1
|
Pereira NIA, Oliveira MDS, Reis BCC, Nascimento BL, Carneiro CR, Arruda TR, Vieira ENR, Leite Junior BRDC. Unconventional sourced proteins in 3D and 4D food printing: Is it the future of food processing? Food Res Int 2024; 192:114849. [PMID: 39147528 DOI: 10.1016/j.foodres.2024.114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Following consumer trends and market needs, the food industry has expanded the use of unconventional sources to obtain proteins. In parallel, 3D and 4D food printing have emerged with the potential to enhance food processing. While 3D and 4D printing technologies show promising prospects for improving the performance and applicability of unconventional sourced proteins (USP) in food, this combination remains relatively unexplored. This review aims to provide an overview of the application of USP in 3D and 4D printing, focusing on their primary sources, composition, rheological, and technical-functional properties. The drawbacks, challenges, potentialities, and prospects of these technologies in food processing are also examined. This review underscores the current necessity for greater regulation of food products processed by 3D and 4D printing. The data presented here indicate that 3D and 4D printing represent viable, sustainable, and innovative alternatives for the food industry, emphasizing the potential for further exploration of 4D printing in food processing. Additional studies are warranted to explore their application with unconventional proteins.
Collapse
Affiliation(s)
| | | | | | - Bruno Leão Nascimento
- Department of Food Technology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
2
|
Cheng W, Di F, Li L, Pu C, Wang C, Zhang J. Anti-Photodamage Effect of Agaricus blazei Murill Polysaccharide on UVB-Damaged HaCaT Cells. Int J Mol Sci 2024; 25:4676. [PMID: 38731895 PMCID: PMC11083510 DOI: 10.3390/ijms25094676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1β (IL-1β), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.
Collapse
Affiliation(s)
- Wenjing Cheng
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Feiqian Di
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Luyao Li
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Chunhong Pu
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Changtao Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Jiachan Zhang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| |
Collapse
|
3
|
Bartkiene E, Zarovaite P, Starkute V, Mockus E, Zokaityte E, Zokaityte G, Rocha JM, Ruibys R, Klupsaite D. Changes in Lacto-Fermented Agaricus bisporus (White and Brown Varieties) Mushroom Characteristics, including Biogenic Amine and Volatile Compound Formation. Foods 2023; 12:2441. [PMID: 37444179 DOI: 10.3390/foods12132441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to evaluate the changes in Agaricus bisporus (white and brown) characteristics (colour and acidity parameters, lactic acid bacteria (LAB) and mould/yeast counts, biogenic amine content, fatty acid (FA) and volatile compound (VC) profiles, overall acceptability, and emotions induced for consumers) during a 48 h lactic acid fermentation with Lacticaseibacillus casei No. 210, Lactiplantibacillus plantarum No. 135, Lacticaseibacillus paracasei No. 244, and Pediococcus acidilactici No. 29 strains. Fermented white and brown A. bisporus showed higher LAB count and lower pH, lightness, redness, and yellowness than non-fermented ones. Yeast and fungi counts were similar between non-fermented and fermented samples. All samples contained spermidine (on average, 191.5 mg/kg) and some of the fermented samples had tyramine (on average, 80.7 mg/kg). Saturated FA was the highest in non-fermented brown A. bisporus. The highest monounsaturated and polyunsaturated FA contents were found in Lp. plantarum No. 135 fermented white and brown A. bisporus, respectively. For the first time, the VC profile of fermented A. bisporus was analysed. 1-Octen-3-ol content significantly decreased while benzyl alcohol, acetoin, and 2,3-butanediol increased in most fermented samples. Fermented A. bisporus received good acceptability scores. The emotional evaluation showed that the LAB strain and the interaction of the LAB strain and A. bisporus variety were significant on the intensity of emotions "happy" and "sad", while all analysed factors and their interactions were significant on the intensity of "angry" and "disgusted" (p ≤ 0.05). The findings of this study show the potential of the selected LAB strains and contribute to the increasing body of research on fermented mushrooms.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Paulina Zarovaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, LT-44244 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| |
Collapse
|
4
|
Chahdoura H, Mzoughi Z, Ziani BEC, Chakroun Y, Boujbiha MA, Bok SE, M'hadheb MB, Majdoub H, Mnif W, Flamini G, Mosbah H. Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes. Foods 2023; 12:foods12061301. [PMID: 36981228 PMCID: PMC10048770 DOI: 10.3390/foods12061301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The goal of this work was to investigate the impact of the flavoring of some aromatic plants/spices, including rosemary (R), lemon (L) and orange (O) at the concentration of 5% and 35% (w/w) added by 2 methods (conventional maceration and direct flavoring), on quality attributes, chemical changes and oxidative stability of extra virgin olive oil (EVOO). Six flavored oils were obtained (EVOO + O, O + O, EVOO + R, O + R, EVOO + L and O + L). The physicochemical parameters (water content, refractive index, acidity and peroxide value, extinction coefficient, fatty acids, volatile aroma profiles, Rancimat test, phenols and pigments composition) of the flavored oils were investigated. Based on the results obtained, it was observed that flavoring with a conventional process provided increased oxidative stability to the flavored oils, especially with rosemary (19.38 ± 0.26 h), compared to that of unflavored oil. The volatile profiles of the different flavored oils revealed the presence of 34 compounds with the dominance of Limonene. The fatty acid composition showed an abundance of mono-unsaturated fatty acids followed by poly-unsaturated ones. Moreover, a high antioxidant activity, a significant peripheral analgesic effect (77.7% of writhing inhibition) and an interesting gastroprotective action (96.59% of ulcer inhibition) have been observed for the rosemary-flavored oil. Indeed, the flavored olive oils of this study could be used as new functional foods, leading to new customers and further markets.
Collapse
Affiliation(s)
- Hassiba Chahdoura
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Zeineb Mzoughi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Borhane E C Ziani
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, Tipaza 42000, Algeria
| | - Yasmine Chakroun
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| | - Mohamed Ali Boujbiha
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| | - Safia El Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Department of Biology, Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia
| | - Manel Ben M'hadheb
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Guido Flamini
- Diparitmento di Farmacia, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Habib Mosbah
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Hamza A, Ghanekar S, Santhosh Kumar D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Minić DAP, Milinčić DD, Kolašinac S, Rac V, Petrović J, Soković M, Banjac N, Lađarević J, Vidović BB, Kostić AŽ, Pavlović VB, Pešić MB. Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic, FTIR, DLS and microstructure characterization. Food Chem 2023; 402:134299. [DOI: 10.1016/j.foodchem.2022.134299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
|
7
|
Extraction and utilization of active substances from edible fungi substrate and residue: A review. Food Chem 2023; 398:133872. [PMID: 35964566 DOI: 10.1016/j.foodchem.2022.133872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023]
Abstract
The expansion of the edible fungi industry has resulted in the production of large amounts of edible fungus residues, causing great pressure on environmental protection.Therefore, research on edible fungus residue utilization has become a controversial issue. Thus far, numerous efforts have been devoted to separate active substances from edible fungus substrates and residues for high application value utilization. Building upon this, the main methods for extracting active substances from edible mushroom residues are reviewed, and the mechanisms, influencing factors, and trade-offs of the various methods are analysed. Furthermore, the existing and possible directions of utilization of the extracted active substances are reviewed and discussed. Finally, challenges and prospects for the extraction and utilization of different substances in edible fungus residues are proposed. This review provides an effective strategy for protecting the ecological environment and promoting the sustainable development of human society.
Collapse
|
8
|
Campi M, Mancuello C, Maubet Y, Cristaldo E, Veloso B, Ferreira F, Thornton L, Robledo G. Biochemical, nutritional, and toxicological properties of the edible species Phlebopus beniensis with ethnomycological notes from Paraguay. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2023. [DOI: 10.1590/1981-6723.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Abstract In recent decades, mushrooms have been recognized as an important resource and efforts to characterize their potential to aid nutrition and human health have increased. Phlebopus beniensis specimen from a semi-urban community in Paraguay were analyzed for its biochemical properties, nutritional value, and toxicity. The species was identified by morpho-anatomical and molecular tools. Analyses for antioxidants by Ultraviolet-visible (UV-VIS) and nutritional content revealed that P. beniensis is a favorable source of antioxidants, proteins, carbohydrates, dietary fiber, and fats. Spectrometry through Gas Chromatography-Mass Spectrometry (GC-MS) further showcased other mycochemicals such as the specific phenolic, antioxidant, and fatty acid compounds that serve important biological roles in human diets. Applying an ethnomycological framework across local Paraguayan populations, we also report accounts of histories, knowledge, and usage of P. beniensis in South America among settlers and Paraguayan people.
Collapse
Affiliation(s)
- Michelle Campi
- Universidad Nacional de Asunción, Paraguay; Fundación Fungicosmos, Argentina
| | | | | | | | | | | | - Lara Thornton
- Universidad Nacional de Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Gerardo Robledo
- Fundación Fungicosmos, Argentina; Universidad Nacional de Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
9
|
Nikolić NČ, Krasić MS, Šimurina O, Cakić S, Mitrović J, Pešić M, Karabegović I. Regression analysis in examination the rheology properties of dough from wheat and Boletus edulis flour. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Almeida D, Cardoso RVC, Pereira C, Alves MJ, Ferreira ICFR, Zied DC, Junior WGV, Caitano CEC, Fernandes Â, Barros L. Biochemical Approaches on Commercial Strains of Agaricus subrufescens Growing under Two Environmental Cultivation Conditions. J Fungi (Basel) 2022; 8:jof8060616. [PMID: 35736099 PMCID: PMC9224743 DOI: 10.3390/jof8060616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
In the present work, the effect of the cultivation process, in the field and under a controlled environment, on biochemical parameters by using commercial strains of A. subrufescens were evaluated. The results obtained revealed that the strains cultivated in the field presented higher levels for most of the parameters evaluated (organic acids (20.5–48.0 g/100 g dw), tocopherols (107.0–198.6 µg/100 g dw), and phenolic acids and related compounds (245.2–359.0 µg/100 g dw and 10.6–23.7 µg/100 g dw, respectively)), except for the carbohydrates (53.4–72.6 g/100 g dw), energetic value (373–380 Kcal/100 g dw), and total free sugars (28.8–43.1 g/100 g dw), parameters in which the strains grown in a controlled environment present better results. For both cultivation systems, similar results were obtained regarding saturated, monounsaturated, and polyunsaturated fatty acids, as well as antioxidant and antimicrobial activities. These data contribute to the knowledge and highlight the characterized strains and the cultivation process, which can be used to obtain ingredients with potential applicability as a source of functional compounds.
Collapse
Affiliation(s)
- Daiana Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
| | - Rossana V. C. Cardoso
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
- AquaValor—Centro de Valorização e Transferência de Tecnologia da Água—Associação, Rua Dr. Júlio Martins N° 1, 5400-342 Chaves, Portugal
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
| | - Diego Cunha Zied
- Faculdade de Ciências Agrárias e Tecnológicas (FCAT), Campus Dracena, Universidade Estadual Paulista, São Paulo 17900-000, Brazil;
| | - Wagner G. Vieira Junior
- Programa de Pós-Graduação em Microbiologia Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), São Paulo 14884-900, Brazil; (W.G.V.J.); (C.E.C.C.)
| | - Cinthia E. C. Caitano
- Programa de Pós-Graduação em Microbiologia Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), São Paulo 14884-900, Brazil; (W.G.V.J.); (C.E.C.C.)
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.A.); (R.V.C.C.); (C.P.); (M.J.A.); (I.C.F.R.F.)
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
11
|
Yousefi M, Malecky M, Zaboli K, Jahanian Najafabadi H. In vitro and in sacco determining the nutritive value of button mushroom stipe and its application in growing lambs diet. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.1987847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Majid Yousefi
- Department of Animal Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mostafa Malecky
- Department of Animal Science, Bu-Ali Sina University, Hamedan, Iran
| | - Khalil Zaboli
- Department of Animal Science, Bu-Ali Sina University, Hamedan, Iran
| | | |
Collapse
|
12
|
Petrovic J, Fernandes Â, Stojković D, Soković M, Barros L, Ferreira I, Shekhar A, Glamočlija J. A Step Forward Towards Exploring Nutritional and Biological Potential of Mushrooms: A Case Study of Calocybe gambosa (Fr.) Donk Wild Growing in Serbia. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/144836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Dietary Agaricus blazei Spent Substrate Improves Disease Resistance of Nile Tilapia (Oreochromis niloticus) against Streptococcus agalactiae In Vivo. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study evaluated the effects of the feeding of spent mushroom substrate from Agaricus blazei on Nile tilapia (Oreochromis niloticus). The safety of 0–1000 μg/mL A. blazei spent substrate water extract (ABSSE) was demonstrated in the primary hepatic and splenic macrophages and the THK cell line (a cell line with characteristics of melanomacrophages) using a cytotoxicity assay. Here, 10 μg/mL of crude ABSSE promoted the phagocytic activity of macrophages and THK cells. Stimulating ABSSE-primed THK cells with lipopolysaccharides or peptidoglycan resulted in higher expression levels of four cytokine genes (e.g., interleukinz (IL)-1β, IL-12b, IL-8 and tumor necrosis factor α (TNFα)) and one cytokine gene (TNFα), respectively. An in vitro bacterial growth inhibition assay demonstrated that ABSSE could inhibit the growth of Streptococcus agalactiae. In the first feeding trial, Nile tilapia were fed with experimental feed containing 0, 1, or 5% of A. blazei spent substrate (ABSS) for seven and fourteen days followed by bacterial challenge assay. The best result was obtained when Nile tilapia were continuously fed for seven days on a diet containing 1% ABSS, with the survival rate being higher than in groups with 0% and 5% ABSS after challenge with S. agalactiae. In the second trial, fish were fed diets supplemented with 0% or 1% ABSS for seven days, and then all the groups were given the control feed for several days prior to bacterial challenge in order to investigate the duration of the protective effect provided by ABSS. The results showed that the protective effects were sustained at day 7 after the feed was switched. Overall, spent mushroom substrate from A. blazei is a cost-effective feed additive for Nile tilapia that protects fish from S. agalactiae infection.
Collapse
|
14
|
Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants (Basel) 2021; 10:1899. [PMID: 34943001 PMCID: PMC8750169 DOI: 10.3390/antiox10121899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have been long accomplished for their medicinal properties and bioactivity. The ancients benefitted from it, even before they knew that there was more to mushrooms than just the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom polysaccharide-based reports were observed to be significantly less frequent. This review highlights the antioxidant properties and mechanisms as well as consolidates the various antioxidant applications of mushroom polysaccharides. The biological activities of mushroom polysaccharides are also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of mushrooms to extend into the unknown is emphasized.
Collapse
Affiliation(s)
| | | | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (J.G.)
| |
Collapse
|
15
|
Effects of Agaricus bisporus Mushroom Extract on Honey Bees Infected with Nosema ceranae. INSECTS 2021; 12:insects12100915. [PMID: 34680684 PMCID: PMC8541333 DOI: 10.3390/insects12100915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Nosema ceranae affects honey bee (Apis mellifera L.) causing nosemosis disease that often induces serious problems in apiculture. Antibiotic fumagillin is the only licenced treatment against nosemosis, but its effectiveness is questioned and its usage associated with risk of bee mortality and appearance of residues in bee products. In search for alternative treatment for the control of nosemosis, water crude extract of Agaricus bisporus was tested on bees in laboratory (cage) experiments. Bee survival and food consumption were monitored together with Nosema infection level and expression of five genes (abaecin, hymenoptaecin, defensin, apidaecin, and vitellogenin) were evaluated in bees sampled on days 7 and 15. Apart from the gene for defensin, the expression of all tested genes was up-regulated in bees supplemented with A. bisporus extract. Both anti-Nosema and immune protective effects of A. bisporus extract were observed when supplementation started at the moment of N. ceranae infection or preventively (before or simultaneously with the Nosema infection). Abstract Agaricus bisporus water crude extract was tested on honey bees for the first time. The first part of the cage experiment was set for selecting one concentration of the A. bisporus extract. Concentration of 200 µg/g was further tested in the second part of the experiment where bee survival and food consumption were monitored together with Nosema infection level and expression of five genes (abaecin, hymenoptaecin, defensin, apidaecin, and vitellogenin) that were evaluated in bees sampled on days 7 and 15. Survival rate of Nosema-infected bees was significantly greater in groups fed with A. bisporus-enriched syrup compared to those fed with a pure sucrose syrup. Besides, the anti-Nosema effect of A. bisporus extract was greatest when applied from the third day which coincides with the time of infection with N. ceranae. Daily food consumption did not differ between the groups indicating good acceptability and palatability of the extract. A. bisporus extract showed a stimulative effect on four out of five monitored genes. Both anti-Nosema and nutrigenomic effects of A. bisporus extract were observed when supplementation started at the moment of N. ceranae infection or preventively (before or simultaneously with the infection).
Collapse
|
16
|
Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135943] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fungi are vital to numerous industrial and household processes, especially producing cheeses, beer, wine, and bread, and they are accountable for breaking down organic matter. The remarkable medicinal and nutritional values of the mushrooms have increased their consumption. Agaricus bisporus belongs to the Agaricaceae family, and it is a top-ranked cultivated mushroom that is well known for its edibility. A. bisporus is rich in nutrients such as carbohydrates, amino acids, fats, and minerals and has potential anticancer, antioxidant, anti-obesity, and anti-inflammation properties. The bioactive compounds extracted from this mushroom can be used for the treatment of several common human diseases including cancer, bacterial and fungal infections, diabetes, heart disorder, and skin problems. A. bisporus has opened new horizons for the world to explore mushrooms as far as their culinary and medicinal values are concerned. In recent years, tyrosinase and ergothioneine have been extracted from this mushroom, which has made this mushroom worth considering more for nutritional and medicinal purposes. To emphasize various aspects of A. bisporus, a comprehensive review highlighting the nutritional, medicinal, and cosmetic values and finding out the research gaps is presented. In this way, it would be possible to improve the quality and quantity of bioactive compounds in A. bisporus, ultimately contributing to the discovery of new drugs and the responsible mechanisms. In the present review, we summarize the latest advancements regarding the nutritional, pharmaceutical, and cosmetic properties of A. bisporus. Moreover, research gaps with future research directions are also discussed.
Collapse
|
17
|
da Silva Campelo M, Neto JFC, Lima ABN, das Chagas Neto FC, da Costa Gonzaga ML, de Aguiar Soares S, Leal LKAM, Ribeiro MENP, Ricardo NMPS. Polysaccharides and extracts from Agaricus brasiliensis Murill - A comprehensive review. Int J Biol Macromol 2021; 183:1697-1714. [PMID: 34022313 DOI: 10.1016/j.ijbiomac.2021.05.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/28/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022]
Abstract
Edible mushrooms have been increasingly introduced into the human diet, which has driven research into their functional properties. Thus, Agaricus brasiliensis Murill or Agaricus blazei Murill (ABM) is a species native to the Brazilian biome, whose fruiting body has been used not only for dietary purposes, but also in the development of functional foods or as source of molecules of pharmacological interest. The bioactivity of ABM has been related to the presence of polysaccharides, although the contribution of other metabolites cannot be discharged. This work describes the polysaccharides isolation methodology and preparation of the extracts of ABM and their biological activities. Furthermore, it presents a general outline of its characterizations regarding composition, chemical structure and properties in solution. The ABM and its chemical constituents exhibit several biological activities that support their potential use for prevention or treatment of diseases with inflammatory background, such as cancer, diabetes and atherosclerosis. The mechanism of action of the extracts and polysaccharides from ABM is mainly related to a modulation of immune system response or reduction of inflammatory response. This review shows that the ABM has great potential in the pharmaceutical, biotechnological and food sectors that deserves additional research using standardized products.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - Ana Beatriz Nogueira Lima
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - Francisco Cirineu das Chagas Neto
- Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60430-160, Brasil
| | - Maria Leônia da Costa Gonzaga
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - Sandra de Aguiar Soares
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - Luzia Kalyne Almeida Moreira Leal
- Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60430-160, Brasil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil.
| | - Nágila Maria Pontes Silva Ricardo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil.
| |
Collapse
|
18
|
Bertéli MBD, Barros L, Reis FS, Ferreira ICFR, Glamočlija J, Soković M, Valle JSD, Linde GA, Ruiz SP, Colauto NB. Antimicrobial activity, chemical composition and cytotoxicity of Lentinus crinitus basidiocarp. Food Funct 2021; 12:6780-6792. [PMID: 34109332 DOI: 10.1039/d1fo00656h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lentinus crinitus (L.) Fr. (Basidiomycota: Polyporales) is a wild mushroom with several biotechnological applications; however, there are few studies on its chemical composition and antimicrobial activity. Therefore, this study aims to evaluate the chemical composition, cytotoxicity, and antimicrobial activity of L. crinitus basidiocarp. For that, its nutritional value (AOAC procedures) and its composition in some hydrophilic and lipophilic compounds (chromatographic techniques) were assessed. Moreover, the potential hepatotoxic effects were evaluated using a primary cell culture obtained from porcine liver, and its growth inhibitory capacity was also evaluated against four human tumour cell lines (spectrophotometric assays). The antimicrobial activity was evaluated by microdilution against eight bacteria and fungi. The basidiocarp has a high content of carbohydrates and, therefore, a relatively high energetic value. It is also rich in soluble sugars, β-tocopherol, phenolic acids, mainly p-hydroxybenzoic acid, and organic acids, mainly malic acid. L. crinitus did not show cytotoxicity in non-tumour cells, but it did not inhibit the growth of human tumour cell lines either. The basidiocarp has a wide antimicrobial activity, inhibiting the growth of different species of bacteria and fungi. It showed minimum bactericidal and fungicidal concentration values similar to or lower than those verified by commercial antibiotics or food additives used as preservatives. The antimicrobial activity was more evident against Listeria monocytogenes, Salmonella enterica, and Penicillium ochrochloron, followed by Aspergillus ochraceus and Trichoderma viride, when compared to the controls. The results obtained in this study showed that L. crinitus basidiocarp has great potential to be used by the industry without toxicity risks.
Collapse
|
19
|
Corrêa RCG, Heleno SA, Alves MJ, Ferreira ICFR. Bacterial Resistance: Antibiotics of Last Generation used in Clinical Practice and the Arise of Natural Products as New Therapeutic Alternatives. Curr Pharm Des 2020; 26:815-837. [PMID: 32091328 DOI: 10.2174/1381612826666200224105153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/29/2020] [Indexed: 01/13/2023]
Abstract
Bacterial resistance to therapeutical drugs has been a serious issue over the last decades. In fact, the quick development of resistance mechanisms by the microorganisms has been fatal for millions of people around the world, turning into a public health issue. The major cause of the resistance mechanisms is the overuse of antimicrobials. European countries try to implement mechanisms to overcome antimicrobial resistance in the community through the rational use of antimicrobials. The scientific community has been exhaustively dedicated to the discovering of new, safer and efficient drugs, being the exploitation of natural resources, mainly plants and fungi, considered as a hot topic in the field of antimicrobial agents. Innumerous reports have already shown the promising capacity of natural products or molecules extracted from these natural resources, to act as bacteriostatic and bactericidal agents. More importantly, these natural agents present significantly lower harmful effects. Bearing that in mind, this review aims at giving a contribution to the knowledge about the synthetic antibiotics of the last generation. Moreover, it is intended to provide information about the last advances regarding the discovery of new antimicrobial agents. Thus, a compilation of the chemical characteristics, efficiency, harmful outcomes and resistance mechanisms developed by the microorganisms can be consulted in the following sections together with a critical discussion, in line with the recent approaches. Furthermore, modern strategies for the prospection of novel anti-infective compounds for tackling resistant bacteria have been considered as also a current synopsis of plants and mushrooms with relevant antimicrobial potentials.
Collapse
Affiliation(s)
- Rúbia C G Corrêa
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, Braganca, Portugal.,Program of Master in Science, Technology and Food Safety, Cesumar Institute of Science Technology and Innovation (ICETI), University Center of Maringa (UNICESUMAR), Maringa, Parana, Brazil
| | - Sandrina A Heleno
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, Braganca, Portugal
| | - Maria J Alves
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, Braganca, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, Braganca, Portugal
| |
Collapse
|
20
|
Kostić M, Ivanov M, Fernandes Â, Pinela J, Calhelha RC, Glamočlija J, Barros L, Ferreira ICFR, Soković M, Ćirić A. Antioxidant Extracts of Three Russula Genus Species Express Diverse Biological Activity. Molecules 2020; 25:E4336. [PMID: 32971797 PMCID: PMC7570958 DOI: 10.3390/molecules25184336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
This study explored the biological properties of three wild growing Russula species (R. integra, R. rosea, R. nigricans) from Serbia. Compositional features and antioxidant, antibacterial, antibiofilm, and cytotoxic activities were analyzed. The studied mushroom species were identified as being rich sources of carbohydrates and of low caloric value. Mannitol was the most abundant free sugar and quinic and malic acids the major organic acids detected. The four tocopherol isoforms were found, and polyunsaturated fatty acids were the predominant fat constituents. Regarding phenolic compounds, P-hydroxybenzoic and cinnamic acids were identified in the prepared methanolic and ethanolic extracts, which displayed antioxidant activity through the inhibition of thiobarbituric acid reactive substances (TBARS) formation and oxidative hemolysis; the highest activity was attributed to the R. nigricans ethanolic extract. This is the first report on the antibacterial and antibiofilm potential of the studied species, with the most promising activity observed towards Streptococcus spp. (0.20-0.78 mg/mL as the minimal inhibitory concentration, MIC). The most promising cytotoxic effect was caused by the R. integra methanolic extract on non-small cell lung cancer cells (NCI-H460). Therefore, due to the observed in vitro bioactive properties, the studied mushrooms arise as a source of functional ingredients with potential to be used in novel nutraceutical and drug formulations, which can be used in the treatment of various diseases and health conditions.
Collapse
Affiliation(s)
- Marina Kostić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (Â.F.); (J.P.); (R.C.C.); (L.B.); (I.C.F.R.F.)
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.K.); (M.I.); (J.G.)
| |
Collapse
|
21
|
Ito M, Ito T, Aoki H, Nishioka K, Shiokawa T, Tada H, Takeuchi Y, Takeyasu N, Yamamoto T, Takashiba S. Isolation and identification of the antimicrobial substance included in tempeh using Rhizopus stolonifer NBRC 30816 for fermentation. Int J Food Microbiol 2020; 325:108645. [PMID: 32353648 DOI: 10.1016/j.ijfoodmicro.2020.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
In this study, we focus on the antimicrobial properties of tempeh, a soybean fermented food, against oral bacteria. Tempeh showed antimicrobial activity against dental caries pathogenic bacterium Streptococcus mutans at a final concentration of 1 mg/mL. An antimicrobial substance contained in tempeh was present in the 100 kDa or greater fraction generated by ultrafiltration, but it was found not to be proteinaceous by native-PAGE, SDS-PAGE and protein degradation tests. Next, when the fraction was purified with an ODS column, the 80% and 100% methanol eluates showed antimicrobial activity against S. mutans. The 100% methanol eluate was further subjected to a 2nd column purification, and isolation of the target was confirmed by HPLC. When the isolated material was analyzed by ESI-MS, the m/z was 279.234. Further analysis by Raman spectroscopy revealed a peak similar to linoleic acid. This substance also possessed antimicrobial properties equivalent to linoleic acid.
Collapse
Affiliation(s)
- Masahiro Ito
- Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8525, Japan.
| | - Takashi Ito
- Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8525, Japan.
| | - Hideyuki Aoki
- Ikeda Food Research Co., Ltd., 95-7 Minooki-cho, Fukuyama, Hiroshima 721-0956, Japan.
| | - Koshi Nishioka
- Ikeda Food Research Co., Ltd., 95-7 Minooki-cho, Fukuyama, Hiroshima 721-0956, Japan.
| | - Tsugumi Shiokawa
- Division of Instrumental Analysis, Department of Instrumental Analysis and Cryogenics, Advanced Science Research Center, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, Okayama 700-8530, Japan.
| | - Hiroko Tada
- Division of Instrumental Analysis, Department of Instrumental Analysis and Cryogenics, Advanced Science Research Center, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, Okayama 700-8530, Japan.
| | - Yuki Takeuchi
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, Okayama 700-8530, Japan.
| | - Nobuyuki Takeyasu
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, Okayama 700-8530, Japan.
| | - Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8525, Japan.
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8525, Japan.
| |
Collapse
|
22
|
Blumfield M, Abbott K, Duve E, Cassettari T, Marshall S, Fayet-Moore F. Examining the health effects and bioactive components in Agaricus bisporus mushrooms: a scoping review. J Nutr Biochem 2020; 84:108453. [PMID: 32653808 DOI: 10.1016/j.jnutbio.2020.108453] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
There is evidence from both in vitro and animal models that the consumption of edible mushrooms has beneficial effects on health. It is unclear whether similar effects exist in humans and which bioactive compounds are present. This review synthesises the evidence on the world's most commonly consumed mushroom, Agaricus bisporus to (i) examine its effect on human health outcomes; and (ii) determine the nutrient density of its bioactive compounds, which may explain their health effects. A systematic literature search was conducted on the consumption of A. bisporus, without date and study design limits. Bioactive compounds included ergosterol, ergothioneine, flavonoids, glucans and chitin. Two authors independently identified studies for inclusion and assessed methodological quality. Beneficial effects of A. bisporus on metabolic syndrome, immune function, gastrointestinal health and cancer, with the strongest evidence for the improvement in Vitamin D status in humans, were found. Ultraviolet B (UVB) exposed mushrooms may increase and maintain serum 25(OH)D levels to a similar degree as vitamin D supplements. A. bisporus contain beta-glucans, ergosterol, ergothioneine, vitamin D and an antioxidant compound usually reported as flavonoids; with varying concentrations depending on the type of mushroom, cooking method and duration, and UVB exposure. Further research is required to fully elucidate the bioactive compounds in mushrooms using vigorous analytical methods and expand the immunological markers being tested. To enable findings to be adopted into clinical practice and public health initiatives, replication of existing studies in different population groups is required to confirm the impact of A. bisporus on human health.
Collapse
Affiliation(s)
- Michelle Blumfield
- BNutrDiet (Hons), PhD, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Kylie Abbott
- BNutrDiet (Hons), PhD, Nutrition Research Australia, Sydney, New South Wales, Australia; Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Emily Duve
- BPESS, MPH, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Tim Cassettari
- BSc(Hons), BAppSc, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Skye Marshall
- BNutrDiet (Hons), PhD, Nutrition Research Australia, Sydney, New South Wales, Australia; Bond University, Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Flavia Fayet-Moore
- BSc(Hons), MNutrDiet, PhD, Nutrition Research Australia, Sydney, New South Wales, Australia.
| |
Collapse
|
23
|
Merel D, Savoie JM, Mata G, Salmones D, Ortega C, Atanasova V, Chéreau S, Monribot-Villanueva JL, Guerrero-Analco JA. Methanolic Extracts from Cultivated Mushrooms Affect the Production of Fumonisins B and Fusaric Acid by Fusarium verticillioides. Toxins (Basel) 2020; 12:E366. [PMID: 32498307 PMCID: PMC7354567 DOI: 10.3390/toxins12060366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 01/21/2023] Open
Abstract
The maize pathogen Fusarium verticillioides and their mycotoxins cause damage to plants, animals, and human health. This work aimed to evaluate the effect of crude extracts (CEs) from Agaricus subrufescens, Lentinula edodes, and Pleurotus ostreatus fruiting bodies on in vitro production of biomass and mycotoxins by two strains of F. verticillioides. Stipes and pilei were separated before extraction for A. subrufescens and L. edodes. Comparative metabolomics and dereplication of phenolic compounds were used to analyze all CEs. Mushroom CEs did not significantly inhibit the production of mycelial biomass at concentrations of 2 mg mL⁻1. CEs from A. subrufescens (stipes and pilei) and L. edodes pilei inhibited the production of fumonisins B1 + B2 + B3 by 54% to 80%, whereas CE from P. ostreatus had no effect. In contrast, CE from L. edodes stipes dramatically increased the concentration of fumonisins in culture media. Fusaric acid concentration was decreased in cultures by all CEs except L. edodes stipes. Differences in phenolic composition of the extracts may explain the different effects of the CE treatments on the production of mycotoxins. The opposing activities of stipes and pilei from L. edodes offer an opportunity to search for active compounds to control the mycotoxin production by F. verticillioides.
Collapse
Affiliation(s)
- Daniel Merel
- Red Manejo Biotecnológico de Recursos (RMBR), Instituto de Ecología (A.C), Xalapa 91073, Mexico; (D.M.); (D.S.); (C.O.)
- Red Estudios Moleculares Avanzados (REMAV), Instituto de Ecología (A.C), Xalapa 91073, Mexico;
| | - Jean-Michel Savoie
- INRAE, Mycology and Food Safety (MycSA), F-22882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Gerardo Mata
- Red Manejo Biotecnológico de Recursos (RMBR), Instituto de Ecología (A.C), Xalapa 91073, Mexico; (D.M.); (D.S.); (C.O.)
| | - Dulce Salmones
- Red Manejo Biotecnológico de Recursos (RMBR), Instituto de Ecología (A.C), Xalapa 91073, Mexico; (D.M.); (D.S.); (C.O.)
| | - Carlos Ortega
- Red Manejo Biotecnológico de Recursos (RMBR), Instituto de Ecología (A.C), Xalapa 91073, Mexico; (D.M.); (D.S.); (C.O.)
| | - Vessela Atanasova
- INRAE, Mycology and Food Safety (MycSA), F-22882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Sylvain Chéreau
- INRAE, Mycology and Food Safety (MycSA), F-22882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | | | - José A. Guerrero-Analco
- Red Estudios Moleculares Avanzados (REMAV), Instituto de Ecología (A.C), Xalapa 91073, Mexico;
| |
Collapse
|
24
|
Huang Y, Liang J. Optimization and characteristics of extruded puffed snacks with
Agaricus bisporus
powder and rice flour. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yulu Huang
- Anhui Engineering Laboratory for Agro‐products ProcessingAnhui Agricultural University Hefei China
| | - Jin Liang
- Anhui Engineering Laboratory for Agro‐products ProcessingAnhui Agricultural University Hefei China
| |
Collapse
|
25
|
Sande D, Oliveira GPD, Moura MAFE, Martins BDA, Lima MTNS, Takahashi JA. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res Int 2019; 125:108524. [DOI: 10.1016/j.foodres.2019.108524] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
|
26
|
Rózsa S, Măniuțiu DN, Poșta G, Gocan TM, Andreica I, Bogdan I, Rózsa M, Laza V. Influence of the Culture Substrate on the Agaricus blazei Murrill Mushrooms Vitamins Content. PLANTS (BASEL, SWITZERLAND) 2019; 8:E316. [PMID: 31480352 PMCID: PMC6783847 DOI: 10.3390/plants8090316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 01/26/2023]
Abstract
The vitamin content of cultivated mushrooms differs from one species to another, depending on their stage of development, the nutrient substrate used to produce them, and the microclimate in the culture space. Agaricus blazei Murrill is one of the most popular cultivated medicinal mushrooms, with scientifically proven therapeutic properties. Considering that the Agaricus spp. mushrooms culture substrate can be produced using various raw materials, in this paper we have studied the influence of the culture substrate using four types of substrate with different protein additions on the vitamin content of mushrooms. The food qualities of the Agaricus blazei Murrill mushrooms, evaluated by the chemical composition, generally revealed the product obtained on the classic compost, improved with the addition of proteinaceous of corn flour. Mushrooms harvested on this substrate have the highest levels of B1 (1151 μg 100g-1 dm), B9 (671 μg 100g-1 dm), B12 (906 μg 100g-1 dm), PP (55.33 μg 100g-1 dm), and C vitamins (21.67 μg 100g-1 dm). The content of ergosterol, as a precursor of D2 vitamin, has higher values in the product obtained on the classic compost, with the addition of wheat bran (90.17 mg 100g-1 dm) and the addition of corn flour (94 mg 100g-1 dm).
Collapse
Affiliation(s)
- Sándor Rózsa
- Horticulture and Landscape, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Romania.
| | - Dănuț-Nicolae Măniuțiu
- Horticulture and Landscape, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Romania.
| | - Gheorghe Poșta
- Horticulture, Faculty of Horticulture, Banat University of Agricultural Sciences and Veterinary Medicine "King Mihai I of Romania", Timisoara 300645, Romania.
| | - Tincuța-Marta Gocan
- Horticulture and Landscape, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Ileana Andreica
- Economics, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Ileana Bogdan
- Technical sciences and soil sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Melinda Rózsa
- Horticulture and Landscape, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Vasile Laza
- Horticulture and Landscape, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Romania
| |
Collapse
|
27
|
Taofiq O, Rodrigues F, Barros L, Peralta RM, Barreiro MF, Ferreira ICFR, Oliveira MBPP. Agaricus blazei Murrill from Brazil: an ingredient for nutraceutical and cosmeceutical applications. Food Funct 2019; 10:565-572. [PMID: 30702105 DOI: 10.1039/c8fo02461h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Operations for sorting mushrooms at the industrial level usually generate large amounts of bio-residues not conforming to strict morphological criteria for commercial purposes, even though their biological content is not compromised. In this context, the present work aimed at evaluating the potential for reutilizing industrially discarded Agaricus blazei Murill (ABM). Thus, the content of essential nutrients and the chemical composition were determined, and MTT and LDH assays were used to evaluate the viability and cell death of Caco-2 and HT29 cell lines of an ethanolic extract prepared from ABM (preliminary safety tests for nutraceutical applications). The extract was incorporated into a semi-solid base cosmetic cream and cell viability effects of the extract, and of the final cream formulation, on a keratinocyte cell line (HaCaT) were studied (preliminary safety tests for cosmeceutical applications). Essential nutrients, such as proteins and carbohydrates, and a low fat content were determined for ABM. Twenty-two fatty acids were detected, with polyunsaturated fatty acids (PUFA) (∼53%) being the most abundant fraction. The cell viabilities of Caco-2 and HT29 cells were maintained up to 100 μg mL-1. After incorporation into the base cream, a formulation with a pale yellow colour and favourable pH was obtained. The cell viability of HaCaT cells in the presence of the extract and the final cream formulation was maintained in a concentration dependent manner, which indicates the safety of this extract for cosmeceutical applications. The results suggest that ABM residues can be used as an inexpensive and sustainable source of nutraceutical and cosmeceutical ingredients.
Collapse
Affiliation(s)
- Oludemi Taofiq
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mzoughi Z, Chahdoura H, Chakroun Y, Cámara M, Fernández-Ruiz V, Morales P, Mosbah H, Flamini G, Snoussi M, Majdoub H. Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Res Int 2019; 119:612-621. [DOI: 10.1016/j.foodres.2018.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
|
29
|
Ramos M, Burgos N, Barnard A, Evans G, Preece J, Graz M, Ruthes AC, Jiménez-Quero A, Martínez-Abad A, Vilaplana F, Ngoc LP, Brouwer A, van der Burg B, Del Carmen Garrigós M, Jiménez A. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem 2019; 292:176-187. [PMID: 31054663 DOI: 10.1016/j.foodchem.2019.04.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/28/2023]
Abstract
Edible mushrooms constitute an appreciated nutritional source for humans due to their low caloric intake and their high content in carbohydrates, proteins, dietary fibre, phenolic compounds, polyunsaturated fatty acids, vitamins and minerals. It has been also demonstrated that mushrooms have health-promoting benefits. Cultivation of mushrooms, especially of the most common species Agaricus bisporus, represents an increasingly important food industry in Europe, but with a direct consequence in the increasing amount of by-products from their industrial production. This review focuses on collecting and critically investigating the current data on the bioactive properties of Agaricus bisporus as well as the recent research for the extraction of valuable functional molecules from this species and its by-products obtained after industrial processing. The state of the art regarding the antimicrobial, antioxidant, anti-allergenic and dietary compounds will be discussed for novel applications such as nutraceuticals, additives for food or cleaning products.
Collapse
Affiliation(s)
- Marina Ramos
- University of Alicante, Department of Analytical Chemistry, Nutrition & Food Sciences, ES-03690, San Vicente del Raspeig, Alicante, Spain
| | - Nuria Burgos
- University of Alicante, Department of Analytical Chemistry, Nutrition & Food Sciences, ES-03690, San Vicente del Raspeig, Alicante, Spain
| | - Almero Barnard
- Neem Biotech Ltd. Units G&H, Abertillery NP13 1SX, United Kingdom
| | - Gareth Evans
- Neem Biotech Ltd. Units G&H, Abertillery NP13 1SX, United Kingdom
| | - James Preece
- Neem Biotech Ltd. Units G&H, Abertillery NP13 1SX, United Kingdom
| | - Michael Graz
- Neem Biotech Ltd. Units G&H, Abertillery NP13 1SX, United Kingdom
| | - Andrea Caroline Ruthes
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Amparo Jiménez-Quero
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Antonio Martínez-Abad
- University of Alicante, Department of Analytical Chemistry, Nutrition & Food Sciences, ES-03690, San Vicente del Raspeig, Alicante, Spain; Neem Biotech Ltd. Units G&H, Abertillery NP13 1SX, United Kingdom
| | - Francisco Vilaplana
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Long Pham Ngoc
- BioDetection Systems b.v, Science Park, 406, 1098 XH Amsterdam, The Netherlands
| | - Abraham Brouwer
- BioDetection Systems b.v, Science Park, 406, 1098 XH Amsterdam, The Netherlands
| | - Bart van der Burg
- BioDetection Systems b.v, Science Park, 406, 1098 XH Amsterdam, The Netherlands
| | - María Del Carmen Garrigós
- University of Alicante, Department of Analytical Chemistry, Nutrition & Food Sciences, ES-03690, San Vicente del Raspeig, Alicante, Spain
| | - Alfonso Jiménez
- University of Alicante, Department of Analytical Chemistry, Nutrition & Food Sciences, ES-03690, San Vicente del Raspeig, Alicante, Spain.
| |
Collapse
|
30
|
Nutritional value and health-promoting properties of Agaricus bisporus (Lange) Imbach. HERBA POLONICA 2019. [DOI: 10.2478/hepo-2018-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Summary
The white button mushroom Agaricus bisporus (Lange) Imbach is an edible mushroom of top economic significance. In recent years the consumption of fruiting bodies of this species has been increasing in Poland. The article characterises the chemical composition and health-promoting properties of white button mushrooms. The latest scientific research confirms that the fruiting bodies of white button mushroom have high nutritional value. They contain good quality proteins, necessary unsaturated fatty acids, fibre, some vitamins and numerous minerals. Apart from that, white button mushroom fruiting bodies contain a wide range of bioactive substances, which have a positive influence on health, such as polysaccharides, glyco-proteins, tocopherols, polyphenols and other antioxidants, e.g. ergothioneine. Apart from the antioxidant properties, the white button mushroom also has anti-inflammatory, antimicrobial, antifungal, anticancer, immunomodulatory, hepatoprotective and anti-atherosclerotic activities.
Collapse
|
31
|
Determination of Antimicrobial Activity of Extracts of Indigenous Wild Mushrooms against Pathogenic Organisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6212673. [PMID: 30906415 PMCID: PMC6398037 DOI: 10.1155/2019/6212673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 11/18/2022]
Abstract
Objective This study has investigated the antimicrobial activity of extracts of indigenous wild mushrooms against selected organisms. Methods Thirty-five (35) indigenous wild mushrooms were collected from Arabuko-Sokoke and Kakamega National Reserve Forests, Kenya. All mushrooms were identified and their contents were extracted and screened for their antimicrobial activities against Escherichia coli (clinical isolate), Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (clinical isolate), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), MRSA (ATCC 33591), Candida albicans (clinical isolate), and Candida parapsilosis (ATCC 90018) using tetrazolium microtiter plate bioassay method. Results Of the 35 tested mushroom extracts, extracts of three (3) mushrooms, namely, Trametes spp. (Arabuko-Sokoke forest), Trametes, and Microporus spp. (Kakamega forest), have shown promising antimicrobial activities against the tested organisms. The S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), and Methicillin-Resistant Staphylococcus aureus (MRSA) (ATCC 33591) were the most susceptible to chloroform extract of Trametes spp. collected from Arabuko-Sokoke forest. Of the tested organisms, S. aureus (ATCC 25923) was the most susceptible whereas E. coli was the most resistant organism to the hot water extract of Trametes spp. collected from Arabuko-Sokoke forest. Chloroform extract of Microporus spp. has shown the highest antibacterial activity against S. aureus (ATCC 25923), MRSA (ATCC 33591), and K. pneumoniae (ATCC 13883) but limited activity against E.coli. All extracts of the three wild mushrooms have shown the most antibacterial activities against S. aureus (ATCC 25923). Conclusion The present study has shown that the extracts of the three wild mushrooms have shown promising antimicrobial activities against the tested organisms.
Collapse
|
32
|
Differences in antibacterial effectiveness between the whole extract and high-performance liquid chromatography-separated constituents from the cultivated mushroom Agaricus bisporus. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-017-9706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Saiki P, Kawano Y, Van Griensven LJLD, Miyazaki K. The anti-inflammatory effect of Agaricus brasiliensis is partly due to its linoleic acid content. Food Funct 2018; 8:4150-4158. [PMID: 29022634 DOI: 10.1039/c7fo01172e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For hundreds of years mushrooms have been used as functional food for health. The basidiomycete Agaricus brasiliensis (A. brasiliensis) is famous for the medicinal properties of its beta glucans and of its antioxidants. Most researchers have studied polysaccharides from A. brasiliensis for their anti-inflammatory activity. However, active compounds from this mushroom have not yet been studied for the inactivation of NO inhibitory activity. The present study aimed to find the active compounds from A. brasiliensis for their NO inhibitory activity related inflammatory activity. This study found that linoleic acid isolated from A. brasiliensis inhibited NO production and suppressed the expression of pro-inflammatory cytokines including TNF-α, IL-6, IL-1β, and NOS2 in RAW 264.7 cells. Linoleic acid also suppressed the expression of NF-κB subunit p50 and restored PPARα. This leads to the conclusion that linoleic acid from A. brasiliensis could reduce NO production and inflammatory activity in RAW 264.7 cells by the inhibition of p50 and via the activation of PPARα. This study suggests that linoleic acid present in A. brasiliensis could play a role in the prevention of inflammatory diseases for which this edible mushroom is already known.
Collapse
Affiliation(s)
- Papawee Saiki
- Biomedical Research Institute, National institute of Advance Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
34
|
Corrêa RCG, Barros L, Fernandes Â, Sokovic M, Bracht A, Peralta RM, Ferreira ICFR. A natural food ingredient based on ergosterol: optimization of the extraction fromAgaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food Funct 2018; 9:1465-1474. [DOI: 10.1039/c7fo02007d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A. blazeibioresidues can be used to obtain promising high value-added food additives, following a circular bioeconomy concept.
Collapse
Affiliation(s)
- Rúbia C. G. Corrêa
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança (IPB)
- Bragança
- Portugal
| | - Lillian Barros
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança (IPB)
- Bragança
- Portugal
| | - Ângela Fernandes
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança (IPB)
- Bragança
- Portugal
| | - Marina Sokovic
- University of Belgrade
- Department of Plant Physiology
- Institute for Biological Research “Siniša Stanković”
- 11000 Belgrade
- Serbia
| | - Adelar Bracht
- Department of Biochemistry
- State University of Maringá
- Paraná
- Brazil
- Graduate Program in Food Science
| | - Rosane M. Peralta
- Department of Biochemistry
- State University of Maringá
- Paraná
- Brazil
- Graduate Program in Food Science
| | | |
Collapse
|
35
|
Glamočlija J, Kostić M, Soković M. Antimicrobial and Hepatoprotective Activities of Edible Mushrooms. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
A galactomannoglucan derived from Agaricus brasiliensis: Purification, characterization and macrophage activation via MAPK and IκB/NFκB pathways. Food Chem 2018; 239:603-611. [DOI: 10.1016/j.foodchem.2017.06.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022]
|
37
|
Reis FS, Martins A, Vasconcelos MH, Morales P, Ferreira IC. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
da Silva de Souza AC, Correa VG, Goncalves GDA, Soares AA, Bracht A, Peralta RM. Agaricus blazei Bioactive Compounds and their Effects on Human Health: Benefits and Controversies. Curr Pharm Des 2017; 23:2807-2834. [DOI: 10.2174/1381612823666170119093719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Maringa, Brazil
| | - Rosane Marina Peralta
- Post- graduated Program of Biological Sciences, State University of Maringá; Post-graduated Program of Food Science, State University of Maringá; Department of Biochemistry, State University of Maringa, Maringa, Brazil
| |
Collapse
|
39
|
Xiang Q, Luo L, Liang Y, Chen Q, Zhang X, Gu Y. The Diversity, Growth Promoting Abilities and Anti-microbial Activities of Bacteria Isolated from the Fruiting Body of Agaricus bisporus. Pol J Microbiol 2017; 66:201-207. [DOI: 10.5604/01.3001.0010.7837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agaricus bisporus plays an important role in ecological processes and is one of the most widely cultivated mushrooms worldwide. Mushroom growth-promoting bacteria have been isolated from casing soil and compost, but microorganisms in the fruiting body have received only a little attention. To get an overview of phylogenetic diversity of microorganisms in the fruiting body of A. bisporus, as well as to screen antimicrobial and mushroom growth-promoting strains, and eventually intensify mushroom production, we isolated and characterized microorganisms from the fruiting body of A. bisporus. In total, 55 bacterial strains were isolated, among which nine isolates represented Actinomycetes. All the isolates were analyzed by 16S rRNA gene RFLP and sixteen representative strains by 16S rRNA gene sequencing. According to the phylogenetic analysis, eleven isolates represented the Gram positive Bacillus, Lysinibacillus, Paenibacillus, Pandorea and Streptomyces genera, and five isolates belonged to the Gram negative Alcaligenes and Pseudomonas genera. The bacteria isolated from the fruiting body of A. bisporus had broad-spectrum antimicrobial activities and potential mushroom growth-promoting abilities.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Lihua Luo
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Yuhuan Liang
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan, P.R. China
| |
Collapse
|
40
|
Lima CU, Gris EF, Karnikowski MG. Antimicrobial properties of the mushroom Agaricus blazei – integrative review. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Taofiq O, Heleno SA, Calhelha RC, Alves MJ, Barros L, Barreiro MF, González-Paramás AM, Ferreira ICFR. Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules 2016; 21:E1372. [PMID: 27754433 PMCID: PMC6274557 DOI: 10.3390/molecules21101372] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/01/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022] Open
Abstract
The cosmetic industry is in a constant search for natural compounds or extracts with relevant bioactive properties, which became valuable ingredients to design cosmeceutical formulations. Mushrooms have been markedly studied in terms of nutritional value and medicinal properties. However, there is still slow progress in the biotechnological application of mushroom extracts in cosmetic formulations, either as antioxidants, anti-aging, antimicrobial, and anti-inflammatory agents or as hyperpigmentation correctors. In the present work, the cosmeceutical potential of ethanolic extracts prepared from Agaricus bisporus, Pleurotus ostreatus, and Lentinula edodes was analyzed in terms of anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial activities. The extracts were characterized in terms of phenolic acids and ergosterol composition, and further incorporated in a base cosmetic cream to achieve the same bioactive purposes. From the results obtained, the final cosmeceutical formulations presented 85%-100% of the phenolic acids and ergosterol levels found in the mushroom extracts, suggesting that there was no significant loss of bioactive compounds. The final cosmeceutical formulation also displayed all the ascribed bioactivities and as such, mushrooms can further be exploited as natural cosmeceutical ingredients.
Collapse
Affiliation(s)
- Oludemi Taofiq
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5300-253 Bragança, Portugal.
- GIP-USAL, Unidad de Nutrición y Bromatología, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1134, 5301-857 Bragança, Portugal.
| | - Sandrina A Heleno
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1134, 5301-857 Bragança, Portugal.
| | - Ricardo C Calhelha
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5300-253 Bragança, Portugal.
| | - Maria José Alves
- School of Health, Polytechnic Institute of Bragança, Av. D. Afonso V, 5300-121 Bragança, Portugal.
| | - Lillian Barros
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5300-253 Bragança, Portugal.
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1134, 5301-857 Bragança, Portugal.
| | - Ana M González-Paramás
- GIP-USAL, Unidad de Nutrición y Bromatología, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5300-253 Bragança, Portugal.
| |
Collapse
|
42
|
Matijašević D, Pantić M, Rašković B, Pavlović V, Duvnjak D, Sknepnek A, Nikšić M. The Antibacterial Activity of Coriolus versicolor Methanol Extract and Its Effect on Ultrastructural Changes of Staphylococcus aureus and Salmonella Enteritidis. Front Microbiol 2016; 7:1226. [PMID: 27540376 PMCID: PMC4972825 DOI: 10.3389/fmicb.2016.01226] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/22/2016] [Indexed: 11/13/2022] Open
Abstract
The antibacterial activity of methanol extract obtained from fruiting body of industrially grown basidiomycete Coriolus versicolor was examined. The Minimum Inhibitory Concentration (MIC) values against various bacteria ranged from 0.625 to 20 mg mL(-1). C. versicolor expressed bactericidal activity against both Gram-positive and Gram-negative bacteria. The growth curves of Staphylococcus aureus and Salmonella enterica serovar Enteritidis, measured at 630 nm, and confirmed with macrodilution method showed that the obtained extract could inhibit the growth of tested bacteria. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the loss of 260-nm-absorbing material were used to examine the ultrastructural changes in bacteria induced by the extract. When S. aureus was exposed to the MIC of C. versicolor, elongated and malformed cells were observed by SEM, while S. Enteritidis treated cells appeared shorter and aggregated with ruptured cell walls. TEM revealed the formation of non-membrane-enclosed bodies and depleted inner content of S. aureus. Larger and irregular periplasmic space and deformed and scattered components of the cell envelope were observed in treated S. Enteritidis. The loss of 260-nm-absorbing material indicated that the disruptive action of the extract on cytoplasmic membrane was more pronounced in S. aureus than in S. Enteritidis treated cells. The UV and FTIR spectrophotometric analyses revealed diverse composition of C. versicolor extract and high content of total phenolics. Altogether, mushroom extracts could be used to develop nutraceuticals or drugs effective against pathogenic microorganisms.
Collapse
Affiliation(s)
- Danka Matijašević
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of BelgradeBelgrade, Serbia
| | - Milena Pantić
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of BelgradeBelgrade, Serbia
| | - Božidar Rašković
- Institute of Animal Sciences, Faculty of Agriculture, University of BelgradeBelgrade, Serbia
| | - Vladimir Pavlović
- Institute of Agricultural Engineering, Faculty of Agriculture, University of BelgradeBelgrade, Serbia
| | - Dunja Duvnjak
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of BelgradeBelgrade, Serbia
| | - Aleksandra Sknepnek
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of BelgradeBelgrade, Serbia
| | - Miomir Nikšić
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of BelgradeBelgrade, Serbia
| |
Collapse
|
43
|
Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Niksic M, Vrvic MM, van Griensven L. Antioxidants of Edible Mushrooms. Molecules 2015; 20:19489-525. [PMID: 26516828 PMCID: PMC6331815 DOI: 10.3390/molecules201019489] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.
Collapse
Affiliation(s)
- Maja Kozarski
- Department for Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia.
| | - Anita Klaus
- Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia.
| | - Dragica Jakovljevic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade 11001, Serbia.
| | - Nina Todorovic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade 11001, Serbia.
| | - Jovana Vunduk
- Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia.
| | - Predrag Petrović
- Institute of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11060, Serbia.
| | - Miomir Niksic
- Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia.
| | - Miroslav M Vrvic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade 11001, Serbia.
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia.
| | - Leo van Griensven
- Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6700 AA, The Netherlands.
| |
Collapse
|
44
|
Heleno SA, Ferreira RC, Antonio AL, Queiroz MJR, Barros L, Ferreira IC. Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2015.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Syrchin S, Grodzinskaya A. Evaluation of antioxidant activity of some wild macromycetes. UKRAINIAN BOTANICAL JOURNAL 2015. [DOI: 10.15407/ukrbotj72.03.257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Stojković DS, Reis FS, Ćirić A, Barros L, Glamočlija J, Ferreira ICFR, Soković M. Boletus aereus growing wild in Serbia: chemical profile, in vitro biological activities, inactivation and growth control of food-poisoning bacteria in meat. Journal of Food Science and Technology 2015. [DOI: 10.1007/s13197-015-1853-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Glamočlija J, Ćirić A, Nikolić M, Fernandes Â, Barros L, Calhelha RC, Ferreira ICFR, Soković M, van Griensven LJLD. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal "mushroom". JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:323-32. [PMID: 25576897 DOI: 10.1016/j.jep.2014.12.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/26/2014] [Accepted: 12/30/2014] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Russian traditional medicine, an extract from the mushroom Inonotus obliquus (Fr.) Pil´at is used as an anti-tumor medicine and diuretic. It has been reported that Inonotus obliquus has therapeutic effects, such as anti-inflammatory, immuno-modulatory and hepatoprotective effects. This study was designed to investigate the chemical composition and biological properties of aqueous and ethanolic extracts of Inonotus obliquus from Finland, Russia, and Thailand. Their antioxidative, antimicrobial, and antiquorum properties were tested as well as the cytotoxicity on various tumor cell lines. MATERIALS AND METHODS The tested extract was subjected to conventional chemical study to identified organic acids and phenolic compounds. Antioxidative activity was measured by several different assays. Antimicrobial potential of extracts was tested by microdilution method, and antiquorum sensing activity and antibiofilm formation of Inonotus obliquus extracts was tested on Pseudomonas aeruginosa. Cytotoxicity of the extracts was tested on tumor cells (MCF-7, NCI-H460, HeLa and HepG2) and non-tumor liver cells primary cultures. RESULTS Oxalic acid was found as the main organic acid, with the highest amount in the aqueous extract from Russia. Gallic, protocatechuic and p-hydroxybenzoic acids were detected in all samples. Inonotus obliquus extracts showed high antioxidant and antimicrobial activity. Extracts were tested at subMIC for anti-quorum sensing (AQS) activity in Pseudomonas aeruginosa and all extracts showed definite AQS activity. The assays were done using twitching and swarming of bacterial cultures, and the amount of produced pyocyanin as QS parameters. All the extracts demonstrated cytotoxic effect on four tumor cell lines and not on primary porcine liver cells PLP2. CONCLUSIONS As the Inonotus obliquus presence in Chaga conks is limited, further purification is necessary to draw quantitative conclusions. The presence of AQS activity in medicinal mushrooms suggests a broader anti-infectious disease protection than only immunomodulatory effects.
Collapse
Affiliation(s)
- Jasmina Glamočlija
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ana Ćirić
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Miloš Nikolić
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ângela Fernandes
- Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal
| | - Lillian Barros
- Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal
| | - Ricardo C Calhelha
- Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal
| | - Isabel C F R Ferreira
- Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal
| | - Marina Soković
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Leo J L D van Griensven
- Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6700 AA, Netherlands.
| |
Collapse
|
48
|
Klaus A, Kozarski M, Vunduk J, Todorovic N, Jakovljevic D, Zizak Z, Pavlovic V, Levic S, Niksic M, Van Griensven LJ. Biological potential of extracts of the wild edible Basidiomycete mushroom Grifola frondosa. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Subramaniam S, Rajendran N, Muralidharan SB, Subramaniam G, Raju R, Sivasubramanian A. Dual role of select plant based nutraceuticals as antimicrobial agents to mitigate food borne pathogens and as food preservatives. RSC Adv 2015. [DOI: 10.1039/c5ra15039f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual role of commercially important nutraceuticals from plants that potentiate the therapeutic effect of commercial antibiotics to combat food pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Ravikumar Raju
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur 613402
- India
- Department of Chemistry
| | | |
Collapse
|
50
|
Glamočlija J, Stojković D, Nikolić M, Ćirić A, Reis FS, Barros L, Ferreira ICFR, Soković M. A comparative study on edible Agaricus mushrooms as functional foods. Food Funct 2015; 6:1900-10. [DOI: 10.1039/c4fo01135j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Agaricus bisporus is a cultivated mushroom; A. bitorquis, A. campestris and A. macrosporus are edible mushrooms growing wild in nature.
Collapse
Affiliation(s)
- Jasmina Glamočlija
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Dejan Stojković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Miloš Nikolić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Ana Ćirić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Filipa S. Reis
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5301-855 Bragança
- Portugal
| | - Lillian Barros
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5301-855 Bragança
- Portugal
| | | | - Marina Soković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|