferroptosis-programmed cell death mediated by iron-dependent lipid peroxidation within cell membranes-using preeclampsia as a model system. We propose that the clinical expressions of many reproductive disorders and pregnancy complications may be due to an underlying ferroptopathy (elemental iron-associated disease), characterized by a dysregulation in iron homeostasis leading to excessive ferroptosis.
Collapse
Affiliation(s)
- Shu-Wing Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| | | | - Errol R Norwitz
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
25
|
Carmona D, Treccani L, Michaelis M, Lid S, Debus C, Ciacchi LC, Rezwan K, Maas M. Mineralization of iron oxide by ferritin homopolymers immobilized on SiO2 nanoparticles. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Carmona
- Advanced Ceramics, University of Bremen, Bremen, Germany
| | | | - Monika Michaelis
- Hybrid Materials Interfaces Group, University of Bremen, Bremen, Germany
| | - Steffen Lid
- Hybrid Materials Interfaces Group, University of Bremen, Bremen, Germany
| | - Christian Debus
- Physical Chemistry, University of Konstanz, Konstanz, Germany
| | | | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Bremen, Germany
| | - Michael Maas
- Advanced Ceramics, University of Bremen, Bremen, Germany
| |
Collapse
|
26
|
Badu-Boateng C, Naftalin RJ. Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med 2019; 133:75-87. [PMID: 30268889 DOI: 10.1016/j.freeradbiomed.2018.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023]
Abstract
This review discusses the chemical mechanisms of ascorbate-dependent reduction and solubilization of ferritin's ferric iron core and subsequent release of ferrous iron. The process is accelerated by low concentrations of Fe(II) that increase ferritin's intrinsic ascorbate oxidase activity, hence increasing the rate of ascorbate radical formation. These increased rates of ascorbate oxidation provide reducing equivalents (electrons) to ferritin's core and speed the core reduction rates with subsequent solubilization and release of Fe(II). Ascorbate-dependent solubilization of ferritin's iron core has consequences relating to the interpretation of 59Fe uptake sourced from 59Fe-lebelled holotransferrin into ferritin. Ascorbate-dependent reduction of the ferritin core iron solubility increases the size of ferritin's iron exchangeable pool and hence the rate and amount of exchange uptake of 59Fe into ferritin, whilst simultaneously increasing net iron release rate from ferritin. This may rationalize the inconsistency that ascorbate apparently stabilizes 59Fe ferritin and retards lysosomal ferritinolysis and whole cell 59Fe release, whilst paradoxically increasing the rate of net iron release from ferritin. This capacity of ascorbate and iron to synergise ferritin iron release has pathological significance, as it lowers the concentration at which ascorbate activates ferritin's iron release to within the physiological range (50-250 μM). These effects have relevance to inflammatory pathology and to the pro-oxidant effects of ascorbate in cancer therapy and cell death by ferroptosis.
Collapse
Affiliation(s)
- Charles Badu-Boateng
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Richard J Naftalin
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
27
|
Li B, Espósito BP, Wang S, Zhang J, Xu M, Zhang S, Zhang Z, Liu S. Desferrioxamine-caffeine shows improved efficacy in chelating iron and depleting cancer stem cells. J Trace Elem Med Biol 2019; 52:232-238. [PMID: 30732888 DOI: 10.1016/j.jtemb.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
Iron chelation has already been proposed to be a feasible strategy for cancer therapeutics in that reinforced iron demand is demonstrated in cancer cells, and quite a few iron chelators have been developed for this purpose. Desferrioxamine (DFO), an iron chelator approved by the U.S. Food and Drug Administration (FDA), has been extensively examined to remove extra iron. However, DFO has been found to harbor limited efficacies in combating cancer cells due to poor cellular permeability. In the current study, we synthesized the DFO derivative, named as desferrioxamine-caffeine dimer (DFCAF) by linking DFO to caffeine with high purity and excellent stability. Our data showed that DFCAF displayed greater cellular permeability to chelate intracellular iron in 4T1 breast cancer cells than DFO, posing more inhibition on cell growth and cellular motility/invasion. Importantly, DFCAF was uncovered to remarkably deplete cancer stem cells (CSCs), as characterized by the remarkable decrease of the CD44+/high/CD24-/low and ALDH+/high subpopulation. In parallel, DFCAF was also found to greatly reverse epithelial-mesenchymal transition (EMT), suggesting the potential application to restrain tumor progression and metastasis. Collectively, these data unveiled the improved efficacy to target cancer cells and to deplete CSCs, thus opening a new path for better cancer therapeutics through iron chelation.
Collapse
Affiliation(s)
- Bin Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuping Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin 300211, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Chen W, Li S, Li X, Zhang C, Hu X, Zhu F, Shen G, Feng F. Iron sulfur clusters in protein nanocages for photocatalytic hydrogen generation in acidic aqueous solutions. Chem Sci 2019; 10:2179-2185. [PMID: 30881642 PMCID: PMC6385480 DOI: 10.1039/c8sc05293j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022] Open
Abstract
We took advantage of the iron binding affinity of apoferritin to immobilize iron-sulfur clusters into apoferritin up to 312 moieties per protein, with a loading rate as high as 25 wt%. The photocatalytic hydrogen generation activity in acidic aqueous solutions was achieved with TONs up to 31 (based on a single catalyst moiety) or 8.3 × 103 (based on a single protein) upon 3 h of visible light irradiation. The present study provides a versatile strategy to construct uniform protein/photocatalyst supramolecular systems with FeFe-H2ase activity.
Collapse
Affiliation(s)
- Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Xiao Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Chi Zhang
- School of Chemistry & Chemical Engineering , Shangqiu Normal University , Shangqiu 476000 , China
| | - Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Fan Zhu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Guosong Shen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| |
Collapse
|
29
|
Iron metabolism and its contribution to cancer (Review). Int J Oncol 2019; 54:1143-1154. [PMID: 30968149 DOI: 10.3892/ijo.2019.4720] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/21/2019] [Indexed: 01/12/2023] Open
Abstract
Iron is an essential element for biological processes. Iron homeostasis is regulated through several mechanisms, from absorption by enterocytes to recycling by macrophages and storage in hepatocytes. Iron has dual properties, which may facilitate tumor growth or cell death. Cancer cells exhibit an increased dependence on iron compared with normal cells. Macrophages potentially deliver iron to cancer cells, resulting in tumor promotion. Mitochondria utilize cellular iron to synthesize cofactors, including heme and iron sulfur clusters. The latter is composed of essential enzymes involved in DNA synthesis and repair, oxidation‑reduction reactions, and other cellular processes. However, highly increased iron concentrations result in cell death through membrane lipid peroxidation, termed ferroptosis. Ferroptosis, an emerging pathway for cancer treatment, is similar to pyroptosis, apoptosis and necroptosis. In the present review, previous studies on the physiology of iron metabolism and its role in cancer are summarized. Additionally, the significance of iron regulation, and the association between iron homeostasis and carcinogenic mechanisms are discussed.
Collapse
|
30
|
Reductive Mobilization of Iron from Intact Ferritin: Mechanisms and Physiological Implication. Pharmaceuticals (Basel) 2018; 11:ph11040120. [PMID: 30400623 PMCID: PMC6315955 DOI: 10.3390/ph11040120] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023] Open
Abstract
Ferritins are highly conserved supramolecular protein nanostructures composed of two different subunit types, H (heavy) and L (light). The two subunits co-assemble into a 24-subunit heteropolymer, with tissue specific distributions, to form shell-like protein structures within which thousands of iron atoms are stored as a soluble inorganic ferric iron core. In-vitro (or in cell free systems), the mechanisms of iron(II) oxidation and formation of the mineral core have been extensively investigated, although it is still unclear how iron is loaded into the protein in-vivo. In contrast, there is a wide spread belief that the major pathway of iron mobilization from ferritin involves a lysosomal proteolytic degradation of ferritin, and the dissolution of the iron mineral core. However, it is still unclear whether other auxiliary iron mobilization mechanisms, involving physiological reducing agents and/or cellular reductases, contribute to the release of iron from ferritin. In vitro iron mobilization from ferritin can be achieved using different reducing agents, capable of easily reducing the ferritin iron core, to produce soluble ferrous ions that are subsequently chelated by strong iron(II)-chelating agents. Here, we review our current understanding of iron mobilization from ferritin by various reducing agents, and report on recent results from our laboratory, in support of a mechanism that involves a one-electron transfer through the protein shell to the iron mineral core. The physiological significance of the iron reductive mobilization from ferritin by the non-enzymatic FMN/NAD(P)H system is also discussed.
Collapse
|
31
|
Leitch HA, Buckstein R, Zhu N, Nevill TJ, Yee KWL, Leber B, Keating MM, St Hilaire E, Kumar R, Delage R, Geddes M, Storring JM, Shamy A, Elemary M, Wells RA. Iron overload in myelodysplastic syndromes: Evidence based guidelines from the Canadian consortium on MDS. Leuk Res 2018; 74:21-41. [PMID: 30286330 DOI: 10.1016/j.leukres.2018.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/08/2018] [Accepted: 09/15/2018] [Indexed: 01/19/2023]
Abstract
In 2008 the first evidence-based Canadian consensus guideline addressing the diagnosis, monitoring and management of transfusional iron overload in patients with myelodysplastic syndromes (MDS) was published. The Canadian Consortium on MDS, comprised of hematologists from across Canada with a clinical and academic interest in MDS, reconvened to update these guidelines. A literature search was updated in 2017; topics reviewed include mechanisms of iron overload induced cellular damage, evidence for clinical endpoints impacted by iron overload including organ dysfunction, infections, marrow failure, overall survival, acute myeloid leukemia progression, and endpoints around hematopoietic stem-cell transplant. Evidence for an impact of iron reduction on the same endpoints is discussed, guidelines are updated, and areas identified where evidence is suboptimal. The guidelines address common questions around the diagnosis, workup and management of iron overload in clinical practice, and take the approach of who, when, why and how to treat iron overload in MDS. Practical recommendations for treatment and monitoring are made. Evidence levels and grading of recommendations are provided for all clinical endpoints examined.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, BC, Canada.
| | - Rena Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nancy Zhu
- Hematology/Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas J Nevill
- Leukemia/BMT Program of British Columbia, Division of Hematology, Vancouver, BC, Canada
| | - Karen W L Yee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian Leber
- McMaster University, Hamilton, Ontario, Canada
| | | | - Eve St Hilaire
- Centre d'Oncologie, Dr-Leon-Richard, Moncton, New Brunswick, Canada
| | - Rajat Kumar
- Hematology/Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Robert Delage
- Hematology Department, Centre Hospitalier Universitaire, Laval University, Quebec, QC, Canada
| | - Michelle Geddes
- Department of Medicine/Hematology, Foothills Medical Centre, Calgary, Alberta, Canada
| | | | - April Shamy
- Sir Mortimer B Davis Hospital, McGill University, Montreal, Quebec, Canada
| | - Mohamed Elemary
- Saskatoon Cancer Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard A Wells
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Refaat B, Abdelghany AH, BaSalamah MA, El-Boshy M, Ahmad J, Idris S. Acute and Chronic Iron Overloading Differentially Modulates the Expression of Cellular Iron-homeostatic Molecules in Normal Rat Kidney. J Histochem Cytochem 2018; 66:825-839. [PMID: 29873589 DOI: 10.1369/0022155418782696] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about the renal responses to acute iron overloading. This study measured the renal tubular expression of transferrin receptor-1 (TfR1), cubilin/megalin receptors, hepcidin, ferroportin, and ferritin chains following subacute intoxication of 40 male Wistar rats with a single oral dose of ferrous iron (300 mg/kg). The animals were randomly subdivided into 4 equal subgroups at the time of necropsy (1, 2, 4, and 8 hr). The results were compared with the controls ( n=15) and with the chronic group ( n=15), which received iron for 4 weeks (75 mg/kg/day; 5 days/week). Although both toxicity models inhibited TfR1, they upregulated the cubilin/megalin receptors and hepcidin, and triggered iron deposition in tubular cells. The ferritin heavy-chain and ferroportin were downregulated in the 2-hr and 4-hr acute subgroups, whereas chronic toxicity promoted their expression, compared with controls. Moreover, the 4-hr and 8-hr subgroups had higher intracellular Fe+2 and marked cell apoptosis compared with the chronic group. In conclusion, the kidney appears to sustain iron reabsorption in both intoxication models. However, the cellular iron storage and exporter proteins were differentially expressed in both models, and their inhibition post-acute toxicity might contribute toward the intracellular accumulation of Fe+2, oxidative stress, and ferroptosis.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelghany Hassan Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A BaSalamah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Pathology Department, Faculty of Medicine.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
33
|
Koochana PK, Mohanty A, Das S, Subhadarshanee B, Satpati S, Dixit A, Sabat SC, Behera RK. Releasing iron from ferritin protein nanocage by reductive method: The role of electron transfer mediator. Biochim Biophys Acta Gen Subj 2018; 1862:1190-1198. [PMID: 29471025 DOI: 10.1016/j.bbagen.2018.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ferritin detoxifies excess of free Fe(II) and concentrates it in the form of ferrihydrite (Fe2O3·xH2O) mineral. When in need, ferritin iron is released for cellular metabolic activities. However, the low solubility of Fe(III) at neutral pH, its encapsulation by stable protein nanocage and presence of dissolved O2 limits in vitro ferritin iron release. METHODS Physiological reducing agent, NADH (E1/2 = -330 mV) was inefficient in releasing the ferritin iron (E1/2 = +183 mV), when used alone. Thus, current work investigates the role of low concentration (5-50 μM) of phenazine based electron transfer (ET) mediators such as FMN, PYO - a redox active virulence factor secreted by Pseudomonas aeruginosa and PMS towards iron mobilization from recombinant frog M ferritin. RESULTS The presence of dissolved O2, resulting in initial lag phase and low iron release in FMN, had little impact in case of PMS and PYO, reflecting their better ET relay ability that facilitates iron mobilization. The molecular modeling as well as fluorescence studies provided further structural insight towards interaction of redox mediators on ferritin surface for electron relay. CONCLUSIONS Reductive mobilization of iron from ferritin is dependent on the relative rate of NADH oxidation, dissolved O2 consumption and mineral core reduction, which in turn depends on E1/2 of these mediators and their interaction with ferritin. GENERAL SIGNIFICANCE The current mechanism of in vitro iron mobilization from ferritin by using redox mediators involves different ET steps, which may help to understand the iron release pathway in vivo and to check microbial growth.
Collapse
Affiliation(s)
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Suman Das
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Biswamaitree Subhadarshanee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India; KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh Satpati
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | - Anshuman Dixit
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | | | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
34
|
Skinner OS, McAnally MO, Van Duyne RP, Schatz GC, Breuker K, Compton PD, Kelleher NL. Native Electron Capture Dissociation Maps to Iron-Binding Channels in Horse Spleen Ferritin. Anal Chem 2017; 89:10711-10716. [PMID: 28938074 PMCID: PMC5647560 DOI: 10.1021/acs.analchem.7b01581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/22/2017] [Indexed: 12/01/2022]
Abstract
Native electron capture dissociation (NECD) is a process during which proteins undergo fragmentation similar to that from radical dissociation methods, but without the addition of exogenous electrons. However, after three initial reports of NECD from the cytochrome c dimer complex, no further evidence of the effect has been published. Here, we report NECD behavior from horse spleen ferritin, a ∼490 kDa protein complex ∼20-fold larger than the previously studied cytochrome c dimer. Application of front-end infrared excitation (FIRE) in conjunction with low- and high-m/z quadrupole isolation and collisionally activated dissociation (CAD) provides new insights into the NECD mechanism. Additionally, activation of the intact complex in either the electrospray droplet or the gas phase produced c-type fragment ions. Similar to the previously reported results on cytochrome c, these fragment ions form near residues known to interact with iron atoms in solution. By mapping the location of backbone cleavages associated with c-type ions onto the crystal structure, we are able to characterize two distinct iron binding channels that facilitate iron ion transport into the core of the complex. The resulting pathways are in good agreement with previously reported results for iron binding sites in mammalian ferritin.
Collapse
Affiliation(s)
- Owen S. Skinner
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael O. McAnally
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kathrin Breuker
- Institute
of Organic Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Philip D. Compton
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
35
|
Johnson LE, Wilkinson T, Arosio P, Melman A, Bou-Abdallah F. Effect of chaotropes on the kinetics of iron release from ferritin by flavin nucleotides. Biochim Biophys Acta Gen Subj 2017; 1861:3257-3262. [PMID: 28943300 DOI: 10.1016/j.bbagen.2017.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ferritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed. METHODS The iron release kinetics from horse and human ferritins by FMNH2 were monitored at 522nm where the Fe(II)-bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton. RESULTS AND CONCLUSIONS Under our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed. GENERAL SIGNIFICANCE Caution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used.
Collapse
Affiliation(s)
- Lindsay E Johnson
- State University of New York at Potsdam, Department of Chemistry, Potsdam, NY, USA
| | - Tyler Wilkinson
- Clarkson University, Department of Chemistry & Biomolecular Science, Potsdam, NY, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Artem Melman
- Clarkson University, Department of Chemistry & Biomolecular Science, Potsdam, NY, USA.
| | - Fadi Bou-Abdallah
- State University of New York at Potsdam, Department of Chemistry, Potsdam, NY, USA.
| |
Collapse
|
36
|
Mehlenbacher M, Poli M, Arosio P, Santambrogio P, Levi S, Chasteen ND, Bou-Abdallah F. Iron Oxidation and Core Formation in Recombinant Heteropolymeric Human Ferritins. Biochemistry 2017. [PMID: 28636371 DOI: 10.1021/acs.biochem.7b00024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In animals, the iron storage and detoxification protein, ferritin, is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light), which co-assemble in various ratios with tissue specific distributions to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunit possesses a ferroxidase center (FC) that catalyzes Fe(II) oxidation, whereas the L-subunit does not. To assess the role of the L-subunit in iron oxidation and core formation, two human recombinant heteropolymeric ferritins, designated H-rich and L-rich with ratios of ∼20H:4L and ∼22L:2H, respectively, were employed and compared to the human homopolymeric H-subunit ferritin (HuHF). These heteropolymeric ferritins have a composition similar to the composition of those found in hearts and brains (i.e., H-rich) and in livers and spleens (i.e., L-rich). As for HuHF, iron oxidation in H-rich ferritin was found to proceed with a 2:1 Fe(II):O2 stoichiometry at an iron level of 2 Fe(II) atoms/H-subunit with the generation of H2O2. The H2O2 reacted with additional Fe(II) in a 2:1 Fe(II):H2O2 ratio, thus avoiding the production of hydroxyl radical. A μ-1,2-peroxo-diFe(III) intermediate was observed at the FC of H-rich ferritin as for HuHF. Importantly, the H-rich protein regenerated full ferroxidase activity more rapidly than HuHF did and additionally formed larger iron cores, indicating dual roles for the L-subunit in facilitating iron turnover at the FC and in mineralization of the core. The L-rich ferritin, while also facilitating iron oxidation at the FC, additionally promoted oxidation at the mineral surface once the iron binding capacity of the FC was exceeded.
Collapse
Affiliation(s)
- Matthew Mehlenbacher
- Department of Chemistry, State University of New York , Potsdam, New York 13676, United States
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia , 25121 Brescia, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia , 25121 Brescia, Italy
| | | | | | - N Dennis Chasteen
- Department of Chemistry, University of New Hampshire , Durham, New Hampshire 03824, United States
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York , Potsdam, New York 13676, United States
| |
Collapse
|
37
|
Muckenthaler MU, Rivella S, Hentze MW, Galy B. A Red Carpet for Iron Metabolism. Cell 2017; 168:344-361. [PMID: 28129536 DOI: 10.1016/j.cell.2016.12.034] [Citation(s) in RCA: 843] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
200 billion red blood cells (RBCs) are produced every day, requiring more than 2 × 1015 iron atoms every second to maintain adequate erythropoiesis. These numbers translate into 20 mL of blood being produced each day, containing 6 g of hemoglobin and 20 mg of iron. These impressive numbers illustrate why the making and breaking of RBCs is at the heart of iron physiology, providing an ideal context to discuss recent progress in understanding the systemic and cellular mechanisms that underlie the regulation of iron homeostasis and its disorders.
Collapse
Affiliation(s)
- Martina U Muckenthaler
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany
| | - Stefano Rivella
- Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Leitch HA, Fibach E, Rachmilewitz E. Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell transplantation for hematologic malignancies. Crit Rev Oncol Hematol 2017; 113:156-170. [PMID: 28427505 DOI: 10.1016/j.critrevonc.2017.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/13/2017] [Accepted: 03/04/2017] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential element for key cellular metabolic processes. However, transfusional iron overload (IOL) may result in significant cellular toxicity. IOL occurs in transfusion dependent hematologic malignancies (HM), may lead to pathological clinical outcomes, and IOL reduction may improve outcomes. In hematopoietic stem cell transplantation (SCT) for HM, IOL may have clinical importance; endpoints examined regarding an impact of IOL and IOL reduction include transplant-related mortality, organ function, infection, relapse risk, and survival. Here we review the clinical consequences of IOL and effects of IOL reduction before, during and following SCT for HM. IOL pathophysiology is discussed as well as available tests for IOL quantification including transfusion history, serum ferritin level, transferrin saturation, hepcidin, labile plasma iron and other parameters of iron-catalyzed oxygen free radicals, and organ IOL by imaging. Data-based recommendations for IOL measurement, monitoring and reduction before, during and following SCT for HM are made.
Collapse
Affiliation(s)
- Heather A Leitch
- Division of Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, BC, Canada.
| | - Eitan Fibach
- Hematology Branch, Hadassah - Hebrew University Medical Center, Ein-Kerem, Jerusalem, Israel
| | | |
Collapse
|
39
|
Li L, Zhang L, Knez M. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol Res 2016; 110:1-9. [DOI: 10.1016/j.phrs.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
|
40
|
Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress. Annu Rev Nutr 2016; 36:241-73. [PMID: 27146016 DOI: 10.1146/annurev-nutr-071715-050939] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Ingrid Wahl Moen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jakob Bondo Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
41
|
Abstract
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.
Collapse
|
42
|
Zou W, Liu X, Zhao X, Wang J, Chen D, Li J, Ji L, Hua Z. Expression, purification, and characterization of recombinant human L-chain ferritin. Protein Expr Purif 2016; 119:63-8. [DOI: 10.1016/j.pep.2015.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022]
|
43
|
Ngo V, da Silva MC, Kubillus M, Li H, Roux B, Elstner M, Cui Q, Salahub DR, Noskov SY. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins. J Chem Theory Comput 2015; 11:4992-5001. [PMID: 26574284 PMCID: PMC4827603 DOI: 10.1021/acs.jctc.5b00524] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Despite
decades of investigations, the principal mechanisms responsible
for the high affinity and specificity of proteins for key physiological
cations K+, Na+, and Ca2+ remain
a hotly debated topic. At the core of the debate is an apparent need
(or lack thereof) for an accurate description of the electrostatic
response of the charge distribution in a protein to the binding of
an ion. These effects range from partial electronic polarization of
the directly ligating atoms to long-range effects related to partial
charge transfer and electronic delocalization effects. While accurate
modeling of cation recognition by metalloproteins warrants the use
of quantum-mechanics (QM) calculations, the most popular approximations
used in major biomolecular simulation packages rely on the implicit
modeling of electronic polarization effects. That is, high-level QM
computations for ion binding to proteins are desirable, but they are
often unfeasible, because of the large size of the reactive-site models
and the need to sample conformational space exhaustively at finite
temperature. Several solutions to this challenge have been proposed
in the field, ranging from the recently developed Drude polarizable
force-field for simulations of metalloproteins to approximate tight-binding
density functional theory (DFTB). To delineate the usefulness of different
approximations, we examined the accuracy of three recent and commonly
used theoretical models and numerical algorithms, namely, CHARMM C36,
the latest developed Drude polarizable force fields, and DFTB3 with
the latest 3OB parameters. We performed MD simulations for 30 cation-selective
proteins with high-resolution X-ray structures to create ensembles
of structures for analysis with different levels of theory, e.g.,
additive and polarizable force fields, DFTB3, and DFT. The results
from DFT computations were used to benchmark CHARMM C36, Drude, and
DFTB3 performance. The explicit modeling of quantum effects unveils
the key electrostatic properties of the protein sites and the importance
of specific ion-protein interactions. One of the most interesting
findings is that secondary coordination shells of proteins are noticeably
perturbed in a cation-dependent manner, showing significant delocalization
and long-range effects of charge transfer and polarization upon binding
Ca2+.
Collapse
Affiliation(s)
- Van Ngo
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , Calgary, Alberta, Canada T2N 1N4
| | - Mauricio C da Silva
- Centre for Molecular Simulation, Institute for Quantum Science and Technology and Department of Chemistry, University of Calgary , Calgary, Alberta, Canada T2N 1N4
| | - Maximilian Kubillus
- Institute of Physical Chemistry, Karlsruhe Institute of Technology , Kaiserstr. 12, 76021 Karlsruhe, Germany.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Hui Li
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology , Kaiserstr. 12, 76021 Karlsruhe, Germany
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dennis R Salahub
- Centre for Molecular Simulation, Institute for Quantum Science and Technology and Department of Chemistry, University of Calgary , Calgary, Alberta, Canada T2N 1N4
| | - Sergei Yu Noskov
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
44
|
Genome-wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and Viruses: its distribution, characteristic motif, and phylogenetic relationship. Naturwissenschaften 2015; 102:64. [DOI: 10.1007/s00114-015-1314-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/06/2023]
|
45
|
Zhang L, Li L, Di Penta A, Carmona U, Yang F, Schöps R, Brandsch M, Zugaza JL, Knez M. H-Chain Ferritin: A Natural Nuclei Targeting and Bioactive Delivery Nanovector. Adv Healthc Mater 2015; 4:1305-10. [PMID: 25973730 DOI: 10.1002/adhm.201500226] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Lianbing Zhang
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
| | - Le Li
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
| | - Alessandra Di Penta
- Achucarro Basque Center for Neuroscience, Building 205; Bizkaia Science and Technology Park; 48170 Zamudio Spain
- ThreeRLabs, Building 804; Bizkaia Science and Technology Park; 48170 Zamudio Spain
| | - Unai Carmona
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
| | - Fan Yang
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
| | - Regina Schöps
- Institute of Chemistry; Martin-Luther-University Halle-Wittenberg; 06099 Halle Germany
| | - Matthias Brandsch
- Biozentrum; Martin-Luther-University Halle-Wittenberg; 06120 Halle Germany
| | - José L. Zugaza
- Achucarro Basque Center for Neuroscience, Building 205; Bizkaia Science and Technology Park; 48170 Zamudio Spain
- Department of Genetics; Physical Anthropology and Animal Physiology; University of the Basque Country; 48940 Leioa Spain
- IKERBASQUE; Basque Foundation for Science; Maria Diaz de Haro 3 48013 Bilbao Spain
| | - Mato Knez
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
- IKERBASQUE; Basque Foundation for Science; Maria Diaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|