1
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Li Z, Tan G, Xie H, Lu S. The Application of Regenerated Silk Fibroin in Tissue Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3924. [PMID: 39203101 PMCID: PMC11355482 DOI: 10.3390/ma17163924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Silk fibroin (SF) extracted from silk is non-toxic and has excellent biocompatibility and biodegradability, making it an excellent biomedical material. SF-based soft materials, including porous scaffolds and hydrogels, play an important role in accurately delivering drugs to wounds, creating microenvironments for the adhesion and proliferation of support cells, and in tissue remodeling, repair, and wound healing. This article focuses on the study of SF protein-based soft materials, summarizing their preparation methods and basic applications, as well as their regenerative effects, such as drug delivery carriers in various aspects of tissue engineering such as bone, blood vessels, nerves, and skin in recent years, as well as their promoting effects on wound healing and repair processes. The authors expect SF soft materials to play an important role in the field of tissue repair.
Collapse
Affiliation(s)
| | | | | | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.L.); (G.T.); (H.X.)
| |
Collapse
|
3
|
Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol 2024; 12:1381838. [PMID: 38737541 PMCID: PMC11084674 DOI: 10.3389/fbioe.2024.1381838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.
Collapse
Affiliation(s)
- Li Ma
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wenyuan Dong
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Enping Lai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| |
Collapse
|
4
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Zhao Z, Chua HM, Lai HY, Ng KW. A facile method to fabricate versatile keratin cryogels for tissue engineering applications. Biomed Mater 2024; 19:025048. [PMID: 38364277 DOI: 10.1088/1748-605x/ad2a3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Human hair keratin (HHK) has been extensively explored as a biomaterial for soft tissue regeneration due to their excellent bioactivity and biocompatibility. The possibility to fabricate HHK into three-dimensional (3D) hydrogels with physical properties resembling soft tissues has been well demonstrated. However, conventional keratin hydrogels often exhibit a dense architecture that could hinder cell filtration. In the present study, HHK-based cryogels were fabricated using a freeze-thaw (FT) method, where oxidized dopamine (ODA) was employed to covalently crosslink thiol/amine rich-keratin molecules at sub-zero temperatures. The obtained HHK-ODA cryogels have micron-sized pores ranging between 100 and 200 μm and mechanical properties that can be tuned by varying the crosslinking density between ODA and HHK. Through optimization of the weight content of ODA and the number of FT cycles, the compressive strengths and stiffnesses of these cryogels achieved 15-fold increments from ∼1.5 kPa to ∼22 kPa and ∼300 Pa to ∼5000 Pa, respectively. The HHK-ODA cryogels competently supported human dermal fibroblast spreading and proliferation. Overall, this study exhibited a facile method to fabricate mechanically superior keratin-based cryogels with cell compatible microarchitecture, circumventing the need for complicated chemical modifications and the use of cytotoxic crosslinkers.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Environment and Water Research Institute (NEWRI), Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Singapore, Singapore
| |
Collapse
|
6
|
Tissera ND, Wijesena RN, Ludowyke N, Priyadarshana G, Dahanayake D, de Silva RM, Nalin de Silva KM. Keratin protein nanofibers from merino wool yarn: a top-down approach for the disintegration of hierarchical wool architecture to extract α-keratin protein nanofibers. RSC Adv 2024; 14:6793-6804. [PMID: 38405069 PMCID: PMC10885782 DOI: 10.1039/d3ra07063h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
We report the extraction of keratin nanofibers from the medulla of a parent yarn after denaturing the cuticle and cortex microstructures of a merino wool yarn. Controlled alkaline hydrolysis, followed by high-speed blending in acetic acid, allowed for the extraction of keratin protein nanofibers with an average diameter of 25 nm and a length of less than 3 μm. SEM and AFM analyses showed the removal of cuticle cells from the yarn. FT-IR and DSC analyses confirmed the hydrolysis and denaturation of the sheet protein matrix of cuticle cells. XPS analysis provided strong evidence for the gradual removal of the epicuticle, cuticle cells, and cortex of the hierarchical wool structure with an increase in alkaline hydrolysis conditions. It was confirmed that the merino wool yarn subjected to hydrolysis under alkaline conditions exposed its internal fibrillar surface. In an acetic acid medium, these fibrillar surfaces obtained a surface charge, which further supported the defibrillation of the structure into its individual nanofibrils during high-speed blending. The extracted nanostructures constitute mainly α-helical proteins. The morphology of the nanofibers is composed of a uniform circular cross-section based on the images obtained using AFM, TEM, and SEM. The extracted nanofibers were successfully fabricated into transparent sheets that can be used in several applications.
Collapse
Affiliation(s)
- Nadeeka D Tissera
- Institute of Technology, University of Moratuwa Diyagma Homagama Sri Lanka +94 71 4044269
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo Colombo Sri Lanka
| | - Ruchira N Wijesena
- Institute of Technology, University of Moratuwa Diyagma Homagama Sri Lanka +94 71 4044269
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo Colombo Sri Lanka
| | - Natali Ludowyke
- Sri Lanka Institute of Nanotechnology Nanotechnology & Science Park, Mahenwatta, Pitipana Homagama Sri Lanka
| | - Gayan Priyadarshana
- Faculty of Technology, University of Sri Jayewardenepura Pitipana Homagama Sri Lanka
| | | | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo Colombo Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo Colombo Sri Lanka
| |
Collapse
|
7
|
Zhang M, Xing J, Zhong Y, Zhang T, Liu X, Xing D. Advanced function, design and application of skin substitutes for skin regeneration. Mater Today Bio 2024; 24:100918. [PMID: 38223459 PMCID: PMC10784320 DOI: 10.1016/j.mtbio.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
The development of skin substitutes aims to replace, mimic, or improve the functions of human skin, regenerate damaged skin tissue, and replace or enhance skin function. This includes artificial skin, scaffolds or devices designed for treatment, imitation, or improvement of skin function in wounds and injuries. Therefore, tremendous efforts have been made to develop functional skin substitutes. However, there is still few reports systematically discuss the relationship between the advanced function and design requirements. In this paper, we review the classification, functions, and design requirements of artificial skin or skin substitutes. Different manufacturing strategies for skin substitutes such as hydrogels, 3D/4D printing, electrospinning, microfluidics are summarized. This review also introduces currently available skin substitutes in clinical trials and on the market and the related regulatory requirements. Finally, the prospects and challenges of skin substitutes in the field of tissue engineering are discussed.
Collapse
Affiliation(s)
- Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Byram PK, Mukherjee M, Rahaman M, Bora H, Kaushal M, Dhara S, Chakravorty N. Bioactive self-assembling silk fibroin-sericin films for skin tissue engineering. Biomed Mater 2024; 19:025009. [PMID: 38194702 DOI: 10.1088/1748-605x/ad1c9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
The quest for an ideal wound dressing material has been a strong motivation for researchers to explore novel biomaterials for this purpose. Such explorations have led to the extensive use of silk fibroin (SF) as a suitable polymer for several applications over the years. Unfortunately, another major silk protein-sericin has not received its due attention yet in spite of having favorable biological properties. In this study, we report an approach of blending SF and silk sericin (SS) without the usage of chemical crosslinkers is made possible by the usage of formic acid which evaporates to induceβ-sheets formation to form cytocompatible films. Raman spectroscopy confirms the presence of SF/SS components in blend and formation ofβ-sheet in films.In situ, gelation kinetics studies were conducted to understand the change in gelation properties with addition of sericin into SF. Methyl thiazolyl tetrazolium and live/dead assays were performed to study cellular attachment, viability and proliferation on SF/SS films. The antibacterial properties of SF/SS films were tested using Gram-negative and Gram-positive bacteria. The re-structured SF/SS films were stable, transparent, show good mechanical properties, antibacterial activity and cytocompatibility, therefore can serve as suitable biomaterial candidates for skin regeneration applications.
Collapse
Affiliation(s)
- Prasanna Kumar Byram
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mandrita Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Hema Bora
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Manish Kaushal
- Department of Chemical Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
9
|
Akdag Z, Ulag S, Kalaskar DM, Duta L, Gunduz O. Advanced Applications of Silk-Based Hydrogels for Tissue Engineering: A Short Review. Biomimetics (Basel) 2023; 8:612. [PMID: 38132551 PMCID: PMC10742028 DOI: 10.3390/biomimetics8080612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Silk has been consistently popular throughout human history due to its enigmatic properties. Today, it continues to be widely utilized as a polymer, having first been introduced to the textile industry. Furthermore, the health sector has also integrated silk. The Bombyx mori silk fibroin (SF) holds the record for being the most sustainable, functional, biocompatible, and easily produced type among all available SF sources. SF is a biopolymer approved by the FDA due to its high biocompatibility. It is versatile and can be used in various fields, as it is non-toxic and has no allergenic effects. Additionally, it enhances cell adhesion, adaptation, and proliferation. The use of SF has increased due to the rapid advancement in tissue engineering. This review comprises an introduction to SF and an assessment of the relevant literature using various methods and techniques to enhance the tissue engineering of SF-based hydrogels. Consequently, the function of SF in skin tissue engineering, wound repair, bone tissue engineering, cartilage tissue engineering, and drug delivery systems is therefore analysed. The potential future applications of this functional biopolymer for biomedical engineering are also explored.
Collapse
Affiliation(s)
- Zekiye Akdag
- Center for Nanotechnology Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey;
| | - Songul Ulag
- Division of Surgery Interventional Science, University College London, Royal National Orthopaedic Hospital, UCL Institute of Orthopaedic Musculoskeletal Science, Stanmore, London HA7 4LP, UK; (S.U.); (D.M.K.)
| | - Deepak M. Kalaskar
- Division of Surgery Interventional Science, University College London, Royal National Orthopaedic Hospital, UCL Institute of Orthopaedic Musculoskeletal Science, Stanmore, London HA7 4LP, UK; (S.U.); (D.M.K.)
- Spinal Surgery Unit, Royal National Orthopaedic Hospital NHS Trust, Stanmore, London HA7 4LP, UK
| | - Liviu Duta
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey;
| |
Collapse
|
10
|
Bashiri Z, Moghaddaszadeh A, Falak R, Khadivi F, Afzali A, Abbasi M, Sharifi AM, Asgari HR, Ghanbari F, Koruji M. Generation of Haploid Spermatids on Silk Fibroin-Alginate-Laminin-Based Porous 3D Scaffolds. Macromol Biosci 2023; 23:e2200574. [PMID: 37116215 DOI: 10.1002/mabi.202200574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Indexed: 04/30/2023]
Abstract
In vitro production of sperm is a desirable idea for fertility preservation in azoospermic men and prepubertal boys suffering from cancer. In this study, a biocompatible porous scaffold based on a triad mixture of silk fibroin (SF), alginate (Alg), and laminin (LM) is developed to facilitate the differentiation of mouse spermatogonia stem cells (SSCs). Following SF extraction, the content is analyzed by SDS-PAGE and stable porous 3D scaffolds are successfully prepared by merely Alg, SF, and a combination of Alg-SF, or Alg-SF-LM through freeze-drying. Then, the biomimetic scaffolds are characterized regarding the structural and biological properties, water absorption capacity, biocompatibility, biodegradability, and mechanical behavior. Neonatal mice testicular cells are seeded on three-dimensional scaffolds and their differentiation efficiency is evaluated using real-time PCR, flow cytometry, immunohistochemistry. Blend matrices showed uniform porous microstructures with interconnected networks, which maintained long-term stability and mechanical properties better than homogenous structures. Molecular analysis of the cells after 21 days of culture showed that the expression of differentiation-related proteins in cells that are developed in composite scaffolds is significantly higher than in other groups. The application of a composite system can lead to the differentiation of SSCs, paving the way for a novel infertility treatment landscape in the future.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Omid Fertility & Infertility Clinic, Hamedan, 6516796198, Iran
| | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Reza Falak
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Azita Afzali
- Hajar hospital, Shahrekord University of Medical Sciences, Shahrekord, 8816854633, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Ali Mohammad Sharifi
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hamid Reza Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Farid Ghanbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
11
|
Xu Y, Chen Q, Shao Z, Wei J, Zhu X, Rong A, Chen X, Ni Y, Jiang Y. Evaluation of new robust silk fibroin hydrogels for posterior scleral reinforcement in rabbits. Front Bioeng Biotechnol 2023; 11:1211688. [PMID: 37388765 PMCID: PMC10300450 DOI: 10.3389/fbioe.2023.1211688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Currently, there is no ideal material available for posterior scleral reinforcement (PSR) to prevent the progression of high myopia. In this study, we investigated robust regenerated silk fibroin (RSF) hydrogels as potential grafts for PSR in animal experiments to evaluate their safety and biological reactions. Methods: PSR surgery was performed on the right eye of twenty-eight adult New Zealand white rabbits, with the left eye serving as a self-control. Ten rabbits were observed for 3 months, while 18 rabbits were observed for 6 months. The rabbits were evaluated using intraocular pressure (IOP), anterior segment and fundus photography, A- and B-ultrasound, optical coherence tomography (OCT), histology, and biomechanical tests. Results: No complications such as significant IOP fluctuation, anterior chamber inflammation, vitreous opacity, retinal lesion, infection, or material exposure were observed. Furthermore, no evidence of pathological changes in the optic nerve and retina, or structural abnormalities on OCT, were found. The RSF grafts were appropriately located at the posterior sclera and enclosed in fibrous capsules. The scleral thickness and collagen fiber content of the treated eyes increased after surgery. The ultimate stress of the reinforced sclera increased by 30.7%, and the elastic modulus increased by 33.0% compared to those of the control eyes at 6 months after surgery. Conclusion: Robust RSF hydrogels exhibited good biocompatibility and promoted the formation of fibrous capsules at the posterior sclera in vivo. The biomechanical properties of the reinforced sclera were strengthened. These findings suggest that RSF hydrogel is a potential material for PSR.
Collapse
Affiliation(s)
- Yule Xu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiaolin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laborarory of Advanced Materials, Fudan University, Shanghai, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laborarory of Advanced Materials, Fudan University, Shanghai, China
| | - Jiahong Wei
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ao Rong
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, Shanghai Xin Shi Jie Eye Hospital, Shanghai, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laborarory of Advanced Materials, Fudan University, Shanghai, China
| | - Yusu Ni
- Otology and Skull Base Surgery Department, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, China
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Jiang
- Department of Ophthalmology, Shanghai Xin Shi Jie Eye Hospital, Shanghai, China
| |
Collapse
|
12
|
Jaya Prakash N, Wang X, Kandasubramanian B. Regenerated silk fibroin loaded with natural additives: a sustainable approach towards health care. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-38. [PMID: 36648394 DOI: 10.1080/09205063.2023.2170137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to World Health Organization (WHO), on average, 0.5 Kg of hazardous waste is generated per bed every day in high-income countries. The adverse effects imposed by synthetic materials and chemicals on the environment and humankind have urged researchers to explore greener technologies and materials. Amidst of all the natural fibers, silk fibroin (SF), by virtue of its superior toughness (6 × 104∼16 × 104 J/kg), tensile strength (47.2-67.7 MPa), tunable biodegradability, excellent Young's modulus (1.9-3.9 GPa), presence of functional groups, ease of processing, and biocompatibility has garnered an enormous amount of scientific interests. The use of silk fibroin conjoint with purely natural materials can be an excellent solution for the adverse effects of chemical-based treatment techniques. Considering this noteworthiness, vigorous research is going on in silk-based biomaterials, and it is opening up new vistas of opportunities. This review enswathes the structural aspects of silk fibroin along with its potency to form composites with other natural materials, such as curcumin, keratin, alginate, hydroxyapatite, hyaluronic acid, and cellulose, that can replace the conventionally used synthetic materials, providing a sustainable pathway to biomedical engineering. It was observed that a large amount of polar functional moieties present on the silk fibroin surface enables them to compatibilize easily with the natural additives. The conjunction of silk with natural additives initiates synergistic interactions that mitigate the limitations offered by individual units as well as enhance the applicability of materials. Further the current status and challenges in the commercialization of silk-based biomedical devices are discussed.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| | - Xungai Wang
- Fiber Science and Technology, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| |
Collapse
|
13
|
Photocrosslinkable Silk-Based Biomaterials for Regenerative Medicine and Healthcare Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
In Vivo Comparison of Synthetic Macroporous Filamentous and Sponge-like Skin Substitute Matrices Reveals Morphometric Features of the Foreign Body Reaction According to 3D Biomaterial Designs. Cells 2022; 11:cells11182834. [PMID: 36139409 PMCID: PMC9496825 DOI: 10.3390/cells11182834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic macroporous biomaterials are widely used in the field of skin tissue engineering to mimic membrane functions of the native dermis. Biomaterial designs can be subclassified with respect to their shape in fibrous designs, namely fibers, meshes or fleeces, respectively, and porous designs, such as sponges and foams. However, synthetic matrices often have limitations regarding unfavorable foreign body responses (FBRs). Severe FBRs can result in unfavorable disintegration and rejection of an implant, whereas mild FBRs can lead to an acceptable integration of a biomaterial. In this context, comparative in vivo studies of different three-dimensional (3D) matrix designs are rare. Especially, the differences regarding FBRs between synthetically derived filamentous fleeces and sponge-like constructs are unknown. In the present study, the FBRs on two 3D matrix designs were explored after 25 days of subcutaneous implantation in a porcine model. Cellular reactions were quantified histopathologically to investigate in which way the FBR is influenced by the biomaterial architecture. Our results show that FBR metrics (polymorph-nucleated cells and fibrotic reactions) were significantly affected according to the matrix designs. Our findings contribute to a better understanding of the 3D matrix tissue interactions and can be useful for future developments of synthetically derived skin substitute biomaterials.
Collapse
|
15
|
Angelova L, Daskalova A, Filipov E, Vila XM, Tomasch J, Avdeev G, Teuschl-Woller AH, Buchvarov I. Optimizing the Surface Structural and Morphological Properties of Silk Thin Films via Ultra-Short Laser Texturing for Creation of Muscle Cell Matrix Model. Polymers (Basel) 2022; 14:polym14132584. [PMID: 35808630 PMCID: PMC9269134 DOI: 10.3390/polym14132584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Temporary scaffolds that mimic the extracellular matrix’s structure and provide a stable substratum for the natural growth of cells are an innovative trend in the field of tissue engineering. The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosecond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast laser treatment is a non-contact method, which generates controlled porosity—the creation of micro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while the control over its surface characteristics has the potential of directing the growth of future muscle tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The results show that by varying the laser parameters, a different structuring degree can be achieved through the initial lifting and ejection of the material around the area of laser interaction to generate porous channels with varying widths and depths. The proper optimization of the applied laser parameters can significantly improve the bioactive properties of the investigated 2D model of a muscle cell matrix.
Collapse
Affiliation(s)
- Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
- Correspondence:
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
| | - Xavier Monforte Vila
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Georgi Avdeev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ivan Buchvarov
- Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
16
|
El Maachi I, Kyriakou S, Rütten S, Kopp A, Köpf M, Jockenhoevel S, Fernández-Colino A. Silk Fibroin as Adjuvant in the Fabrication of Mechanically Stable Fibrin Biocomposites. Polymers (Basel) 2022; 14:2251. [PMID: 35683920 PMCID: PMC9183065 DOI: 10.3390/polym14112251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrin is a very attractive material for the development of tissue-engineered scaffolds due to its exceptional bioactivity, versatility in the fabrication, affinity to cell mediators; and the possibility to isolate it from blood plasma, making it autologous. However, fibrin application is greatly limited due to its low mechanical properties, fast degradation, and strong contraction in the presence of cells. In this study, we present a new strategy to overcome these drawbacks by combining it with another natural polymer: silk fibroin. Specifically, we fabricated biocomposites of fibrin (5 mg/mL) and silk fibroin (0.1, 0.5 and 1% w/w) by using a dual injection system, followed by ethanol annealing. The shear elastic modulus increased from 23 ± 5 Pa from fibrin alone, to 67 ± 22 Pa for fibrin/silk fibroin 0.1%, 241 ± 67 Pa for fibrin/silk fibroin 0.5% and 456 ± 32 Pa for fibrin/silk fibroin 1%. After culturing for 27 days with strong contractile cells (primary human arterial smooth muscle cells), fibrin/silk fibroin 0.5% and fibrin/silk fibroin 1% featured minimal cell-mediated contraction (ca. 15 and 5% respectively) in contrast with the large surface loss of the pure fibrin scaffolds (ca. 95%). Additionally, the composites enabled the formation of a proper endothelial cell layer after culturing with human primary endothelial cells under standard culture conditions. Overall, the fibrin/silk fibroin composites, manufactured within this study by a simple and scalable biofabrication approach, offer a promising avenue to boost the applicability of fibrin in tissue engineering.
Collapse
Affiliation(s)
- Ikram El Maachi
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany; (I.E.M.); (S.K.)
| | - Stavroula Kyriakou
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany; (I.E.M.); (S.K.)
| | - Stephan Rütten
- Electron Microscopy Facility, Uniklinik RWTH Aachen, D-52074 Aachen, Germany;
| | - Alexander Kopp
- Fibrothelium GmbH, D-52068 Aachen, Germany; (A.K.); (M.K.)
| | - Marius Köpf
- Fibrothelium GmbH, D-52068 Aachen, Germany; (A.K.); (M.K.)
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany; (I.E.M.); (S.K.)
- AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Faculty of Science and Engineering, Brightlands Chemelot Campus, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany; (I.E.M.); (S.K.)
| |
Collapse
|
17
|
Lujerdean C, Baci GM, Cucu AA, Dezmirean DS. The Contribution of Silk Fibroin in Biomedical Engineering. INSECTS 2022; 13:286. [PMID: 35323584 PMCID: PMC8950689 DOI: 10.3390/insects13030286] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Silk fibroin (SF) is a natural protein (biopolymer) extracted from the cocoons of Bombyx mori L. (silkworm). It has many properties of interest in the field of biotechnology, the most important being biodegradability, biocompatibility and robust mechanical strength with high tensile strength. SF is usually dissolved in water-based solvents and can be easily reconstructed into a variety of material formats, including films, mats, hydrogels, and sponges, by various fabrication techniques (spin coating, electrospinning, freeze-drying, and physical or chemical crosslinking). Furthermore, SF is a feasible material used in many biomedical applications, including tissue engineering (3D scaffolds, wounds dressing), cancer therapy (mimicking the tumor microenvironment), controlled drug delivery (SF-based complexes), and bone, eye and skin regeneration. In this review, we describe the structure, composition, general properties, and structure-properties relationship of SF. In addition, the main methods used for ecological extraction and processing of SF that make it a green material are discussed. Lastly, technological advances in the use of SF-based materials are addressed, especially in healthcare applications such as tissue engineering and cancer therapeutics.
Collapse
Affiliation(s)
- Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (D.S.D.)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (D.S.D.)
| | | | | |
Collapse
|
18
|
Li JX, Zhao SX, Zhang YQ. Silk Protein Composite Bioinks and Their 3D Scaffolds and In Vitro Characterization. Int J Mol Sci 2022; 23:910. [PMID: 35055092 PMCID: PMC8776115 DOI: 10.3390/ijms23020910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
This paper describes the use of silk protein, including fibroin and sericin, from an alkaline solution of Ca(OH)2 for the clean degumming of silk, which is neutralized by sulfuric acid to create calcium salt precipitation. The whole sericin (WS) can not only be recycled, but completely degummed silk fibroin (SF) is also obtained in this process. The inner layers of sericin (ILS) were also prepared from the degummed silk in boiling water by 120 °C water treatment. When the three silk proteins (SPs) were individually grafted with glycidyl methacrylate (GMA), three grafted silk proteins (G-SF, G-WS, G-ILS) were obtained. After adding I2959 (a photoinitiator), the SP bioinks were prepared with phosphate buffer (PBS) and subsequently bioprinted into various SP scaffolds with a 3D network structure. The compressive strength of the SF/ILS (20%) scaffold added to G-ILS was 45% higher than that of the SF scaffold alone. The thermal decomposition temperatures of the SF/WS (10%) and SF/ILS (20%) scaffolds, mainly composed of a β-sheet structures, were 3 °C and 2 °C higher than that of the SF scaffold alone, respectively. The swelling properties and resistance to protease hydrolysis of the SP scaffolds containing sericin were improved. The bovine insulin release rates reached 61% and 56% after 5 days. The L929 cells adhered, stretched, and proliferated well on the SP composite scaffold. Thus, the SP bioinks obtained could be used to print different types of SP composite scaffolds adapted to a variety of applications, including cells, drugs, tissues, etc. The techniques described here provide potential new applications for the recycling and utilization of sericin, which is a waste product of silk processing.
Collapse
Affiliation(s)
| | | | - Yu-Qing Zhang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, RM702-2303, No. 199 Renai Road, Industrial Park, Suzhou 215123, China; (J.-X.L.); (S.-X.Z.)
| |
Collapse
|
19
|
Fabrication and characterization of nanofibrous gelatin/chitosan-poly (ethylene oxide) membranes by electrospinning with acetic acid as solvent. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Marsudi MA, Ariski RT, Wibowo A, Cooper G, Barlian A, Rachmantyo R, Bartolo PJDS. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives. Int J Mol Sci 2021; 22:11543. [PMID: 34768972 PMCID: PMC8584045 DOI: 10.3390/ijms222111543] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
The practice of combining external stimulation therapy alongside stimuli-responsive bio-scaffolds has shown massive potential for tissue engineering applications. One promising example is the combination of electrical stimulation (ES) and electroactive scaffolds because ES could enhance cell adhesion and proliferation as well as modulating cellular specialization. Even though electroactive scaffolds have the potential to revolutionize the field of tissue engineering due to their ability to distribute ES directly to the target tissues, the development of effective electroactive scaffolds with specific properties remains a major issue in their practical uses. Conductive polymers (CPs) offer ease of modification that allows for tailoring the scaffold's various properties, making them an attractive option for conductive component in electroactive scaffolds. This review provides an up-to-date narrative of the progress of CPs-based electroactive scaffolds and the challenge of their use in various tissue engineering applications from biomaterials perspectives. The general issues with CP-based scaffolds relevant to its application as electroactive scaffolds were discussed, followed by a more specific discussion in their applications for specific tissues, including bone, nerve, skin, skeletal muscle and cardiac muscle scaffolds. Furthermore, this review also highlighted the importance of the manufacturing process relative to the scaffold's performance, with particular emphasis on additive manufacturing, and various strategies to overcome the CPs' limitations in the development of electroactive scaffolds.
Collapse
Affiliation(s)
- Maradhana Agung Marsudi
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Ridhola Tri Ariski
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Glen Cooper
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| | - Anggraini Barlian
- School of Life Science & Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Riska Rachmantyo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Paulo J. D. S. Bartolo
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| |
Collapse
|
21
|
Chou KC, Chen CT, Cherng JH, Li MC, Wen CC, Hu SI, Wang YW. Cutaneous Regeneration Mechanism of β-Sheet Silk Fibroin in a Rat Burn Wound Healing Model. Polymers (Basel) 2021; 13:3537. [PMID: 34685296 PMCID: PMC8537970 DOI: 10.3390/polym13203537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Therapeutic dressings to enhance burn wound repair and regeneration are required. Silk fibroin (SF), a natural protein, induces cell migration and serves as a biomaterial in various dressings. SF dressings usually contain α-helices and β-sheets. The former has been confirmed to improve cell proliferation and migration, but the wound healing effect and related mechanisms of β-sheet SF remain unclear. We investigated the effects of β-sheet SF in vivo and in vitro. Alcohol-treated α-helix SF transformed into the β-sheet form, which promoted granulation formation and re-epithelialization when applied as lyophilized SF dressing (LSFD) in a rat burn model. Our in vitro results showed that β-sheet SF increased human dermal fibroblast (HDF) migration and promoted the expression of extracellular matrix (ECM) proteins (fibronectin and type III collagen), matrix metalloproteinase-12, and the cell adhesion molecule, integrin β1, in rat granulation tissue and HDFs. This confirms the role of crosstalk between integrin β1 and ECM proteins in cell migration. In summary, we demonstrated that β-sheet SF facilitates tissue regeneration by modulating cell adhesion molecules in dermal fibroblasts. LSFD could find clinical application for burn wound regeneration. Moreover, β-sheet SF could be combined with anti-inflammatory materials, growth factors, or antibiotics to develop novel dressings.
Collapse
Affiliation(s)
- Kai-Chieh Chou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-C.C.); (J.-H.C.)
| | - Chun-Ting Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-C.C.); (J.-H.C.)
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Chia Li
- Department of Biological Science and Technology, Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Chia-Cheng Wen
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.W.); (S.-I.H.)
| | - Sheng-I Hu
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.W.); (S.-I.H.)
| | - Yi-Wen Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-C.C.); (J.-H.C.)
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
22
|
Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, 4029, Australia
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
23
|
Human Hair Keratin Composite Scaffold: Characterisation and Biocompatibility Study on NIH 3T3 Fibroblast Cells. Pharmaceuticals (Basel) 2021; 14:ph14080781. [PMID: 34451878 PMCID: PMC8401710 DOI: 10.3390/ph14080781] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to transform human hair keratin waste into a scaffold for soft tissue engineering to heal wounds. The keratin was extracted using the Shindai method. Keratin and polyvinyl alcohol (PVA) was cross-linked with alginate dialdehyde and converted into a scaffold by the freeze-drying method using gentamycin sulphate (GS) as a model drug. The scaffold was subjected to Fourier transform infrared spectra (FTIR), swelling index, porosity, water absorption, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), drug release, and cell viability (MTT) analysis. The scaffold was tested for keratinocyte growth using the murine fibroblast cell line (NIH 3T3 cells). The outcome from the keratin had a molecular weight band between 52-38 kDa in SDS-PAGE (Sodium dodecylsulfate-Polyacrylamide gel electrophoresis). A porous scaffold was capable of water absorption (73.64 ± 14.29%), swelling ability (68.93 ± 1.33%), and the release of GS shown as 97.45 ± 4.57 and 93.86 ± 5.22 of 1:4 and 1:3 scaffolds at 16 h. The physicochemical evaluation revealed that the prepared scaffold exhibits the proper structural integrity: partially crystalline with a strong thermal property. The scaffold demonstrated better cell viability against the murine fibroblast cell line (NIH 3T3 cells). In conclusion, we found that the prepared composite scaffold (1:4) can be used for wound healing applications.
Collapse
|
24
|
Wang X, Qi J, Zhang W, Pu Y, Yang R, Wang P, Liu S, Tan X, Chi B. 3D-printed antioxidant antibacterial carboxymethyl cellulose/ε-polylysine hydrogel promoted skin wound repair. Int J Biol Macromol 2021; 187:91-104. [PMID: 34298048 DOI: 10.1016/j.ijbiomac.2021.07.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Developing a wound dressing for the treatment of large and irregular-shaped wounds remains a great challenge. Herein we developed novel printable bionic hydrogels with antibacterial and antioxidant properties which could effectively overcome the challenge by inhibiting inflammation and accelerating wound healing. The CMC/PL (CP) hydrogels were customized with glycidyl methacrylate (GMA) modified carboxymethyl cellulose (CMC) and ε-polylysine (ε-PL) via ultraviolet (UV) light polymerization using a 3D printer. Except for the high compression modulus (238 kPa), stable rheological properties, and effective degradability, these CP hydrogels also had an excellent inhibitory effect (95%) on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Remarkably, CP hydrogels could remove the excessive reactive oxygen species (ROS) and protect the fibroblasts from damage. Compared with the commercial dressing (Tegaderm ™ film), CP hydrogels showed a better ability to increase the expression of VEGF and CD31, accelerate granulation tissue regeneration, and promote wound healing. This work provides a new strategy to fabricate on-demand multi-functional hydrogels in the field of skin tissue engineering.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jingjie Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
25
|
Zhao Z, Chua HM, Goh BHR, Lai HY, Tan SJ, Moay ZK, Setyawati MI, Ng KW. Anisotropic hair keratin-dopamine composite scaffolds exhibit strain-stiffening properties. J Biomed Mater Res A 2021; 110:92-104. [PMID: 34254735 DOI: 10.1002/jbm.a.37268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022]
Abstract
Human hair keratin (HHK) has been successfully explored as raw materials for three-dimensional scaffolds for soft tissue regeneration due to its excellent biocompatibility and bioactivity. However, none of the reported HHK based scaffolds is able to replicate the strain-stiffening capacity of living tissues when responding to large deformations. In the present study, strain-stiffening property was achieved in scaffolds fabricated from HHK via a synergistic effect of well-defined, aligned microstructure and chemical crosslinking. Directed ice-templating method was used to fabricate HHK-based scaffolds with highly aligned (anisotropic) microstructure while oxidized dopamine (ODA) was used to crosslink covalently to HHKs. The resultant HHK-ODA scaffolds exhibited strain-stiffening behavior characterized by the increased gradient of the stress-strain curve after the yield point. Both ultimate tensile strength and the elongation at break were enhanced significantly (~700 kPa, ~170%) in comparison to that of HHK scaffolds lacking of aligned microstructure or ODA crosslinking. In vitro cell culture studies indicated that HHK-ODA scaffolds successfully supported human dermal fibroblasts (HDFs) adhesion, spreading and proliferation. Moreover, anisotropic HHK-ODA scaffolds guided cell growth in alignment with the defined microstructure as shown by the highly organized cytoskeletal networks and nuclei distribution. The findings suggest that HHK-ODA scaffolds, with strain-stiffening properties, biocompatibility and bioactivity, have the potential to be applied as biomimetic matrices for soft tissue regeneration.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Bernice Huan Rong Goh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Shao Jie Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA.,Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Singapore
| |
Collapse
|
26
|
Schiefer JL, Andreae J, Bagheri M, Fuchs PC, Lefering R, Heitzmann W, Schulz A. A clinical comparison of pure knitted silk and a complex synthetic skin substitute for the treatment of partial thickness burns. Int Wound J 2021; 19:178-187. [PMID: 33973387 PMCID: PMC8684860 DOI: 10.1111/iwj.13613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
Currently, many dressings are commercially available for the treatment of burn wounds. Some of these wound dressings remain on the wound, prevent painful dressing changes, and reduce tissue scarring. Nevertheless, still a wound dressing that is cost-effective, produces good wound healing properties, and has a high patient satisfaction is needed. Standard care of superficial burn wounds differs between burn centres. This study aimed to determine a dressing with easy appliance, accurate pain control, favourable outcome, and cost-effectiveness. Therefore, we compared the widely used but expensive Suprathel with the rather new but much cheaper Dressilk in the clinical setting. In a prospective clinical study, the healing of partial thickness burn wounds after simultaneous treatment with Suprathel and Dressilk was examined in 20 patients intra-individually. During wound healing, pain, infection, exudation, and bleeding were evaluated. A subjective scar evaluation was performed using the Patient and Observer Scar Scale. Both dressings were easy to apply, remained on the wound in place, and were gradually cut back as reepithelisation proceeded and showed similar times to wound closure. Dressing changes were not necessary, and neither infections nor bleeding was detected. Overall exudation and pain were highest in the beginning but declined during the wound-healing phase without significant differences. In the follow-up scar evaluation after 12 months, patients reported overall high satisfaction. Overall, the modern dressings Suprathel and Dressilk (solely made out of pure silk) led to safe wound healing without infection and rapidly reduced pain. There was no need for dressing changes, and they had similar clinical outcomes in scar evaluation. Therefore, both dressings seem to be ideal for the treatment of superficial burns. Because acquisition costs remain one of the main factors in the treatment of burns, Dressilk, which is ~20 times cheaper than Suprathel, remains a good option for the treatment of partial thickness burns.
Collapse
Affiliation(s)
- Jennifer Lynn Schiefer
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Janine Andreae
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Mahsa Bagheri
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Paul Christian Fuchs
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Rolf Lefering
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne, Germany
| | - Wolfram Heitzmann
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Alexandra Schulz
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| |
Collapse
|
27
|
Grabska-Zielińska S, Sionkowska A. How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?-Blending and Cross-Linking of Silk Fibroin-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1510. [PMID: 33808809 PMCID: PMC8003607 DOI: 10.3390/ma14061510] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
28
|
Chopra H, Kumar S, Singh I. Biopolymer-based Scaffolds for Tissue Engineering Applications. Curr Drug Targets 2021; 22:282-295. [PMID: 33143611 DOI: 10.2174/1389450121999201102140408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Tissue engineering is governed by the use of cells and polymers. The cells may be accounted for the type of tissue to be targeted, while polymers may vary from natural to synthetic. The natural polymers have advantages such as non-immunogenic and complex structures that help in the formation of bonds in comparison to the synthetic ones. Various targeted drug delivery systems have been prepared using polymers and cells, such as nanoparticles, hydrogels, nanofibers, and microspheres. The design of scaffolds depends on the negative impact of material used on the human body and they have been prepared using surface modification technique or neo material synthesis. The dermal substitutes are a distinctive array that aims at the replacement of skin parts either through grafting or some other means. This review focuses on biomaterials for their use in tissue engineering. This article shall provide the bird's eye view of the scaffolds and dermal substitutes, which are naturally derived.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Kumar
- ASBASJSM College of Pharmacy, Bela, Ropar, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
29
|
Abstract
As the largest organ in the human body, the skin has the function of maintaining balance and protecting from external factors such as bacteria, chemicals, and temperature. If the wound does not heal in time after skin damage, it may cause infection or life-threatening complications. In particular, medical treatment of large skin defects caused by burns or trauma remains challenging. Therefore, human bioengineered skin substitutes represent an alternative approach to treat such injuries. Based on the chemical composition and scaffold material, skin substitutes can be classified into acellular or cellular grafts, as well as natural-based or synthetic skin substitutes. Further, they can be categorized as epidermal, dermal, and composite grafts, based on the skin component they contain. This review presents the common commercially available skin substitutes and their clinical use. Moreover, the choice of an appropriate hydrogel type to prepare cell-laden skin substitutes is discussed. Additionally, we present recent advances in the field of bioengineered human skin substitutes using three-dimensional (3D) bioprinting techniques. Finally, we discuss different skin substitute developments to meet different criteria for optimal wound healing.
Collapse
|
30
|
Lai HY, Setyawati MI, Ferhan AR, Divakarla SK, Chua HM, Cho NJ, Chrzanowski W, Ng KW. Self-Assembly of Solubilized Human Hair Keratins. ACS Biomater Sci Eng 2021; 7:83-89. [PMID: 33356132 DOI: 10.1021/acsbiomaterials.0c01507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human hair keratins have proven to be a viable biomaterial for diverse regenerative applications. However, the most significant characteristic of this material, the ability to self-assemble into nanoscale intermediate filaments, has not been exploited. Herein, we successfully demonstrated the induction of hair-extracted keratin self-assembly in vitro to form dense, homogeneous, and continuous nanofibrous networks. These networks remain hydrolytically stable in vitro for up to 5 days in complete cell culture media and are compatible with primary human dermal fibroblasts and keratinocytes. These results enhance the versatility of human hair keratins for applications where structured assembly is of benefit.
Collapse
Affiliation(s)
- Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shiva Kamini Divakarla
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate Program, Nanyang Technological University, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
31
|
Hong H, Lee OJ, Lee YJ, Lee JS, Ajiteru O, Lee H, Suh YJ, Sultan MT, Kim SH, Park CH. Cytocompatibility of Modified Silk Fibroin with Glycidyl Methacrylate for Tissue Engineering and Biomedical Applications. Biomolecules 2020; 11:35. [PMID: 33383963 PMCID: PMC7824185 DOI: 10.3390/biom11010035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 11/23/2022] Open
Abstract
Hydrogel with chemical modification has been used for 3D printing in the biomedical field of cell and tissue-based regeneration because it provides a good cellular microenvironment and mechanical supportive ability. As a scaffold and a matrix, hydrogel itself has to be modified chemically and physically to form a β-sheet crosslinking structure for the strength of the biomaterials. These chemical modifications could affect the biological damage done to encapsulated cells or surrounding tissues due to unreacted chemical residues. Biological assessment, including assessment of the cytocompatibility of hydrogel in clinical trials, must involve testing with cytotoxicity, irritation, and sensitization. Here, we modified silk fibroin and glycidyl methacrylate (Silk-GMA) and evaluated the physical characterizations, residual chemical detection, and the biological effect of residual GMA depending on dialysis periods. Silk-GMA depending on each dialysis period had a typical β-sheet structure in the characterization analysis and residual GMA decreased from dialysis day 1. Moreover, cell proliferation and viability rate gradually increased; additionally, necrotic and apoptotic cells decreased from dialysis day 2. These results indicate that the dialysis periods during chemical modification of natural polymer are important for removing unreacted chemical residues and for the potential application of the manufacturing standardization for chemically modified hydrogel for the clinical transplantation for tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Heesun Hong
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Ok Joo Lee
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Young Jin Lee
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Ji Seung Lee
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Olatunji Ajiteru
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Hanna Lee
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Ye Ji Suh
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Md Tipu Sultan
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Soon Hee Kim
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
| | - Chan Hum Park
- Nano-Bio Regenrative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.H.); (O.J.L.); (Y.J.L.); (J.S.L.); (O.A.); (H.L.); (Y.J.S.); (M.T.S.); (S.H.K.)
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
32
|
Puerta M, Peresin MS, Restrepo-Osorio A. Effects of Chemical Post-treatments on Structural and Physicochemical Properties of Silk Fibroin Films Obtained From Silk Fibrous Waste. Front Bioeng Biotechnol 2020; 8:523949. [PMID: 33344426 PMCID: PMC7738614 DOI: 10.3389/fbioe.2020.523949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 11/03/2020] [Indexed: 01/20/2023] Open
Abstract
Silk fibroin (SF) is a protein polymer claimed to have outstanding potential for medical applications. However, because of the manufacturing process, materials from regenerated SF exhibit a higher percentage of amorphous structures. The amorphous structures cause the material to be water soluble and can significantly limit its applications in wet biological environments. In order to increase the amount of crystalline structures and decrease the water solubility of SF materials, post-treatment with alcohols is usually employed. SF can be obtained from silk fibrous wastes (SFW), usually discarded in silk textile processes. This represents an opportunity to produce materials with high added value from low-cost natural sources. In this study, SF was obtained from SFW, and films were made thereof followed by a post-treatment by immersion or in a saturated atmosphere of methanol (MeOH) or ethanol (EtOH), using different exposure times. The resulting films were analyzed according to crystallinity, the percentage of crystalline and amorphous structures, and thermal stability. Also, water absorption and weight loss in aqueous media were determined. The results showed a significant increase in crystalline structures in all treated samples, varying according to the type and time of exposure to post-treatment conducted. The highest increase was shown in the case of the post-treatment by immersion in MeOH for 1 h, with a 23% increase over the untreated sample. This increase in crystallinity was reflected in an increase in the degradation temperature and a degradation rate of 5.3% on day 7. The possibility of tuning the degree of crystallinity, as well as thermal stability and aqueous integrity of thin films of SFW, can be applied to adjust these materials to the requirements of specific biomedical applications.
Collapse
Affiliation(s)
- Melissa Puerta
- Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Maria S. Peresin
- Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, United States
| | - Adriana Restrepo-Osorio
- Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Medellín, Colombia
- Facultad de Ingeniería Textil, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
33
|
Izadyari Aghmiuni A, Heidari Keshel S, Sefat F, AkbarzadehKhiyavi A. Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111752. [PMID: 33545893 DOI: 10.1016/j.msec.2020.111752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/16/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Fabrication of extracellular matrix (ECM)-like scaffolds (in terms of structural-functional) is the main challenge in skin tissue engineering. Herein, inspired by macromolecular components of ECM, a novel hybrid scaffold suggested which includes silk/hyaluronan (SF/HA) bio-complex modified by PCP: [polyethylene glycol/chitosan/poly(ɛ-caprolactone)] copolymer containing collagen to differentiate human-adipose-derived stem cells into keratinocytes. In followed by, different weight ratios (wt%) of SF/HA (S1:100/0, S2:80/20, S3:50/50) were applied to study the role of SF/HA in the improvement of physicochemical and biological functions of scaffolds. Notably, the combination of electrospinning-like and freeze-drying methods was also utilized as a new method to create a coherent 3D-network. The results indicated this novel technique was led to ~8% improvement of the scaffold's ductility and ~17% decrease in mean pore diameter, compared to the freeze-drying method. Moreover, the increase of HA (>20wt%) increased porosity to 99%, however, higher tensile strength, modulus, and water absorption% were related to S2 (38.1, 0.32 MPa, 75.3%). More expression of keratinocytes along with growth pattern similar to skin was also observed on S2. This study showed control of HA content creates a microporous-environment with proper modulus and swelling%, although, the role of collagen/PCP as base biocomposite and fabrication technique was undeniable on the inductive signaling of cells. Such a scaffold can mimic skin properties and act as the growth factor through inducing keratinocytes differentiation.
Collapse
Affiliation(s)
| | - S Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK; Interdisciplinary Research Centre in Polymer Science & Technology (IRC Polymer), University of Bradford, Bradford, UK
| | | |
Collapse
|
34
|
Zhao Z, Moay ZK, Lai HY, Goh BHR, Chua HM, Setyawati MI, Ng KW. Characterization of Anisotropic Human Hair Keratin Scaffolds Fabricated via Directed Ice Templating. Macromol Biosci 2020; 21:e2000314. [PMID: 33146949 DOI: 10.1002/mabi.202000314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Indexed: 01/18/2023]
Abstract
Human hair keratin (HHK) is successfully exploited as raw materials for 3D scaffolds for soft tissue regeneration owing to its excellent biocompatibility and bioactivity. However, most HHK scaffolds are not able to achieve the anisotropic mechanical properties of soft tissues such as tendons and ligaments due to lack of tunable, well-defined microstructures. In this study, directed ice templating method is used to fabricate anisotropic HHK scaffolds that are characterized by aligned pores (channels) in between keratin layers in the longitudinal plane. In contrast, pores in the transverse plane maintain a homogenous rounded morphology. Channel widths throughout the scaffolds range from ≈5 to ≈15 µm and are tunable by varying the freezing temperature. In comparison with HHK scaffolds with random, isotropic pore structures, the tensile strength of anisotropic HHK scaffolds is enhanced significantly by up to fourfolds (≈200 to ≈800 kPa) when the tensile load is applied in the direction parallel to the aligned pores. In vitro results demonstrate that the anisotropic HHK scaffolds are able to support human dermal fibroblast adhesion, spreading, and proliferation. The findings suggest that HHK scaffolds with well-defined, aligned microstructure hold promise as templates for soft tissues regeneration by mimicking their anisotropic properties.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Bernice Huan Rong Goh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Center for Nanotechnology and NanotoxicologyHarvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA, 02115, USA.,Environmental Chemistry and Materials CentreNanyang Environment and Water Research Institution, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
35
|
Zakeri-Siavashani A, Chamanara M, Nassireslami E, Shiri M, Hoseini-Ahmadabadi M, Paknejad B. Three dimensional spongy fibroin scaffolds containing keratin/vanillin particles as an antibacterial skin tissue engineering scaffold. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1817021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mahdi Shiri
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Babak Paknejad
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Kopp A, Schunck L, Gosau M, Smeets R, Burg S, Fuest S, Kröger N, Zinser M, Krohn S, Behbahani M, Köpf M, Lauts L, Rutkowski R. Influence of the Casting Concentration on the Mechanical and Optical Properties of FA/CaCl 2-Derived Silk Fibroin Membranes. Int J Mol Sci 2020; 21:E6704. [PMID: 32933171 PMCID: PMC7555014 DOI: 10.3390/ijms21186704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live-dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes.
Collapse
Affiliation(s)
- Alexander Kopp
- Fibrothelium GmbH, 52068 Aachen, Germany; (A.K.); (M.K.); (L.L.)
| | - Laura Schunck
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 52074 Cologne, Germany; (N.K.); (M.Z.)
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 52074 Cologne, Germany; (N.K.); (M.Z.)
| | - Sebastian Krohn
- Polyclinic for Dental Prosthetics, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Mehdi Behbahani
- University of Applied Sciences, FH Aachen, 52428 Jülich, Germany;
| | - Marius Köpf
- Fibrothelium GmbH, 52068 Aachen, Germany; (A.K.); (M.K.); (L.L.)
| | - Lisa Lauts
- Fibrothelium GmbH, 52068 Aachen, Germany; (A.K.); (M.K.); (L.L.)
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany; (L.S.); (M.G.); (R.S.); (S.B.)
| |
Collapse
|
37
|
Tandon S, Kandasubramanian B, Ibrahim SM. Silk-Based Composite Scaffolds for Tissue Engineering Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02195] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Saloni Tandon
- Biotechnology Lab, Center for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur-302004, Rajasthan, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune-411025, Maharashtra, India
| | - Sobhy M. Ibrahim
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
38
|
Zhao Z, Vizetto-Duarte C, Moay ZK, Setyawati MI, Rakshit M, Kathawala MH, Ng KW. Composite Hydrogels in Three-Dimensional in vitro Models. Front Bioeng Biotechnol 2020; 8:611. [PMID: 32656197 PMCID: PMC7325910 DOI: 10.3389/fbioe.2020.00611] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
3-dimensional (3D) in vitro models were developed in order to mimic the complexity of real organ/tissue in a dish. They offer new possibilities to model biological processes in more physiologically relevant ways which can be applied to a myriad of applications including drug development, toxicity screening and regenerative medicine. Hydrogels are the most relevant tissue-like matrices to support the development of 3D in vitro models since they are in many ways akin to the native extracellular matrix (ECM). For the purpose of further improving matrix relevance or to impart specific functionalities, composite hydrogels have attracted increasing attention. These could incorporate drugs to control cell fates, additional ECM elements to improve mechanical properties, biomolecules to improve biological activities or any combinations of the above. In this Review, recent developments in using composite hydrogels laden with cells as biomimetic tissue- or organ-like constructs, and as matrices for multi-cell type organoid cultures are highlighted. The latest composite hydrogel systems that contain nanomaterials, biological factors, and combinations of biopolymers (e.g., proteins and polysaccharide), such as Interpenetrating Networks (IPNs) and Soft Network Composites (SNCs) are also presented. While promising, challenges remain. These will be discussed in light of future perspectives toward encompassing diverse composite hydrogel platforms for an improved organ environment in vitro.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Catarina Vizetto-Duarte
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zi Kuang Moay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
39
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Wu N, Yu H, Sun M, Li Z, Zhao F, Ao Y, Chen H. Investigation on the Structure and Mechanical Properties of Highly Tunable Elastomeric Silk Fibroin Hydrogels Cross-Linked by γ-Ray Radiation. ACS APPLIED BIO MATERIALS 2019; 3:721-734. [PMID: 35019416 DOI: 10.1021/acsabm.9b01062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nier Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Huilei Yu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Muyang Sun
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zong Li
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Fengyuan Zhao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DVN, Trinh QT, Kim SY, Le QV. Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers (Basel) 2019; 11:E1933. [PMID: 31771251 PMCID: PMC6960760 DOI: 10.3390/polym11121933] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Since it was first discovered, thousands of years ago, silkworm silk has been known to be an abundant biopolymer with a vast range of attractive properties. The utilization of silk fibroin (SF), the main protein of silkworm silk, has not been limited to the textile industry but has been further extended to various high-tech application areas, including biomaterials for drug delivery systems and tissue engineering. The outstanding mechanical properties of SF, including its facile processability, superior biocompatibility, controllable biodegradation, and versatile functionalization have allowed its use for innovative applications. In this review, we describe the structure, composition, general properties, and structure-properties relationship of SF. In addition, the methods used for the fabrication and modification of various materials are briefly addressed. Lastly, recent applications of SF-based materials for small molecule drug delivery, biological drug delivery, gene therapy, wound healing, and bone regeneration are reviewed and our perspectives on future development of these favorable materials are also shared.
Collapse
Affiliation(s)
- Thang Phan Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Quang Vinh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Van-Huy Nguyen
- Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Bien Hoa 810000, Vietnam;
| | - Thu-Ha Le
- Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University–Ho Chi Minh City (VNU–HCM), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam;
| | - Vu Quynh Nga Huynh
- The Faculty of Pharmacy, Duy Tan University, 03 Quang Trung, Danang 550000, Vietnam;
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
| | - Quang Thang Trinh
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| |
Collapse
|
42
|
Puerta M, Arango MC, Jaramillo-Quiceno N, Álvarez-López C, Restrepo-Osorio A. Influence of ethanol post-treatments on the properties of silk protein materials. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1486-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Bhardwaj N, Singh YP, Mandal BB. Silk Fibroin Scaffold-Based 3D Co-Culture Model for Modulation of Chondrogenesis without Hypertrophy via Reciprocal Cross-talk and Paracrine Signaling. ACS Biomater Sci Eng 2019; 5:5240-5254. [DOI: 10.1021/acsbiomaterials.9b00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nandana Bhardwaj
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781125, India
| | - Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
44
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
45
|
Kaur A, Midha S, Giri S, Mohanty S. Functional Skin Grafts: Where Biomaterials Meet Stem Cells. Stem Cells Int 2019; 2019:1286054. [PMID: 31354835 PMCID: PMC6636521 DOI: 10.1155/2019/1286054] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Skin tissue engineering has attained several clinical milestones making remarkable progress over the past decades. Skin is inhabited by a plethora of cells spatiotemporally arranged in a 3-dimensional (3D) matrix, creating a complex microenvironment of cell-matrix interactions. This complexity makes it difficult to mimic the native skin structure using conventional tissue engineering approaches. With the advent of newer fabrication strategies, the field is evolving rapidly. However, there is still a long way before an artificial skin substitute can fully mimic the functions and anatomical hierarchy of native human skin. The current focus of skin tissue engineers is primarily to develop a 3D construct that maintains the functionality of cultured cells in a guided manner over a period of time. While several natural and synthetic biopolymers have been translated, only partial clinical success is attained so far. Key challenges include the hierarchical complexity of skin anatomy; compositional mismatch in terms of material properties (stiffness, roughness, wettability) and degradation rate; biological complications like varied cell numbers, cell types, matrix gradients in each layer, varied immune responses, and varied methods of fabrication. In addition, with newer biomaterials being adopted for fabricating patient-specific skin substitutes, issues related to escalating processing costs, scalability, and stability of the constructs under in vivo conditions have raised some concerns. This review provides an overview of the field of skin regenerative medicine, existing clinical therapies, and limitations of the current techniques. We have further elaborated on the upcoming tissue engineering strategies that may serve as promising alternatives for generating functional skin substitutes, the pros and cons associated with each technique, and scope of their translational potential in the treatment of chronic skin ailments.
Collapse
Affiliation(s)
- Amtoj Kaur
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Swati Midha
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Lin CW, Chen YK, Tang KC, Yang KC, Cheng NC, Yu J. Keratin scaffolds with human adipose stem cells: Physical and biological effects toward wound healing. J Tissue Eng Regen Med 2019; 13:1044-1058. [PMID: 30938939 DOI: 10.1002/term.2855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 01/31/2023]
Abstract
Keratin, a natural biomaterial derived from wool or human hair, has the intrinsic ability to interact with different types of cells and the potential to serve as a controllable extracellular matrix that can be used a scaffold for tissue engineering. In this study, we demonstrated a simple and fast technique to construct 3D keratin scaffolds for accelerated wound healing using a lyophilization method based on extraction of keratin from human hair. The physical properties of the keratin scaffolds such as water uptake, pore size, and porosity can be adjusted by changing the protein concentrations during the fabrication process. The keratin scaffolds supported human adipose stem cells (hASCs) adhesion, proliferation, and differentiation. In vivo study performed on ICR mice showed that keratin scaffolds with hASCs shortened skin wound healing time, accelerated epithelialization, and promoted wound remodeling. Therefore, keratin scaffolds alone or together with hASCs may serve as therapeutic agents for repairing wounded tissue.
Collapse
Affiliation(s)
- Che-Wei Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Kai Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kao-Chun Tang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Wang W, Yu Y, Jiang Y, Qu J, Niu L, Yang J, Li M. Silk fibroin scaffolds loaded with angiogenic genes in adenovirus vectors for tissue regeneration. J Tissue Eng Regen Med 2019; 13:715-728. [PMID: 30770653 DOI: 10.1002/term.2819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/20/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
Vascularization remains a critical challenge in dermal tissue regeneration. In this study, a vascular endothelial growth factor (VEGF165) and angiopoietin-1 (Ang-1) dual gene coexpression vector that encoded green fluorescent protein (GFP) was constructed from an arginine-glycine-aspartic acid-modified adenovirus. Silk fibroin (SF) scaffolds loaded with adenovirus vectors were fabricated by freeze-drying method. In vitro, the human endothelial-derived cell line EA.hy926 was infected with adenovirus vectors and then expressed GFP, secreted VEGF165 and Ang-1, and promoted cell proliferation effectively. The VEGF165 and Ang-1 genes loaded in the SF scaffolds significantly promoted the formation of abundant microvascular networks in the chick embryo chorioallantoic membrane. In vivo, angiogenic genes loaded in the scaffolds promoted vascularization and collagen deposition in scaffolds, thus effectively accelerating dermal tissue regeneration in a dorsal full-thickness skin defect wound model in Sprague-Dawley rats. In conclusion, SF scaffolds loaded with arginine-glycine-aspartic acid-modified adenovirus vectors encoding VEGF165 and Ang-1 could stimulate the formation of vascular networks through the effective expression of target genes in vascular endothelial cells, thereby accelerating the regeneration of dermal tissue.
Collapse
Affiliation(s)
- Weiwei Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yanni Yu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yi Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jing Qu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jicheng Yang
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
48
|
Dhasmana A, Singh L, Roy P, Mishra NC. Silk fibroin protein modified acellular dermal matrix for tissue repairing and regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:313-324. [DOI: 10.1016/j.msec.2018.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
|
49
|
Tang P, Han L, Li P, Jia Z, Wang K, Zhang H, Tan H, Guo T, Lu X. Mussel-Inspired Electroactive and Antioxidative Scaffolds with Incorporation of Polydopamine-Reduced Graphene Oxide for Enhancing Skin Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7703-7714. [PMID: 30714361 DOI: 10.1021/acsami.8b18931] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wound repair and tissue regeneration are complex processes that involve many physiological signals. Thus, employing novel wound dressings with potent biological activity and physiological signal response ability to accelerate wound healing is a possible solution. Herein, inspired by mussel chemistry, we developed a polydopamine (PDA)-reduced graphene oxide (pGO)-incorporated chitosan (CS) and silk fibroin (SF) (pGO-CS/SF) scaffold with good mechanical, electroactive, and antioxidative properties as an efficient wound dressing. First, pGO with good dispersibility and cell affinity was obtained upon reduction by PDA under alkali conditions. Second, pGO was dispersed into a CS/SF mixture, and then CS and SF chains were dual-cross-linked by poly(ethylene glycol) diglycidyl ether and glutaraldehyde to obtain a pGO-incorporated gel. Finally, the gel underwent a freeze-dry process to obtain the pGO-CS/SF scaffold. Owing to PDA reduction and functionalization, pGO in the scaffold plays important roles for the performances of the scaffolds. First, the pGO acts as nanoreinforcement to enhance the mechanical properties of the scaffold by combining the dual-cross-linked CS/SF network. Second, the uniformly distributed pGO in the scaffolds comprises a well-connected electric pathway, which can provide a channel for the transmission of electrical signals in the scaffold. Moreover, pGO in the scaffolds serves as an antioxidant agent to scavenge reactive oxygen species (ROS) and therefore terminates excessive ROS oxidation. In vitro studies show that electroactive pGO-CS/SF scaffolds can respond to electrical signals and promote cytological behavior. In addition, the pGO-CS/SF scaffolds can reduce cellular oxidation by removing excessive ROS. The in vivo full-thickness skin defect model demonstrates that the electroactive and antioxidative pGO-CS/SF scaffold can efficiently enhance wound healing. In summary, the pGO-CS/SF scaffold is a promising wound dressing because of its ability to promote physiological electrical signal transmission for cell growth and reduce ROS oxidation, resulting in an improved wound regeneration effect.
Collapse
Affiliation(s)
- Pengfei Tang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Lu Han
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Pengfei Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Zhanrong Jia
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , China
| | - Hongping Zhang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang , Sichuan 621010 , China
| | - Hui Tan
- Shenzhen Key Laboratory of Neurosurgery , The First Affiliated Hospital of Shenzhen University , Shenzhen , Guangdong 518035 , China
| | - Tailin Guo
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| |
Collapse
|
50
|
Chocarro-Wrona C, López-Ruiz E, Perán M, Gálvez-Martín P, Marchal JA. Therapeutic strategies for skin regeneration based on biomedical substitutes. J Eur Acad Dermatol Venereol 2019; 33:484-496. [PMID: 30520159 DOI: 10.1111/jdv.15391] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Regenerative medicine and tissue engineering (TE) have experienced significant advances in the development of in vitro engineered skin substitutes, either for replacement of lost tissue in skin injuries or for the generation of in vitro human skin models to research. However, currently available skin substitutes present different limitations such as expensive costs, abnormal skin microstructure and engraftment failure. Given these limitations, new technologies, based on advanced therapies and regenerative medicine, have been applied to develop skin substitutes with several pharmaceutical applications that include injectable cell suspensions, cell-spray devices, sheets or 3Dscaffolds for skin tissue regeneration and others. Clinical practice for skin injuries has evolved to incorporate these innovative applications to facilitate wound healing, improve the barrier function of the skin, prevent infections, manage pain and even to ameliorate long-term aesthetic results. In this article, we review current commercially available skin substitutes for clinical use, as well as the latest advances in biomedical and pharmaceutical applications used to design advanced therapies and medical products for wound healing and skin regeneration. We highlight the current progress in clinical trials for wound healing as well as the new technologies that are being developed and hold the potential to generate skin substitutes such as 3D bioprinting-based strategies.
Collapse
Affiliation(s)
- C Chocarro-Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - E López-Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | - M Perán
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | - P Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain.,Advanced Therapies Area, Bioibérica S.A.U., Barcelona, Spain
| | - J A Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|