1
|
Linn JD, Rodriguez FA, Calabrese MA. Cosolvent incorporation modulates the thermal and structural response of PNIPAM/silyl methacrylate copolymers. SOFT MATTER 2024; 20:3322-3336. [PMID: 38536224 DOI: 10.1039/d4sm00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Polymers functionalized with inorganic silane groups have been used in wide-ranging applications due to the silane reactivity, which enables formation of covalently-crosslinked polymeric structures. Utilizing stimuli-responsive polymers in these hybrid systems can lead to smart and tunable behavior for sensing, drug delivery, and optical coatings. Previously, the thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAM) functionalized with 3-(trimethoxysilyl)propyl methacrylate (TMA) demonstrated unique aqueous self-assembly and optical responses following temperature elevation. Here, we investigate how cosolvent addition, particularly ethanol and N,N-dimethyl formamide (DMF), impacts these transition temperatures, optical clouding, and structure formation in NIPAM/TMA copolymers. Versus purely aqueous systems, these solvent mixtures can introduce additional phase transitions and can alter the two-phase region boundaries based on temperature and solvent composition. Interestingly, TMA incorporation strongly alters phase boundaries in the water-rich regime for DMF-containing systems but not for ethanol-containing systems. Cosolvent species and content also alter the aggregation and assembly of NIPAM/TMA copolymers, but these effects depend on polymer architecture. For example, localizing the TMA towards one chain end in 'blocky' domains leads to formation of uniform micelles with narrow dispersities above the cloud point for certain solvent compositions. In contrast, polydisperse aggregates form in random copolymer and PNIPAM homopolymer solutions - the size of which depends on solvent composition. The resulting optical responses and thermoreversibility also depend strongly on cosolvent content and copolymer architecture. Cosolvent incorporation thus increases the versatility of inorganic-functionalized responsive polymers for diverse applications by providing a simple way to tune the structure size and optical response.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Fabian A Rodriguez
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Maity S, Gaur D, Mishra B, Dubey NC, Tripathi BP. Bactericidal and biocatalytic temperature responsive microgel based self-cleaning membranes for water purification. J Colloid Interface Sci 2023; 642:129-144. [PMID: 37003009 DOI: 10.1016/j.jcis.2023.03.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The present study focuses on creating an antimicrobial and biocatalytic smart gating membrane by synthesizing unique core-shell microgels. The core-shell microgels are synthesized by grafting short chains of poly(ethylenimine) (PEI) onto a poly((N-isopropyl acrylamide)-co-glycidyl methacrylate)) (P(NIPAm-co-GMA)) core. Subsequently, the produced microgels are utilized as a substrate for synthesizing and stabilizing silver nanoparticles (Ag NPs) through an in-situ approach. These Ag NPs immobilized microgels are then suction filtered over a polyethylene terephthalate (PET) track-etched support to create cross-linked composite microgel membranes (CMMs). After structural and permeation characterization of the prepared CMMs, the laccase enzyme is then covalently grafted to the surface of the membrane and tested for its effectiveness in degrading Reactive red-120 dye. The laccase immobilized biocatalytic CMMs show effective degradation of the Reactive red-120 by 71%, 48%, and 34% at pH 3, 4, and 5, respectively. Furthermore, the immobilized laccase enzyme showed better activity and stability in terms of thermal, pH, and storage compared to the free laccase, leading to increased reusability. The unique combination of Ag NPs and laccase on a thermoresponsive microgel support resulted in a responsive self-cleaning membrane with excellent antimicrobial and dye degradation capabilities for environmentally friendly separation technology.
Collapse
|
3
|
Zahid S, Alzahrani AK, Kizilbash N, Ambreen J, Ajmal M, Farooqi ZH, Siddiq M. Preparation of stimuli responsive microgel with silver nanoparticles for biosensing and catalytic reduction of water pollutants. RSC Adv 2022; 12:33215-33228. [PMID: 36425212 PMCID: PMC9677230 DOI: 10.1039/d2ra05475b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
Herein, we report poly(N-isopropylacrylamide/2-acrylamido-2-methylpropane sulfonic acid) microgel fabricated with silver nanoparticles. The identification of copolymerization and functional groups in the bare microgel and those fabricated with silver nanoparticles was examined by Fourier transform infrared spectroscopy. The pH and temperature sensitivity of microgels was studied using dynamic light scattering. Thermogravimetric analysis was carried out to study the thermal stability. X-Ray diffraction patterns indicated the amorphous nature of bare microgel and crystalline nature of those containing silver nanoparticles. A bathochromic shift was found in the surface plasmon resonance of silver nanoparticles present in microgel with increase in pH of the medium. Moreover, the microgel containing silver nanoparticles served as an effective catalyst for reducing the toxic nitroaromatic pollutants and carcinogenic dyes. The microgel containing silver nanoparticles also showed good capability to serve as biosensor for the detection of hydrogen peroxide.
Collapse
Affiliation(s)
- Sara Zahid
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University Arar-91431 Saudi Arabia
| | - Nadeem Kizilbash
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University Arar-91431 Saudi Arabia
| | - Jaweria Ambreen
- Department of Chemistry, COMSATS University Islamabad Park Road 45550 Islamabad Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
4
|
Li Y, Zhang S, Jiang H, Guan X, Ngai T. Multifunctional Silica-Modified Hybrid Microgels Templated from Inverse Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6571-6578. [PMID: 35587898 DOI: 10.1021/acs.langmuir.2c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microgels are regarded as soft colloids with environmental responsiveness. However, the majority of reported microgels are inherently hydrophilic, resulting in aqueous dispersions, and only used in water-based applications. Herein, we reported an efficient method for hybridization of poly(N-isopropylacrylamide) microgel by coating hydrophobic silica nanoparticles on their surface. The resultant hybrid microgel had switchable surface wettability and could be dispersed in both aqueous and oil phases. Meanwhile, the coated hydrophobic silica nanoparticles solved the difficulty in redispersing microgels caused by particle aggregation and film formation during the drying process, providing a significant advantage in dried storage. Furthermore, the introduction of hydrophobic silica nanoparticles endowed the hybrid microgel with a variety of applications, including cargo encapsulation, active release induced by emulsion reversion, and trace water absorption.
Collapse
Affiliation(s)
- Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shengwei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, P. R. China
| |
Collapse
|
5
|
Sabadasch V, Fandrich P, Annegarn M, Hellweg T. Effect of Methacrylic Acid in PNNPAM Microgels on the Catalytic Activity of Embedded Palladium Nanoparticles. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Viktor Sabadasch
- Physical and Biophysical Chemistry Bielefeld University Bielefeld 33615 Germany
| | - Pascal Fandrich
- Physical and Biophysical Chemistry Bielefeld University Bielefeld 33615 Germany
| | - Marco Annegarn
- Physical and Biophysical Chemistry Bielefeld University Bielefeld 33615 Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry Bielefeld University Bielefeld 33615 Germany
| |
Collapse
|
6
|
Wei M, Darcie T, Xu W, Gao Y, Mundel H, Aitchison JS, Zhang X, Serpe MJ. Enhancing the Sensitivity of Surface Plasmon Resonance Measurements Utilizing Polymer Film/Au Assemblies. Anal Chem 2021; 93:16718-16726. [PMID: 34851626 DOI: 10.1021/acs.analchem.1c04546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface plasmon resonance (SPR) is used to infer information about a sample that is in contact with an Au-coated glass slide coupled to the SPR prism. Shifts in the angle of the "SPR minimum reflection" can be related to changes in the refractive index (and/or thickness) of the sample that is in contact with the Au film, which can then be used to determine the concentration of an analyte in that sample. Here, we show that by depositing a layer of poly(N-isopropylacrylamide-co-acrylic acid) [p(NIPAm-co-AAc)] microgel on the SPR's Au film, with a subsequent layer of Au deposited on top of the microgels, the sensitivity of SPR to changes in solution properties can be enhanced. We investigated the sensitivity of the SPR to changes in the temperature of water in contact with the SPR's Au film as a function of the microgel immobilization density and the thickness of the Au layer deposited on the microgel layer. The data revealed that the SPR's Au film densely coated with microgels, with 5 nm of Au deposited, exhibited the maximal enhancement. The plasmon coupling effect between the additional Au film on the microgels and the SPR's Au film was further confirmed by 3D finite difference time domain simulations.
Collapse
Affiliation(s)
- Menglian Wei
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Todd Darcie
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S3G4, Ontario, Canada
| | - Wenwen Xu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Yongfeng Gao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Hannah Mundel
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S3G4, Ontario, Canada
| | - J Stewart Aitchison
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S3G4, Ontario, Canada
| | - Xueji Zhang
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| |
Collapse
|
7
|
Yang D, Eronen H, Tenhu H, Hietala S. Phase Transition Behavior and Catalytic Activity of Poly( N-acryloylglycinamide- co-methacrylic acid) Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2639-2648. [PMID: 33594889 PMCID: PMC8026100 DOI: 10.1021/acs.langmuir.0c03264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Poly(N-acryloyl glycinamide) is a well-known thermoresponsive polymer possessing an upper critical solution temperature (UCST) in water. By copolymerizing N-acryloyl glycinamide (NAGA) with methacrylic acid (MAA) in the presence of a crosslinker, poly(N-acryloyl glycinamide-co-methacrylic acid) [P(NAGA-MAA)] copolymer microgels with an MAA molar fraction of 10-70 mol % were obtained. The polymerization kinetics suggests that the copolymer microgels have a random structure. The size of the microgels was between 60 and 120 nm in the non-aggregated swollen state in aqueous medium and depending on the solvent conditions, they show reversible swelling and shrinking upon temperature change. Their phase transition behavior was studied by a combination of methods to understand the process of the UCST-type behavior and interactions between NAGA and MAA. P(NAGA-MAA) microgels were loaded with silver nanoparticles (AgNPs) by the reduction of AgNO3 under UV light. Compared with the chemical reduction of AgNO3, the photoreduction results in smaller AgNPs and the amount and size of the AgNPs are dependent on the comonomer ratio. The catalytic activity of the AgNP-loaded microgels in 4-nitrophenol reduction was tested.
Collapse
|
8
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
9
|
Lima MJ, Sasaki MK, Marinho OR, Freitas TA, Faria RC, Reis BF, Rocha FR. Spot test for fast determination of hydrogen peroxide as a milk adulterant by smartphone-based digital image colorimetry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Shu T, Shen Q, Zhang X, Serpe MJ. Stimuli-responsive polymer/nanomaterial hybrids for sensing applications. Analyst 2020; 145:5713-5724. [PMID: 32743626 DOI: 10.1039/d0an00686f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical and biological/biochemical sensors are capable of generating readout signals that are proportional to the concentration of specific analytes of interest. Signal sensitivity and limit of detection/quantitation can be enhanced through the use of polymers, nanomaterials, and their hybrids. Of particular interest are stimuli-responsive polymers and nanomaterials due to their ability to change their physical and/or chemical characteristics in response to their environment, and/or in the presence of molecular/biomolecular species of interest. Their individual use for sensing applications have many benefits, although this review focuses on the utility of stimuli-responsive polymer and nanomaterial hybrids. We discuss three main topics: stimuli-responsive nanogels, stimuli-responsive network polymers doped with nanomaterials, and nanoparticles modified with stimuli-responsive polymers.
Collapse
Affiliation(s)
- Tong Shu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | | | | | | |
Collapse
|
11
|
Tang H, Wang X, Huang X. In Situ Formation of Ag Nanoparticles Capped by Photoactivable Ligands for Optical Sensing of Hypochlorite. ChemistrySelect 2020. [DOI: 10.1002/slct.202002688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong Tang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology College of Chemistry and Chemical Engineering Hubei Normal University Huangshi 435002 P. R. China
| | - Xu Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology College of Chemistry and Chemical Engineering Hubei Normal University Huangshi 435002 P. R. China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology College of Chemistry and Chemical Engineering Hubei Normal University Huangshi 435002 P. R. China
| |
Collapse
|
12
|
Silver and palladium nanoparticle embedded poly(n-isopropylacrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) hybrid microgel catalyst with pH and temperature dependent catalytic activity. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0484-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Wang X, Tang H, Tian X, Zeng R, Jia Z, Huang X. Sunlight and UV driven synthesis of Ag nanoparticles for fluorometric and colorimetric dual-mode sensing of ClO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117996. [PMID: 31923784 DOI: 10.1016/j.saa.2019.117996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
A photo-responsive compound BINOL-LA (1) having a rigid backbone ending up with two 5-membered cyclic disulfide moieties was designed. BINOL-LA capped Ag nanoparticles (1@Ag NPs) with a network structure were synthesized in a green way by sunlight or UV lamp irradiation. 1@Ag NPs exhibit a selective recognition towards ClO- in aqueous solution with a switch-on fluorescence response and a visual color change, with detection limits of 0.17 μM and 1.54 μM, respectively. The sensing mechanism is based on the ClO--mediated oxidation of AgS bond, resulting in a disaggregation of 1@Ag NPs assembly. With the strategy demonstrated here, ClO- in tap water and lake water can be detected quantitatively in 5 s.
Collapse
Affiliation(s)
- Xu Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Hong Tang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xinming Tian
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Ranying Zeng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Zejin Jia
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
14
|
Gumerov RA, Gau E, Xu W, Melle A, Filippov SA, Sorokina AS, Wolter NA, Pich A, Potemkin II. Amphiphilic PVCL/TBCHA microgels: From synthesis to characterization in a highly selective solvent. J Colloid Interface Sci 2020; 564:344-356. [DOI: 10.1016/j.jcis.2019.12.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
15
|
Chee E, Nandi S, Nellenbach K, Mihalko E, Snider DB, Morrill L, Bond A, Sproul E, Sollinger J, Cruse G, Hoffman M, Brown AC. Nanosilver composite pNIPAm microgels for the development of antimicrobial platelet-like particles. J Biomed Mater Res B Appl Biomater 2020; 108:2599-2609. [PMID: 32100966 DOI: 10.1002/jbm.b.34592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
Abstract
Platelets crucially facilitate wound healing but can become depleted in traumatic injury or chronic wounds. Previously, our group developed injectable platelet-like particles (PLPs) comprised of highly deformable, ultralow crosslinked pNIPAm microgels (ULCs) coupled to fibrin binding antibodies to treat post-trauma bleeding. PLP fibrin-binding facilitates homing to sites of injury, promotes clot formation, and, due to high particle deformability, induces clot retraction. Clot retraction augments healing by increasing clot stability, enhancing clot stiffness, and promoting cell migration into the wound bed. Because post-traumatic healing is often complicated by infection, the objective of these studies was to develop antimicrobial nanosilver microgel composite PLPs to augment hemostasis, fight infection, and promote healing post-trauma. A key goal was to maintain particle deformability following silver incorporation to preserve PLP-mediated clot retraction. Clot retraction, antimicrobial activity, hemostasis after trauma, and healing after injury were evaluated via confocal microscopy, colony-forming unit assays, a murine liver trauma model, and a murine full-thickness injury model in the absence or presence of infection, respectively. We found that nanosilver incorporation does not affect base PLP performance while bestowing significant antimicrobial activity and enhancing infected wound healing outcomes. Therefore, Ag-PLPs have great promise for treating hemorrhage and improving healing following trauma.
Collapse
Affiliation(s)
- Eunice Chee
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Seema Nandi
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Kimberly Nellenbach
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Emily Mihalko
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Douglas B Snider
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Landon Morrill
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Andrew Bond
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Erin Sproul
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Jennifer Sollinger
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Glenn Cruse
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Maureane Hoffman
- Department of Pathology, Duke University, Durham, North Carolina
| | - Ashley C Brown
- Joint Department of Biomedical Engineering at the University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
16
|
Shahid M, Farooqi ZH, Begum R, Arif M, Wu W, Irfan A. Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review. Crit Rev Anal Chem 2019; 50:513-537. [PMID: 31559830 DOI: 10.1080/10408347.2019.1663148] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Polymer microgels loaded with inorganic nanoparticles have gained much attention as catalytic systems for reduction of toxic chemicals. Enhanced catalytic properties of hybrid microgels are related to the stimuli responsive nature of microgels and extraordinary stability of nanoparticles within network of polymer microgels. Catalytic properties of hybrid microgels can be tuned very easily by slight variation in environmental conditions. Herein we have reviewed catalytic reduction of toxic chemicals such as nitroarenes and organic dyes in the presence of appropriate hybrid microgel catalytic systems under different operating conditions of reaction. Recent advancements in catalytic behavior of hybrid microgels with special emphasis on their ability to catalytically degrade various toxic chemicals has been presented in this review.
Collapse
Affiliation(s)
- Muhammad Shahid
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Muhammad Arif
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan.,Department of Chemistry, School of Science, University of Management and Technology, C-II Johar Town, Lahore, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Conley GM, Zhang C, Aebischer P, Harden JL, Scheffold F. Relationship between rheology and structure of interpenetrating, deforming and compressing microgels. Nat Commun 2019; 10:2436. [PMID: 31164639 PMCID: PMC6547648 DOI: 10.1038/s41467-019-10181-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/23/2019] [Indexed: 11/30/2022] Open
Abstract
Thermosensitive microgels are widely studied hybrid systems combining properties of polymers and colloidal particles in a unique way. Due to their complex morphology, their interactions and packing, and consequentially the viscoelasticity of suspensions made from microgels, are still not fully understood, in particular under dense packing conditions. Here we study the frequency-dependent linear viscoelastic properties of dense suspensions of micron sized soft particles in conjunction with an analysis of the local particle structure and morphology based on superresolution microscopy. By identifying the dominating mechanisms that control the elastic and dissipative response, we can explain the rheology of these widely studied soft particle assemblies from the onset of elasticity deep into the overpacked regime. Interestingly, our results suggest that the friction between the microgels is reduced due to lubrification mediated by the polymer brush-like corona before the onset of interpenetration.
Collapse
Affiliation(s)
- Gaurasundar M Conley
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland
| | - Chi Zhang
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland
| | - Philippe Aebischer
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland
| | - James L Harden
- Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland.
| |
Collapse
|
18
|
Mapping Nanoparticles in Hydrogels: A Comparison of Preparation Methods for Electron Microscopy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The distribution of noble metal nanoparticles (NMNPs) in hydrogels influences their nanoplasmonic response and signals used for biosensor purposes. By controlling the particle distribution in NMNP-nanocomposite hydrogels, it is possible to obtain new nanoplasmonic features with new sensing modalities. Particle positions can be characterized by using volume-imaging methods such as the focused ion beam-scanning electron microscope (FIB-SEM) or the serial block-face scanning electron microscope (SBFSEM) techniques. The pore structures in hydrogels are contained by the water absorbed in the polymer network and may pose challenges for volume-imaging methods based on electron microscope techniques since the sample must be in a vacuum chamber. The structure of the hydrogels can be conserved by choosing appropriate preparation methods, which also depends on the composition of the hydrogel used. In this paper, we have prepared low-weight-percentage hydrogels, with and without gold nanorods (GNRs), for conventional scanning electron microscope (SEM) imaging by using critical point drying (CPD) and hexamethyldisilazane (HMDS) drying. The pore structures and the GNR positions in the hydrogel were characterized. The evaluation of the sample preparation techniques elucidate new aspects concerning the drying of hydrogels for SEM imaging. The results of identifying GNRs positioned in a hydrogel polymer network contribute to the development of mapping metal particle positions with volume imaging methods such as FIB-SEM or SBFSEM for studying nanoplasmonic properties of NMNP-nanocomposite hydrogels.
Collapse
|
19
|
Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Temperature and pH responsive cellulose filament/poly (NIPAM-co-AAc) hybrids as novel adsorbent towards Pb(II) removal. Carbohydr Polym 2018; 195:495-504. [DOI: 10.1016/j.carbpol.2018.04.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 02/08/2023]
|
21
|
Sattari S, Dadkhah Tehrani A, Adeli M. pH-Responsive Hybrid Hydrogels as Antibacterial and Drug Delivery Systems. Polymers (Basel) 2018; 10:E660. [PMID: 30966694 PMCID: PMC6404117 DOI: 10.3390/polym10060660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
Abstract
This study describes the design and synthesis of organic⁻inorganic hybrid hydrogels based on an interpenetrating polymer network (IPN) composed of polyaspartic acid crosslinked by graphene nanosheets as the primary network and poly(acrylamide-co-acrylic acid) as the secondary network. Silver, copper oxide, and zinc oxide nanoparticles were formed within the gel matrix, and the obtained hydrogel was applied to a load and controlled release of curcumin. The loading of curcumin and the release of this drug from the gels depended on the nanoparticle's (NP's) content of hydrogels as well as the pH of the medium. The synthesized hydrogels showed antibacterial activity against E. coli and S. aureus bacteria. The ability of the synthesized hydrogels to incapacitate bacteria and their loading capacity and controlled release of curcumin qualify them for future therapies such as wound-dressing applications.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad P.O. Box 465, Iran.
| | - Abbas Dadkhah Tehrani
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad P.O. Box 465, Iran.
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad P.O. Box 465, Iran.
| |
Collapse
|
22
|
Echeverria C, Fernandes SN, Godinho MH, Borges JP, Soares PIP. Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels 2018; 4:E54. [PMID: 30674830 PMCID: PMC6209286 DOI: 10.3390/gels4020054] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli "smart" systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.
Collapse
Affiliation(s)
- Coro Echeverria
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, Madrid 28006, Spain.
| | - Susete N Fernandes
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - Maria H Godinho
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - João Paulo Borges
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - Paula I P Soares
- I3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| |
Collapse
|
23
|
Wang J, Zhu X, Wei L, Ye Y, Liu Y, Li J, Mei T, Wang X, Wang L. Controlled Shape Transformation and Loading Release of Smart Hemispherical Hybrid Microgels Triggered by ‘Inner Engines’. ChemistrySelect 2018. [DOI: 10.1002/slct.201800729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Xiang Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Lai Wei
- Wuhan Drug Solubilization and Delivery Technology Research Center; School of Environment and Biochemical Engineering; Wuhan Vocational College of Software and Engineering; Wuhan 430205 China
| | - Yuqi Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Yuying Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry & Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
24
|
Gumfekar SP, Soares JBP. A novel hydrophobically-modified polyelectrolyte for enhanced dewatering of clay suspension. CHEMOSPHERE 2018; 194:422-431. [PMID: 29227890 DOI: 10.1016/j.chemosphere.2017.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/26/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
This work investigates the effect of multifunctional poly (N-isopropyl acrylamide/acrylic acid/N-tert-butylacrylamide) [p(NIPAM-AA-NTBA)] ternary polymer on the sedimentation of kaolin clay - a major fraction of oil sands tailings. A series of linear, uncross-linked p(NIPAM), p(NIPAM/AA), and p(NIPAM/AA/NTBM) were synthesized as random copolymers, where all monomer units were randomly arranged along the polymer backbone and connected by covalent bonds. The ternary copolymer, used as a flocculant, exhibited thermo-sensitivity, anionic nature, and hydrophobic association due to NIPAM, AA, and NTBM, respectively. As the ternary polymer is thermosensitive, it undergoes extended to coil-like conformation, i.e. hydrophilic to hydrophobic transition, above its lower critical solution temperature (LCST). The comonomers NIPAM (above LCST) and NTBM help expel water out of sediments due to their hydrophobicity, while AA promotes charge neutralization of the kaolin clay particles. The effect of number average molecular weight, charge density, and concentration of NTBM on settling behavior of kaolin suspension was examined. Settling test at 50 °C resulted in significantly higher settling rates compared to that at room temperature. Further, the quality of water recovered in each experiment was tested in terms of its turbidity. These results indicate that this novel ternary polymer can be employed to enhance the recovery of water from oil sands tailings containing clays.
Collapse
Affiliation(s)
- Sarang P Gumfekar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| | - João B P Soares
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| |
Collapse
|
25
|
Herman K, Lang ME, Pich A. Tunable clustering of magnetic nanoparticles in microgels: enhanced magnetic relaxivity by modulation of network architecture. NANOSCALE 2018; 10:3884-3892. [PMID: 29419839 DOI: 10.1039/c7nr07539a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work we used microgels as colloidal containers for the loading of hydrophobic magnetic nanoparticles using the solvent exchange method. We varied systematically two parameters: (i) the crosslinking degree of microgels (1-4.5 mol% crosslinker) and (ii) loading of hydrophobic magnetite nanoparticles (d = 7 nm) in microgels (2-10 wt%). The experimental data show that the interplay between these two parameters provides efficient control over the clustering of magnetic nanoparticles in the microgel structure. Transverse magnetization relaxation measurements indicate that the formation of nanoparticle clusters in microgels induces non-linear enhancement of the relaxivity with the increase of nanoparticle loading in microgels. The results suggest that the modulation of the microgel network architecture can be efficiently applied to trigger self-assembly processes inside microgels and design hybrid colloids with unusual morphologies and properties.
Collapse
Affiliation(s)
- K Herman
- DWI Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, Aachen, 52074, Germany
| | | | | |
Collapse
|
26
|
Sun W, Wu P. The structure and volume phase transition behavior of poly(N-vinylcaprolactam)-based hybrid microgels containing carbon nanodots. Phys Chem Chem Phys 2018; 19:127-134. [PMID: 27901139 DOI: 10.1039/c6cp06862f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this paper, we investigated the internal structure and the volume phase transition (VPT) behavior of poly(N-vinylcaprolactam-co-vinylimidazole)/polymerizable carbon nanodot (P(VCL-co-VIM)/PCND) microgels with different amounts of PCNDs. Our study shows that compared to the pure P(VCL-co-VIM) microgel, the hybrid microgels undergo a two-step VPT as the temperature increases and a core-shell(-corona) structure of the hybrid microgels is formed by copolymerization with PCNDs. A change in the amount of PCNDs has effects on both of the volume phase transition temperature and internal structure of microgels. Moreover, based on FT-IR in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectral (2Dcos) analyses, the difference in VPT behavior between the shell and the core (corona) structure of the hybrid microgels at the molecular level is elucidated. The core/shell of the hybrid microgels fixed with hydrophilic PCNDs has a higher transition temperature during heating and a more compact structure due to the additional crosslinkers PCNDs.
Collapse
Affiliation(s)
- Wenhui Sun
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
27
|
Shu T, Shen Q, Wan Y, Zhang W, Su L, Zhang X, Serpe MJ. Silver nanoparticle-loaded microgel-based etalons for H2O2sensing. RSC Adv 2018; 8:15567-15574. [PMID: 35539489 PMCID: PMC9080173 DOI: 10.1039/c8ra02215a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 02/02/2023] Open
Abstract
Silver nanoparticles (AgNPs) were generated inside the network structure of poly(N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgels that were sandwiched between two thin Au layers (15 nm) of an etalon. This was done by introducing Ag+ to the etalons composed of deprotonated microgels, followed by its subsequent reduction with NaBH4. The resultant microgels were collected and then characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), verifying the loading of AgNPs with relatively uniform diameter (5–7 nm) within the microgels. Furthermore, the optical properties of the resultant etalons and their response to H2O2 were evaluated by reflectance spectroscopy. Specifically, upon the addition of H2O2, the AgNP-loaded etalons exhibited both a red shift in the position of the reflectance peaks and an increase in reflected wavelength intensity. We hypothesize that the dual signal response of the devices was a result of oxidative decomposition of the AgNPs, enabling the microgels to swell and for more light to be reflected (due to the loss of the light absorbing AgNPs). Finally, we showed that the AgNPs could be regenerated in the used etalons multiple times without a loss in performance. This work provides a cost-effective means to detect H2O2, which could be modified to sense a variety of other species of physiological and environmental importance through rationally loading other functional nanomaterials. Silver nanoparticle (AgNP)-loaded poly(N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc)-based microgels were generated and used to make etalons. The etalons were shown to exhibit optical properties that depended on the concentration of H2O2 in solution.![]()
Collapse
Affiliation(s)
- Tong Shu
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Qiming Shen
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Yu Wan
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Wei Zhang
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Lei Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Michael J. Serpe
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| |
Collapse
|
28
|
Liu J, Shu T, Su L, Zhang X, Serpe MJ. Synthesis of poly (N-isopropylacrylamide)-co-(acrylic acid) microgel-entrapped CdS quantum dots and their photocatalytic degradation of an organic dye. RSC Adv 2018; 8:16850-16857. [PMID: 35540540 PMCID: PMC9080336 DOI: 10.1039/c8ra01855c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/29/2018] [Indexed: 11/21/2022] Open
Abstract
CdS quantum dots (CdSQDs) were generated inside the network structure of poly (N-isopropylacrylamide)-co-(acrylic acid) (pNIPAm-co-AAc) microgels and their ability to photocatalytically degrade organic dyes was evaluated using rhodamine B (RhB).
Collapse
Affiliation(s)
- Jingzhu Liu
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Tong Shu
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Lei Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | | |
Collapse
|
29
|
Ma L, Wu P. The role of unique spatial structure in the volume phase transition behavior of poly(N-isopropylacrylamide)-based interpenetrating polymer network microgels including a thermosensitive poly(ionic liquid). Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00340h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By comparing with the linear homopolymer mixture, the influence of spatial structure on the phase behavior of thermosensitive interpenetrating polymer network (IPN) microgels was clarified.
Collapse
Affiliation(s)
- Lan Ma
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Peiyi Wu
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
30
|
Brändel T, Wiehemeier L, Kottke T, Hellweg T. Microphase separation of smart double-responsive copolymer microgels studied by local fluorescence probes. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Liu J, Dong ZZ, Yang C, Li G, Wu C, Lee FW, Leung CH, Ma DL. Turn-on Luminescent Probe for Hydrogen Peroxide Sensing and Imaging in Living Cells based on an Iridium(III) Complex-Silver Nanoparticle Platform. Sci Rep 2017; 7:8980. [PMID: 28827747 PMCID: PMC5566206 DOI: 10.1038/s41598-017-09478-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
A sensitive turn-on luminescent sensor for H2O2 based on the silver nanoparticle (AgNP)-mediated quenching of an luminescent Ir(III) complex (Ir-1) has been designed. In the absence of H2O2, the luminescence intensity of Ir-1 can be quenched by AgNPs via non-radiative energy transfer. However, H2O2 can oxidize AgNPs to soluble Ag+ cations, which restores the luminescence of Ir-1. The sensing platform displayed a sensitive response to H2O2 in the range of 0-17 μM, with a detection limit of 0.3 μM. Importantly, the probe was successfully applied to monitor intracellular H2O2 in living cells, and it also showed high selectivity for H2O2 over other interfering substances.
Collapse
Affiliation(s)
- Jinshui Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Fu-Wa Lee
- College of International Education, School of Continuing Education, Hong Kong Baptist University, Shek Mun, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
32
|
Tavakoli J, Tang Y. Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers (Basel) 2017; 9:E364. [PMID: 30971040 PMCID: PMC6418953 DOI: 10.3390/polym9080364] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
Biosensors that detect and convert biological reactions to a measurable signal have gained much attention in recent years. Between 1950 and 2017, more than 150,000 papers have been published addressing the applications of biosensors in different industries, but to the best of our knowledge and through careful screening, critical reviews that describe hydrogel based biosensors for biomedical applications are rare. This review discusses the biomedical application of hydrogel based biosensors, based on a search performed through Web of Science Core, PubMed (NLM), and Science Direct online databases for the years 2000⁻2017. In this review, we consider bioreceptors to be immobilized on hydrogel based biosensors, their advantages and disadvantages, and immobilization techniques. We identify the hydrogels that are most favored for this type of biosensor, as well as the predominant transduction strategies. We explain biomedical applications of hydrogel based biosensors including cell metabolite and pathogen detection, tissue engineering, wound healing, and cancer monitoring, and strategies for small biomolecules such as glucose, lactate, urea, and cholesterol detection are identified.
Collapse
Affiliation(s)
- Javad Tavakoli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5042, SA, Australia.
| | - Youhong Tang
- Institute for Nano Scale Science & Technology, College of Science and Engineering, Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
33
|
Ag-loaded thermo-sensitive composite microgels for enhanced catalytic reduction of methylene blue. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s41204-017-0026-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Emam HE, El-Zawahry MM, Ahmed HB. One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohydr Polym 2017; 166:1-13. [DOI: 10.1016/j.carbpol.2017.02.091] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
|
35
|
Nascimento CF, Santos PM, Pereira-Filho ER, Rocha FR. Recent advances on determination of milk adulterants. Food Chem 2017; 221:1232-1244. [DOI: 10.1016/j.foodchem.2016.11.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
|
36
|
Olenin AY. Methods of nonenzymatic determination of hydrogen peroxide and related reactive oxygen species. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817030108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Rochette D, Kent B, Habicht A, Seiffert S. Effect of polymer network inhomogeneity on the volume phase transitions of thermo- and pH-sensitive weakly charged microgels. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4029-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Hu Y, Pérez-Mercader J. Controlled Synthesis of Uniform, Micrometer-Sized Ruthenium-Functionalized Poly(N-Isopropylacrylamide) Gel Particles and their Application to the Catalysis of the Belousov-Zhabotinsky Reaction. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/04/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Yuandu Hu
- Department of Earth and Planetary Sciences; Harvard University; Cambridge MA 02142 USA
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences; Harvard University; Cambridge MA 02142 USA
- Santa Fe Institute; Santa Fe NM 87501 USA
| |
Collapse
|
39
|
Tan NPB, Lee CH, Li P. Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities. Polymers (Basel) 2016; 8:polym8040105. [PMID: 30979194 PMCID: PMC6432224 DOI: 10.3390/polym8040105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/12/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
Herein we report a simple and green synthesis of smart Au and Ag@Au nanocomposite particles using poly(N-isopropylacrylamide)/polyethyleneimine (PNIPAm/PEI) core-shell microgels as dual reductant and templates in an aqueous system. The nanocomposite particles were synthesized through a spontaneous reduction of tetrachloroauric (III) acid to gold nanoparticles at room temperature, and in situ encapsulation and stabilization of the resultant gold nanoparticles (AuNPs) with amine-rich PEI shells. The preformed gold nanoparticles then acted as seed nanoparticles for further generation of Ag@Au bimetallic nanoparticles within the microgel templates at 60 °C. These nanocomposite particles were characterized by TEM, AFM, XPS, UV-vis spectroscopy, zeta-potential, and particle size analysis. The synergistic effects of the smart nanocomposite particles were studied via the reduction of p-nitrophenol to p-aminophenol. The catalytic performance of the bimetallic Ag@Au nanocomposite particles was 25-fold higher than that of the monometallic Au nanoparticles. Finally, the controllable catalytic activities of the Au@PNIPAm/PEI nanocomposite particles were demonstrated via tuning the solution pH and temperature.
Collapse
Affiliation(s)
- Noel Peter Bengzon Tan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Cheng Hao Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
40
|
Späth A, Graf-Zeiler BA, Paradossi G, Ghugare S, Tzvetkov G, Fink RH. Quantitative X-ray microscopic analysis of individual thermoresponsive microgel particles in aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra20142c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The temperature dependent phase transition of individual thermoresponsive microgel particles in aqueous solution has been studied by high resolution soft X-ray transmission microscopy (STXM).
Collapse
Affiliation(s)
- Andreas Späth
- Physikalische Chemie II
- ICMM
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Birgit A. Graf-Zeiler
- Physikalische Chemie II
- ICMM
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Roma
- Italy
| | - Shivkumar Ghugare
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Roma
- Italy
| | - George Tzvetkov
- Department of Inorganic Chemistry
- Faculty of Chemistry
- University of Sofia
- 1164 Sofia
- Bulgaria
| | - Rainer H. Fink
- Physikalische Chemie II
- ICMM
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| |
Collapse
|
41
|
Wu C, Xia G, Sun J, Song R. Synthesis and anisotropic self-assembly of Ag nanoparticles immobilized by the Pluronic F127 triblock copolymer for colorimetric detection of H2O2. RSC Adv 2015. [DOI: 10.1039/c5ra20457g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Facile and green synthesis of a Ag@DA@F127 system for the sensitive and quantitative detection of H2O2. Ag NPs in the network-like F127 micelles were well-dispersed and anisotropically self-assembled.
Collapse
Affiliation(s)
- Cong Wu
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Guangmei Xia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jing Sun
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Rui Song
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|