1
|
Przybyla-Toscano J, Chetouhi C, Pennera L, Boursiac Y, Galeone A, Devime F, Balliau T, Santoni V, Bourguignon J, Alban C, Ravanel S. New insights into uranium stress responses of Arabidopsis roots through membrane- and cell wall-associated proteome analysis. CHEMOSPHERE 2025; 370:143873. [PMID: 39647793 DOI: 10.1016/j.chemosphere.2024.143873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Uranium (U) is a non-essential and toxic metal for plants. In Arabidopsis thaliana plants challenged with uranyl nitrate, we showed that U was mostly (64-71% of the total) associated with the root insoluble fraction containing membrane and cell wall proteins. Therefore, to uncover new molecular mechanisms related to U stress, we used label-free quantitative proteomics to analyze the responses of the root membrane- and cell wall-enriched proteome. Of the 2,802 proteins identified, 458 showed differential accumulation (≥1.5-fold change) in response to U. Biological processes affected by U include response to stress, amino acid metabolism, and previously unexplored functions associated with membranes and the cell wall. Indeed, our analysis supports a dynamic and complex reorganization of the cell wall under U stress, including lignin and suberin synthesis, pectin modification, polysaccharide hydrolysis, and Casparian strips formation. Also, the abundance of proteins involved in vesicular trafficking and water flux was significantly altered by U stress. Measurements of root hydraulic conductivity and leaf transpiration indicated that U significantly decreased the plant's water flux. This disruption in water balance is likely due to a decrease in PIP aquaporin levels, which may serve as a protective mechanism to reduce U toxicity. Finally, the abundance of transporters and metal-binding proteins was altered, suggesting that they may be involved in regulating the fate and toxicity of U in Arabidopsis. Overall, this study highlights how U stress impacts the insoluble root proteome, shedding light on the mechanisms used by plants to mitigate U toxicity.
Collapse
Affiliation(s)
| | - Cherif Chetouhi
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Lorraine Pennera
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Yann Boursiac
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Adrien Galeone
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190, Gif-sur-Yvette, France
| | - Véronique Santoni
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France.
| |
Collapse
|
2
|
Liu J, Fan X, Ni J, Cai M, Cai D, Jiang Y, Mo A, Miran W, Peng T, Long X, Yang F. Mitigation of uranium toxicity in rice by Sphingopyxis sp. YF1: Evidence from growth, ultrastructure, subcellular distribution, and physiological characteristics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108958. [PMID: 39053315 DOI: 10.1016/j.plaphy.2024.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Uranium (U) contamination of rice is an urgent ecological and agricultural problem whose effective alleviation is in great demand. Sphingopyxis genus has been shown to remediate heavy metal-contaminated soils. Rare research delves into the mitigation of uranium (U) toxicity to rice by Sphingopyxis genus. In this study, we exposed rice seedlings for 7 days at U concentrations of 0, 10, 20, 40, and 80 mg L-1 with or without the Sphingopyxis sp. YF1 in the rice nutrient solution. Here, we firstly found YF1 colonized on the root of rice seedlings, significantly mitigated the growth inhibition, and counteracted the chlorophyll content reduction in leaves induced by U. When treated with 1.1 × 107 CFU mL-1 YF1 with the amendment of 10 mg L-1 U, the decrease of U accumulation in rice seedling roots and shoots was the largest among all treatments; reduced by 39.3% and 32.1%, respectively. This was associated with the redistribution of the U proportions in different organelle parts, leading to the alleviation of the U damage to the morphology and structure of rice root. Interestingly, we found YF1 significantly weakens the expression of antioxidant enzymes genes (CuZnSOD,CATA,POD), promotes the up-regulation of metal-transporters genes (OsHMA3 and OsHMA2), and reduces the lipid peroxidation damage induced by U in rice seedlings. In summary, YF1 is a plant-probiotic with potential applications for U-contaminated rice, benefiting producers and consumers.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Danping Cai
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Jiang
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Waheed Miran
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tangjian Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xizi Long
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fei Yang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Grosjean N, Blaudez D, Chalot M, Flayac J, Gross EM, Le Jean M. Rare earth elements perturb root architecture and ion homeostasis in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133701. [PMID: 38364576 DOI: 10.1016/j.jhazmat.2024.133701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Rare earth elements (REEs) are crucial elements for current high-technology and renewable energy advances. In addition to their increasing usage and their low recyclability leading to their release into the environment, REEs are also used as crop fertilizers. However, little is known regarding the cellular and molecular effects of REEs in plants, which is crucial for better risk assessment, crop safety and phytoremediation. Here, we analysed the ionome and transcriptomic response of Arabidopsis thaliana exposed to a light (lanthanum, La) and a heavy (ytterbium, Yb) REE. At the transcriptome level, we observed the contribution of ROS and auxin redistribution to the modified root architecture following REE exposure. We found indications for the perturbation of Fe homeostasis by REEs in both roots and leaves of Arabidopsis suggesting competition between REEs and Fe. Furthermore, we propose putative ways of entry of REEs inside cells through transporters of microelements. Finally, similar to REE accumulating species, organic acid homeostasis (e.g. malate and citrate) appears critical as a tolerance mechanism in response to REEs. By combining ionomics and transcriptomics, we elucidated essential patterns of REE uptake and toxicity response of Arabidopsis and provide new hypotheses for a better evaluation of the impact of REEs on plant homeostasis.
Collapse
Affiliation(s)
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Michel Chalot
- Université de Franche-Comté, CNRS, Chrono-Environnement, F-25000 Montbéliard, France; Université de Lorraine, F-54000 Nancy, France
| | - Justine Flayac
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | - Marie Le Jean
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France.
| |
Collapse
|
4
|
Ali S, Baloch SB, Bernas J, Konvalina P, Onyebuchi EF, Naveed M, Ali H, Jamali ZH, Nezhad MTK, Mustafa A. Phytotoxicity of radionuclides: A review of sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2024; 240:117479. [PMID: 37884073 DOI: 10.1016/j.envres.2023.117479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Various anthropogenic activities and natural sources contribute to the presence of radioactive materials in the environment, posing a serious threat to phytotoxicity. Contamination of soil and water by radioactive isotopes degrades the environmental quality and biodiversity. They persist in soils for a considerable amount of time and disturb the fauna and flora of any affected area. Hence, their removal from the contaminated medium is inevitable to prevent their entry into the food chain and the organisms at higher levels of the food chain. Physicochemical methods for radioactive element remediation are effective; however, they are not eco-friendly, can be expensive and impractical for large-scale remediation. Contrastingly, different bioremediation approaches, such as phytoremediation using appropriate plant species for removing the radionuclides from the polluted sites, and microbe-based remediation, represent promising alternatives for cleanup. In this review, sources of radionuclides in soil as well as their hazardous impacts on plants are discussed. Moreover, various conventional physicochemical approaches used for remediation discussed in detail. Similarly, the effectiveness and superiority of various bioremediation approaches, such as phytoremediation and microbe-based remediation, over traditional approaches have been explained in detail. In the end, future perspectives related to enhancing the efficiency of the phytoremediation process have been elaborated.
Collapse
Affiliation(s)
- Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic.
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zameer Hussain Jamali
- College of Environmental Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental 13 Gardening, Lidicka, 25/27, Brno, 60200, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences Guangzhou, 510650, China.
| |
Collapse
|
5
|
Jessat J, John WA, Moll H, Vogel M, Steudtner R, Drobot B, Hübner R, Stumpf T, Sachs S. Localization and chemical speciation of europium(III) in Brassica napus plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114741. [PMID: 36950990 DOI: 10.1016/j.ecoenv.2023.114741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/18/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
For the reliable safety assessment of repositories of highly radioactive waste, further development of the modelling of radionuclide migration and transfer in the environment is necessary, which requires a deeper process understanding at the molecular level. Eu(III) is a non-radioactive analogue for trivalent actinides, which contribute heavily to radiotoxicity in a repository. For in-depth study of the interaction of plants with trivalent f elements, we investigated the uptake, speciation, and localization of Eu(III) in Brassica napus plants at two concentrations, 30 and 200 µM, as a function of the incubation time up to 72 h. Eu(III) was used as luminescence probe for combined microscopy and chemical speciation analyses of it in Brassica napus plants. The localization of bioassociated Eu(III) in plant parts was explored by spatially resolved chemical microscopy. Three Eu(III) species were identified in the root tissue. Moreover, different luminescence spectroscopic techniques were applied for an improved Eu(III) species determination in solution. In addition, transmission electron microscopy combined with energy-dispersive X-ray spectroscopy was used to localize Eu(III) in the plant tissue, showing Eu-containing aggregates. By using this multi-method setup, a profound knowledge on the behavior of Eu(III) within plants and changes in its speciation could be obtained, showing that different Eu(III) species occur simultaneously within the root tissue and in solution.
Collapse
Affiliation(s)
- Jenny Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren A John
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- HZDR Innovation GmbH, Bautzner Landstraße 400, 01328 Dresden, Germany; VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
6
|
Vallet A, Martin-Laffon J, Favier A, Revel B, Bonnot T, Vidaud C, Armengaud J, Gaillard JC, Delangle P, Devime F, Figuet S, Serre NBC, Erba EB, Brutscher B, Ravanel S, Bourguignon J, Alban C. The plasma membrane-associated cation-binding protein PCaP1 of Arabidopsis thaliana is a uranyl-binding protein. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130668. [PMID: 36608581 DOI: 10.1016/j.jhazmat.2022.130668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | | | - Adrien Favier
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | - Benoît Revel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Titouan Bonnot
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Claude Vidaud
- BIAM, CEA, CNRS, Univ. Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, GRE-INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Sylvie Figuet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Nelson B C Serre
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
7
|
Jessat J, Moll H, John WA, Bilke ML, Hübner R, Kretzschmar J, Steudtner R, Drobot B, Stumpf T, Sachs S. A comprehensive study on the interaction of Eu(III) and U(VI) with plant cells (Daucus carota) in suspension. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129520. [PMID: 35908404 DOI: 10.1016/j.jhazmat.2022.129520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Daucus carota suspension cells showed a high affinity towards Eu(III) and U(VI) based on a single-step bioassociation process with an equilibrium after 48-72 h. Cells responded with an increased metabolic activity towards heavy metal stress. Luminescence spectroscopy pointed to multiple species for both f-block elements in the culture media, providing initial hints of their interaction with cells and released metabolites. Using nuclear magnetic resonance spectroscopy, we could prove that malate, as an released metabolite in the culture medium, was found to complex with U. Luminescence spectroscopy also showed that Eu(III)-EDTA species are interacting with the cells. Furthermore, Eu(III) and U(VI) coordination is dominated by phosphate groups provided by the cells. We found that Ca ion channels of D. carota cells were involved in the uptake of U(VI), which led to a bioprecipitation of U(VI) in the vacuole of the cells, most probably as uranyl(VI) phosphates along with an intracellular sorption of U(VI) on biomembranes by lipid structures. Eu(III) could be found locally concentrated in the cell wall and in the cytoplasm with a co-localization with phosphorous and oxygen.
Collapse
Affiliation(s)
- Jenny Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren A John
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Marie-Louise Bilke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Jerome Kretzschmar
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
8
|
Mertens A, Horemans N, Saenen E, Nauts R, Cuypers A. Calcium affects uranium responses in Arabidopsis thaliana: From distribution to toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:101-111. [PMID: 35667317 DOI: 10.1016/j.plaphy.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Uranium, a heavy metal and primordial radionuclide, is present in surface waters and soils both naturally and due to industrial activities. Uranium is known to be toxic to plants and its uptake and toxicity can be influenced by multiple factors such as pH and the presence of different ions. However, the precise role of the different ions in uranium uptake is not yet known. Here we investigated whether calcium influences uranium uptake and toxicity in the terrestrial plant Arabidopsis thaliana. To this end, A. thaliana plants were exposed to different calcium and uranium concentrations and furthermore, calcium channels were blocked using the calcium channel blocker lanthanum chloride (LaCl3). Fresh weight, relative growth rate, concentration of nutrients and uranium and gene expression of oxidative stress-related genes and calcium transporters were determined in roots and shoots. Calcium affected plant growth and oxidative stress in both control (no uranium) and uranium-exposed plants. In shoots, this was influenced by the total calcium concentration, but not by the different tested uranium concentrations. Uranium in turn did influence calcium uptake and distribution. Uranium-exposed plants grown in a medium with a higher calcium concentration showed an increase in gene expression of NADPH oxidases RBOHC and RBOHE and calcium transporter CAX7 after uranium exposure. In roots, these calcium-dependent responses in gene expression were not observed. This indicates that calcium indeed affects uranium toxicity, but only in shoots. In addition, a clear influence of uranium and LaCl3 (separately and combined) on the expression of calcium transporters was observed.
Collapse
Affiliation(s)
- Amber Mertens
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan D, 3590, Diepenbeek, Belgium.
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan D, 3590, Diepenbeek, Belgium.
| | - Eline Saenen
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium.
| | - Robin Nauts
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium.
| | - Ann Cuypers
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
9
|
Wu G, Chen X, Zheng T, Xiao PX, Zhong NY, Yang XL, Li Y, Li W. Effects of U on the growth, reactive oxygen metabolism and osmotic regulation in radish (Raphanus sativus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55081-55091. [PMID: 35312915 DOI: 10.1007/s11356-022-19803-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Uranium (U) is a non-essential and toxic element, so it is necessary to study the physiological mechanism of plant response to U stress. The present study evaluated the growth status, reactive oxygen metabolism and osmotic regulation system in radish (Raphanus sativus) under U stress (0, 25, 50 and 100 μM). The results showed that U had no significant effect on the germination of radish seeds but inhibited the growth of seedlings, such as reduced root activity and increased plasma membrane permeability. U is mainly distributed in radish roots, so it poisons the roots more than the aboveground parts. When U concentration was 25 μM, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities in radish were increased to cope with the oxidative stress caused by U stress, and the accumulation of proline and soluble sugar was increased to maintain cell turgor. However, under high concentration (100 μM), the damage of radish root was serious; thus, the SOD, CAT and soluble sugar could not respond to U stress. In conclusion, the identification and characterization of U-stress responses in genuine U-tolerant plants would improve our knowledge on the detoxification of this radionuclide.
Collapse
Affiliation(s)
- Guo Wu
- Life Science College, Sichuan Normal University, Chengdu, 610101, China.
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, China.
| | - Xi Chen
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Ting Zheng
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, China
| | - Pi-Xian Xiao
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Ning-Ying Zhong
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Xiu-Lin Yang
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Yi Li
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Wei Li
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
10
|
John WA, Lückel B, Matschiavelli N, Hübner R, Matschi S, Hoehenwarter W, Sachs S. Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153700. [PMID: 35168012 DOI: 10.1016/j.scitotenv.2022.153700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Endocytosis of metals in plants is a growing field of study involving metal uptake from the rhizosphere. Uranium, which is naturally and artificially released into the rhizosphere, is known to be taken up by certain species of plant, such as Nicotiana tabacum, and we hypothesize that endocytosis contributes to the uptake of uranium in tobacco. The endocytic uptake of uranium was investigated in tobacco BY-2 cells using an optimized setup of culture in phosphate-deficient medium. A combination of methods in biochemistry, microscopy and spectroscopy, supplemented by proteomics, were used to study the interaction of uranium and the plant cell. We found that under environmentally relevant uranium concentrations, endocytosis remained active and contributed to 14% of the total uranium bioassociation. Proteomics analyses revealed that uranium induced a change in expression of the clathrin heavy chain variant, signifying a shift in the type of endocytosis taking place. However, the rate of endocytosis remained largely unaltered. Electron microscopy and energy-dispersive X-ray spectroscopy showed an adsorption of uranium to cell surfaces and deposition in vacuoles. Our results demonstrate that endocytosis constitutes a considerable proportion of uranium uptake in BY-2 cells, and that endocytosed uranium is likely targeted to the vacuole for sequestration, providing a physiologically safer route for the plant than uranium transported through the cytosol.
Collapse
Affiliation(s)
- Warren A John
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Benita Lückel
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Nicole Matschiavelli
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Matschi
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | | | - Susanne Sachs
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
11
|
Chelating Agents in Assisting Phytoremediation of Uranium-Contaminated Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14106379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Massive stockpiles of uranium (U) mine tailings have resulted in soil contamination with U. Plants for soil remediation have low extraction efficiency of U. Chelating agents can mobilize U in soils and, hence, enhance phytoextraction of U from the soil. However, the rapid mobilization rate of soil U by chelating agents in a short period than plant uptake rate could increase the risk of groundwater contamination with soluble U leaching down the soil profile. This review summarizes recent progresses in synthesis and application of chelating agents for assisting phytoremediation of U-contaminated soils. In detail, the interactions between chelating agents and U ions are initially elucidated. Subsequently, the mechanisms of phytoextraction and effectiveness of different chelating agents for phytoremediation of U-contaminated soils are given. Moreover, the potential risks associated with chelating agents are discussed. Finally, the synthesis and application of slow-release chelating agents for slowing down metal mobilization in soils are presented. The application of slow-release chelating agents for enhancing phytoextraction of soil U is still scarce. Hence, we propose the preparation of slow-release biodegradable chelating agents, which can control the release speed of chelating agent into the soil in order to match the mobilization rate of soil U with plant uptake rate, while diminishing the risk of residual chelating agent leaching to groundwater.
Collapse
|
12
|
Sarthou MCM, Devime F, Baggio C, Figuet S, Alban C, Bourguignon J, Ravanel S. Calcium-permeable cation channels are involved in uranium uptake in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127436. [PMID: 34638071 DOI: 10.1016/j.jhazmat.2021.127436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) is a non-essential and toxic element that is taken up by plants from the environment. The assimilation pathway of U is still unknown in plants. In this study, we provide several evidences that U is taken up by the roots of Arabidopsis thaliana through Ca2+-permeable cation channels. First, we showed that deprivation of Arabidopsis plants with calcium induces a 1.5-fold increase in the capacity of roots to accumulate U, suggesting that calcium deficiency promotes the radionuclide import pathway. Second, we showed that external calcium inhibits U accumulation in roots, suggesting a common route for the uptake of both cations. Third, we found that gadolinium, nifedipine and verapamil inhibit the absorption of U, suggesting that different types of Ca2+-permeable channels serve as a route for U uptake. Last, we showed that U bioaccumulation in Arabidopsis mutants deficient for the Ca2+-permeable channels MCA1 and ANN1 is decreased by 40%. This suggests that MCA1 and ANN1 contribute to the absorption of U in different zones and cell layers of the root. Together, our results describe for the first time the involvement of Ca2+-permeable cation channels in the cellular uptake of U.
Collapse
Affiliation(s)
- Manon C M Sarthou
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Célia Baggio
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Sylvie Figuet
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Claude Alban
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
13
|
Revel B, Catty P, Ravanel S, Bourguignon J, Alban C. High-affinity iron and calcium transport pathways are involved in U(VI) uptake in the budding yeast Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126894. [PMID: 34416697 DOI: 10.1016/j.jhazmat.2021.126894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic for all living organisms. To date, the mechanisms of U uptake are far from being understood. Here we provide a direct characterization of the transport machineries capable of transporting U, using the yeast Saccharomyces cerevisiae as a unicellular eukaryote model. First, we evidenced a metabolism-dependent U transport in yeast. Then, competition experiments with essential metals allowed us to identify calcium, iron and copper entry pathways as potential routes for U uptake. The analysis of various metal transport mutants revealed that mutant affected in calcium (mid1Δ and cch1Δ) and Fe(III) (ftr1Δ) transport, exhibited highly reduced U uptake rates and accumulation, demonstrating the implication of the calcium channel Mid1/Cch1 and the iron permease Ftr1 in U uptake. Finally, expression of the Mid1 gene into the mid1Δ mutant restored U uptake levels of the wild type strain, underscoring the central role of the Mid1/Cch1 calcium channel in U absorption process in yeast. Our results also open up the opportunity for rapid screening of U-transporter candidates by functional expression in yeast, before their validation in more complex higher eukaryote model systems.
Collapse
Affiliation(s)
- Benoît Revel
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Patrice Catty
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
14
|
Gemeiner H, Menegário AA, Williams PN, Matavelli Rosa AE, Santos CA, Pedrobom JH, Elias LP, Chang HK. Lability and bioavailability of Co, Fe, Pb, U and Zn in a uranium mining restoration site using DGT and phytoscreening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57149-57165. [PMID: 34085201 DOI: 10.1007/s11356-021-14605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Mine restoration is a long and ongoing process, requiring careful management, which must be informed by site-specific, geochemical risk assessment. Paired topsoil and tree core samples from 4 sites within the uranium mining complex of INB Caldas in Minas Gerais (Brazil) were collected. Soil samples were analysed for their total content of Co, Fe, Pb, U and Zn by XRF, and subsequently, the potential environmental bioavailability of these metals were investigated by DGT and pore water analysis. In addition, results were compared with metal concentrations obtained by Tree Coring from the forest vegetation. In all sampling areas, mean total concentrations of U (Ctot. = 100.5 ± 66.5 to 129.6 ± 57.1 mg kg-1), Pb (Ctot. = 30.8 ± 12.7 to 90.8 ± 90.8 mg kg-1), Zn (Ctot. = 91.5 ± 24.7 to 99.6 ± 10.3 mg kg-1) and Co (Ctot. = 73.8 ± 25.5 to 119.7 ± 26.4 mg kg-1) in soils exceeded respective quality reference values. Study results suggest that AMD caused the increase of labile concentrations of Zn in affected soils. The high lability of the elements Pb (R = 62 ± 34 to 81 ± 29%), U (R = 57 ± 20 to 77 ± 28%) and Zn (R = 21 ± 25 to 34 ± 31%) in soils together with high bioconcentration factors found in wood samples for Pb (BCF = 0.0004 ± 0.0003 to 0.0026 ± 0.0033) and Zn (BCF = 0.012 ± 0.013 to 0.025 ± 0.021) indicated a high toxic potential of these elements to the biota in the soils of the study site. The combination of pore water and DGT analysis with Tree Coring showed to be a useful approach to specify the risk of metal polluted soils. However, the comparison of the results from DGT and Tree Coring could not predict the uptake of metals into the xylems of the sampled tree individuals.
Collapse
Affiliation(s)
- Hendryk Gemeiner
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Amauri Antonio Menegário
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
| | - Paul N Williams
- Institute for Global Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL, Belfast, UK
| | - Amália E Matavelli Rosa
- Indústrias Nucleares do Brasil S.A. - INB Rodovia Poços de Caldas - Andradas, km 20,6 (BR 146, km 540), Caldas, MG, 37780-000, Brazil
| | - Cristiane A Santos
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Geology and Basin Studies Laboratory (LEBAC), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Jorge Henrique Pedrobom
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Lucas Pellegrini Elias
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Hung Kiang Chang
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Geology and Basin Studies Laboratory (LEBAC), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
15
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
16
|
Jessat J, Sachs S, Moll H, John W, Steudtner R, Hübner R, Bok F, Stumpf T. Bioassociation of U(VI) and Eu(III) by Plant ( Brassica napus) Suspension Cell Cultures-A Spectroscopic Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6718-6728. [PMID: 33929840 DOI: 10.1021/acs.est.0c05881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the interaction of U(VI) and Eu(III) with Brassica napus suspension plant cells as a model system. Concentration-dependent (0-200 μM) bioassociation experiments showed that more than 75% of U(VI) and Eu(III) were immobilized by the cells. In addition to this phenomenon, time-dependent studies for 1 to 72 h of exposure showed a multistage bioassociation process for cells that were exposed to 200 μM U(VI), where, after initial immobilization of U(VI) within 1 h of exposure, it was released back into the culture medium starting within 24 h. A remobilization to this extent has not been previously observed. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to correlate the bioassociation behavior of Eu and U with the cell vitality. Speciation studies by spectroscopy and in silico methods highlighted various U and Eu species over the course of exposure. We were able to observe a new U species, which emerged simultaneously with the remobilization of U back into the solution, which we assume to be a U(VI) phosphate species. Thus, the interaction of U(VI) and Eu(III) with released plant metabolites could be concluded.
Collapse
Affiliation(s)
- Jenny Jessat
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren John
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Frank Bok
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
17
|
Rajabi F, Jessat J, Garimella JN, Bok F, Steudtner R, Stumpf T, Sachs S. Uranium(VI) toxicity in tobacco BY-2 cell suspension culture - A physiological study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111883. [PMID: 33454591 DOI: 10.1016/j.ecoenv.2020.111883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
For the first time, the physiological and cellular responses of Nicotiana tabacum (BY-2) cells to uranium (U) as an abiotic stressor were studied using a multi-analytic approach that combined biochemical analysis, thermodynamic modeling and spectroscopic studies. The goal of this investigation was to determine the U threshold toxicity in tobacco BY-2 cells, the influence of U on the homeostasis of micro-macro essential nutrients, as well as the effect of Fe starvation on U bioassociation in cultured BY-2 cells. Our findings demonstrated that U interferes with the homeostasis of essential elements. The interaction of U with BY-2 cells confirmed both time- and concentration-dependent kinetics. Under Fe deficiency, a reduced level of U was detected in the cells compared to Fe-sufficient conditions. Interestingly, blocking the Ca channels with gadolinium chloride caused a decrease in U concentration in the BY-2 cells. Spectroscopic studies evidenced changes in the U speciation in the culture media with increasing exposure time under both Fe-sufficient and deficient conditions, leading us to conclude that different stress response reactions are related to Fe metabolism. Moreover, it is suggested that U toxicity in BY-2 cells is highly dependent on the existence of other micro-macro elements as shown by negative synergistic effects of U and Fe on cell viability.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Jenny Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Jawaharlal Nehru Garimella
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
18
|
Zhang Y, Lai JL, Ji XH, Luo XG. Unraveling response mechanism of photosynthetic metabolism and respiratory metabolism to uranium-exposure in Vicia faba. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122997. [PMID: 32512460 DOI: 10.1016/j.jhazmat.2020.122997] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 05/28/2023]
Abstract
As a natural radionuclide, uranium (U) has obvious phytotoxicity, the purpose of this study is to unravel the response mechanism of U on photosynthetic and respiratory metabolism in plants. Therefore, 14-day-old Vicia faba seedlings were exposed to 0-25 μM U during 72 h. U effects on growth parameters, physiological parameters of plants, and potential phytotoxicity mechanism were investigated by physiological analysis, and metabolome and transcriptome data. U significantly inhibited photosynthesis and respiration of plants. In metabolome analysis, 53 metabolites related to carbohydrate metabolism were identified (13 up-regulated, 12 down-regulated). In transcriptome analysis, U significantly inhibited the expression of photoreactive electron transport chain (up: 0; down: 31), Calvin cycle (up: 0; down: 12) and photorespiration pathway genes (up: 0; down: 8). U significantly inhibited the expression of cellular energy metabolic pathways genes (e.g., glycolysis, TCA cycle, and oxidative phosphorylation pathways) (up 8, down 18). We concluded that U inhibited the expression of genes involved in the photosynthetic metabolic pathway, which caused the decrease of photosynthetic rate. Meanwhile, U inhibited the expression of the electron transport chain genes in the mitochondrial oxidative phosphorylation pathway, which leads to the abnormal energy supply of cells and the inhibition of root respiration rate.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiao-Hui Ji
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723000, China; College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
19
|
Lai JL, Liu ZW, Luo XG. A metabolomic, transcriptomic profiling, and mineral nutrient metabolism study of the phytotoxicity mechanism of uranium. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121437. [PMID: 31899027 DOI: 10.1016/j.jhazmat.2019.121437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 05/28/2023]
Abstract
Uranium (U) is a nonessential element that is readily adsorbed and retained in plant roots, causing root damage plants, rather than being translocated to other parts of the plant. The phytotoxicity mechanism of U is poorly understood. In this study, Vicia faba, a model plant for toxicological research, was selected as experimental material to investigate the phytotoxicity mechanism of U. In this study, the effects of U on the growth and development, methonome, transcriptome and mineral nutrient metabolism of V. faba were studied under different U treatments (0-25 μM) by integrating metabolomics, transcriptomic, and mineral nutrient metabolism analysis techniques. The results showed that U accumulation in roots and aboveground parts reached 164.34-927.90 μg/pot, and 0.028-0.119 μg/pot, respectively. U was mainly accumulated in the cell wall of roots, which damaged the root microstructure and inhibited root growth and development. In terms of mineral nutrient metabolism, U treatment (0-25 μM) led to changes in mineral metabolic profiles of seedlings. In total, 612 different metabolites were identified in nontargeted metabolomics, including 309 significantly upregulated metabolites and 303 significantly downregulated metabolites. Using RNA-seq, 4974 differentially expressed genes (DEGs) were identified under the high-concentration U treatment (25 μM), including 1654 genes significantly upregulated genes and 3320 genes significantly downregulated genes. Metabolic pathway analysis showed that a high concentration of U led to an imbalance of mineral nutrient metabolism in plants and changes in the metabolism and transcriptome pathway of plants, including alterations in the function of plasmodesmata and auxin signal transduction pathway. The latter finding may potentially explain the toxic effect of U on plant roots.
Collapse
Affiliation(s)
- Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Ze-Wei Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
20
|
Gupta DK, Vuković A, Semenishchev VS, Inouhe M, Walther C. Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3513-3522. [PMID: 31836983 DOI: 10.1007/s11356-019-07068-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/14/2019] [Indexed: 05/10/2023]
Abstract
Environmental contamination by uranium (U) and other radionuclides is a serious problem worldwide, especially due to, e.g. mining activities. Ultimate accumulation of released U in aquatic systems and soils represent an escalating problem for all living organisms. In order to investigate U uptake and its toxic effects on Pisum sativum L., pea plantlets were hydroponically grown and treated with different concentrations of U. Five days after exposure to 25 and 50 μM U, P. sativum roots accumulated 2327.5 and 5559.16 mg kg-1 of U, respectively, while in shoots concentrations were 11.16 and 12.16 mg kg-1, respectively. Plants exposed to both U concentrations showed reduced biomass of shoots and reduced content of photosynthetic pigments (total chlorophyll and carotenoids) relative to control. As a biomarker of oxidative stress, lipid peroxidation (LPO) levels were determined, while antioxidative response was determined by catalase (CAT) and glutathione reductase (GR) activities as well as cysteine (Cys) and non-protein thiol (NP-SH) concentrations, both in roots and shoots. Both U treatments significantly increased LPO levels in roots and shoots, with the highest level recorded at 50 μM U, 50.38% in shoots and 59.9% in roots relative to control. U treatment reduced GR activity in shoots, while CAT activity was increased only in roots upon treatment with 25 μM U. In pea roots, cysteine content was significantly increased upon treatment with both U concentrations, for 19.8 and 25.5%, respectively, compared to control plants, while NP-SH content was not affected by the applied U. This study showed significant impact of U on biomass production and biochemical markers of phytotoxicity in P. sativum, indicating presence of oxidative stress and cellular redox imbalance in roots and shoots. Obtained tissue-specific response to U treatment showed higher sensitivity of shoots compared to roots. Much higher accumulation of U in pea roots compared to shoots implies potential role of this species in phytoremediation process.
Collapse
Affiliation(s)
- Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhavan, Aliganj, Jorbagh Road, New Delhi, 110003, India.
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| | - Ana Vuković
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Vladimir S Semenishchev
- Radiochemistry and Applied Ecology Department, Ural Federal University, Physical Technology Institute, Mira Str, 19, Ekaterinburg, Russia
| | - Masahiro Inouhe
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - Clemens Walther
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| |
Collapse
|
21
|
Sarthou MCM, Revel BH, Villiers F, Alban C, Bonnot T, Gigarel O, Boisson AM, Ravanel S, Bourguignon J. Development of a metalloproteomic approach to analyse the response of Arabidopsis cells to uranium stress. Metallomics 2020; 12:1302-1313. [DOI: 10.1039/d0mt00092b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elaboration of a top-down proteomic, biochemical and ionoproteomic toolbox to gain insights into the impact of uranyl (U) on Arabidopsis cells.
Collapse
|
22
|
Henner P, Brédoire F, Tailliez A, Coppin F, Pierrisnard S, Camilleri V, Keller C. Influence of root exudation of white lupine (Lupinus albus L.) on uranium phytoavailability in a naturally uranium-rich soil. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 190-191:39-50. [PMID: 29751206 DOI: 10.1016/j.jenvrad.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Mechanisms of uranium (U) transfer from soil to plants remain poorly understood. The kinetics of supply of U to the soil solution from solid phases could be a key point to understand its phytoavailability and implications for environmental risk assessment. Root activity, particularly the continuous release of organic acids in the rhizosphere, could have an effect on this supply. We tested the impact of citrate exudation by roots of Lupinus albus, either P-sufficient (P+) or P-deficient (P-), on the phytoavailability of U from a naturally contaminated soil (total content of 413 mg U kg-1) using a rhizotest design. Combined effects of P (P-/P+ used to modulate plant physiology) and citrate (model exudate) on the solubilization of U contained in the soils were tested in closed reactors (batch). The batch experiment showed the existence of a low U available pool (0.4% total U) and high accessibility (kd' around 20 L kg-1) which was not significantly affected by P treatment or citrate concentrations. Analysis of U, Fe, Ca, P and citrate concentrations in the batches suggested a complex combination of mechanisms and factors including desorption, resorption, precipitation, co-sorption. On rhizotest, L. albus plants extracted 0.5-0.75% of the total U and between 25 and 40% of the estimated available U present in the rhizotest in 5 days. Uranium accumulation at the whole plant level (20 mg U kg-1d.w., shoot to root ratio around 10-3) seemed to be dependent neither on the plant P nutrition status nor citrate exudation level, possibly in relation with the equivalent accessibility of U whatever the growth conditions. Yet differential translocation to shoots seemed to be positively correlated to citrate exudation.
Collapse
Affiliation(s)
- Pascale Henner
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France.
| | - Félix Brédoire
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Antoine Tailliez
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Frédéric Coppin
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Sylvie Pierrisnard
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Transfer Within Terrestrial Ecosystems (LR2T), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Virginie Camilleri
- Institute for Radioprotection and Nuclear Safety (IRSN/PSE-ENV/SRTE), Laboratory of Research on Radionuclides Effects on Ecosystems (LECO), Cadarache, Bat 183, BP 3, 13115 Saint Paul-lez-Durance, France
| | - Catherine Keller
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, BP 80, 13545 Aix-en-Provence Cedex 04, France
| |
Collapse
|
23
|
Berthet S, Villiers F, Alban C, Serre NBC, Martin-Laffon J, Figuet S, Boisson AM, Bligny R, Kuntz M, Finazzi G, Ravanel S, Bourguignon J. Arabidopsis thaliana plants challenged with uranium reveal new insights into iron and phosphate homeostasis. THE NEW PHYTOLOGIST 2018; 217:657-670. [PMID: 29165807 DOI: 10.1111/nph.14865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Uranium (U) is a naturally occurring radionuclide that is toxic to plants. It is known to interfere with phosphate nutrition and to modify the expression of iron (Fe)-responsive genes. The transporters involved in the uptake of U from the environment are unknown. Here, we addressed whether IRT1, a high-affinity Fe2+ transporter, could contribute to U uptake in Arabidopsis thaliana. An irt1 null mutant was grown hydroponically in different conditions of Fe bioavailability and phosphate supply, and challenged with uranyl. Several physiological parameters (fitness, photosynthesis) were measured to evaluate the response to U treatment. We found that IRT1 is not a major route for U uptake in our experimental conditions. However, the analysis of irt1 indicated that uranyl interferes with Fe and phosphate homeostasis at different levels. In phosphate-sufficient conditions, the absence of the cation chelator EDTA in the medium has drastic consequences on the physiology of irt1, with important symptoms of Fe deficiency in chloroplasts. These effects are counterbalanced by U, probably because the radionuclide competes with Fe for complexation with phosphate and thus releases active Fe for metabolic and biogenic processes. Our study reveals that challenging plants with U is useful to decipher the complex interplay between Fe and phosphate.
Collapse
Affiliation(s)
- Serge Berthet
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Florent Villiers
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Claude Alban
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Nelson B C Serre
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | | | - Sylvie Figuet
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Anne-Marie Boisson
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Richard Bligny
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Marcel Kuntz
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, CEA, CNRS, INRA, BIG-LPCV, 38000, Grenoble, France
| | | |
Collapse
|
24
|
Fedenko VS, Shemet SA, Landi M. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:13-28. [PMID: 28242414 DOI: 10.1016/j.jplph.2017.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 05/24/2023]
Abstract
Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L*a*b* and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool more accessible to plant physiologists and ecologists.
Collapse
Affiliation(s)
- Volodymyr S Fedenko
- Scientific Research Institute of Biology, Oles Honchar Dnipropetrovsk National University,72 Gagarin Avenue, Dnipro 49010, Ukraine
| | - Sergiy A Shemet
- Scientific Research Institute of Biology, Oles Honchar Dnipropetrovsk National University,72 Gagarin Avenue, Dnipro 49010, Ukraine
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80 I-56124, Pisa, Italy.
| |
Collapse
|
25
|
Mazari K, Landa P, Přerostová S, Müller K, Vaňková R, Soudek P, Vaněk T. Thorium impact on tobacco root transcriptome. JOURNAL OF HAZARDOUS MATERIALS 2017; 325:163-169. [PMID: 27931000 DOI: 10.1016/j.jhazmat.2016.11.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Thorium is natural actinide metal with potential use in nuclear energetics. Contamination by thorium, originated from mining activities or spills, represents environmental risk due to its radioactivity and chemical toxicity. A promising approach for cleaning of contaminated areas is phytoremediation, which need to be based, however, on detail understanding of the thorium effects on plants. In this study we investigated transcriptomic response of tobacco roots exposed to 200μM thorium for one week. Thorium application resulted in up-regulation of 152 and down-regulation of 100 genes (p-value <0.01, fold change ≥2). The stimulated genes were involved in components of jasmonic acid and salicylic acid signaling pathways and various abiotic (e.g. oxidative stress) and biotic stress (e.g. pathogens, wounding) responsive genes. Further, up-regulation of phosphate starvation genes and down-regulation of genes involved in phytic acid biosynthesis indicated that thorium disturbed phosphate uptake or signaling. Also expression of iron responsive genes was influenced. Negative regulation of several aquaporins indicated disturbance of water homeostasis. Genes potentially involved in thorium transport could be zinc-induced facilitator ZIF2, plant cadmium resistance PCR2, and ABC transporter ABCG40. This study provides the first insight at the processes in plants exposed to thorium.
Collapse
Affiliation(s)
- Kateřina Mazari
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, Suchdol, 165 21, Czechia
| | - Přemysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia
| | - Sylva Přerostová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia; Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czechia
| | - Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia
| | - Radomíra Vaňková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia
| | - Petr Soudek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia
| | - Tomáš Vaněk
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia.
| |
Collapse
|
26
|
Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, van Hees M, Wannijn J, Vangronsveld J, Cuypers A. Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 150:36-43. [PMID: 26263174 DOI: 10.1016/j.jenvrad.2015.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/20/2015] [Accepted: 07/19/2015] [Indexed: 05/10/2023]
Abstract
Anthropogenic activities have led to a widespread uranium (U) contamination in many countries. The toxic effects of U at the cellular level have mainly been investigated at a pH around 5.5, the optimal pH for hydroponically grown plants. However, since the speciation of U, and hence its toxicity, is strongly dependent on environmental factors such as the pH, it is important to investigate the effects of U at different environmentally relevant pH levels. Although U is poorly translocated from the roots to the shoots, resulting in a low U concentration in the leaves, it has been demonstrated that toxic effects in the leaves were already visible after 1 day exposure at pH 5.5, although only when exposed to relatively high U concentrations (100 μM). Therefore, the present study aimed to analyse the effects of different U concentrations (ranging from 0 to 100 μM) at pH 4.5 in leaves of Arabidopsis thaliana plants. Results indicate that U induces early senescence in A. thaliana leaves as was suggested by a decreased expression of CAT2 accompanied by an induction of CAT3 expression, a decreased CAT capacity and an increased lipid peroxidation. In addition, miRNA398b/c is involved in the regulation of the SOD response in the leaves. As such, an increased MIR398b/c expression was observed leading to a decreased transcript level of CSD1/2. Finally, the biosynthesis of ascorbate was induced after U exposure. This can point towards an important role for this metabolite in the scavenging of reactive oxygen species under U stress.
Collapse
Affiliation(s)
- Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Nathalie Vanhoudt
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Hildegarde Vandenhove
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Geert Biermans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - May van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jean Wannijn
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
27
|
Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A. Induction of Oxidative Stress and Antioxidative Mechanisms in Arabidopsis thaliana after Uranium Exposure at pH 7.5. Int J Mol Sci 2015; 16:12405-23. [PMID: 26042463 PMCID: PMC4490451 DOI: 10.3390/ijms160612405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/06/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022] Open
Abstract
To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed.
Collapse
Affiliation(s)
- Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Nathalie Vanhoudt
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Hildegarde Vandenhove
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Geert Biermans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jean Wannijn
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|