1
|
Iwata F, Shirasawa T, Mizutani Y, Ushiki T. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes. Microscopy (Oxf) 2021; 70:423-435. [PMID: 33644794 DOI: 10.1093/jmicro/dfab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is useful for imaging soft and fragile biological samples in liquids because it probes the samples' surface topography by detecting ion currents under non-contact and force-free conditions. SICM acquires the surface topographical height by detecting the ion current reduction that occurs when an electrolyte-filled glass nanopipette approaches the sample surface. However, most biological materials have electrically charged surfaces in liquid environments, which sometimes affect the behavior of the ion currents detected by SICM and, especially, make topography measurements difficult. For measuring such charged samples, we propose a novel imaging method that uses a double-barrel nanopipette as an SICM probe. The ion current between the two apertures of the nanopipette desensitizes the surface charge effect on imaging. In this study, metaphase chromosomes of Indian muntjac were imaged by this technique because, owing to their strongly negatively charged surfaces in phosphate-buffered saline, it is difficult to obtain the topography of the chromosomes by the conventional SICM with a single-aperture nanopipette. Using the proposed method with a double-barrel nanopipette, the surfaces of the chromosomes were successfully measured, without any surface charge confounder. Since the detailed imaging of sample topography can be performed in physiological liquid conditions regardless of the sample charge, it is expected to be used for analyzing the high-order structure of chromosomes in relation to their dynamic changes in the cell division.
Collapse
Affiliation(s)
- Futoshi Iwata
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan
| | - Tatsuru Shirasawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Yusuke Mizutani
- Office of Institutional Research, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
2
|
Beaussart A, Feuillie C, El-Kirat-Chatel S. The microbial adhesive arsenal deciphered by atomic force microscopy. NANOSCALE 2020; 12:23885-23896. [PMID: 33289756 DOI: 10.1039/d0nr07492f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes employ a variety of strategies to adhere to abiotic and biotic surfaces, as well as host cells. In addition to their surface physicochemical properties (e.g. charge, hydrophobic balance), microbes produce appendages (e.g. pili, fimbriae, flagella) and express adhesion proteins embedded in the cell wall or cell membrane, with adhesive domains targeting specific ligands or chemical properties. Atomic force microscopy (AFM) is perfectly suited to deciphering the adhesive properties of microbial cells. Notably, AFM imaging has revealed the cell wall topographical organization of live cells at unprecedented resolution, and AFM has a dual capability to probe adhesion at the single-cell and single-molecule levels. AFM is thus a powerful tool for unravelling the molecular mechanisms of microbial adhesion at scales ranging from individual molecular interactions to the behaviours of entire cells. In this review, we cover some of the major breakthroughs facilitated by AFM in deciphering the microbial adhesive arsenal, including the exciting development of anti-adhesive strategies.
Collapse
|
3
|
Beaussart A, El-Kirat-Chatel S. Microbial adhesion and ultrastructure from the single-molecule to the single-cell levels by Atomic Force Microscopy. Cell Surf 2019; 5:100031. [PMID: 32743147 PMCID: PMC7389263 DOI: 10.1016/j.tcsw.2019.100031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/29/2022] Open
Abstract
In the last decades, atomic force microscopy (AFM) has evolved towards an accurate and lasting tool to study the surface of living cells in physiological conditions. Through imaging, single-molecule force spectroscopy and single-cell force spectroscopy modes, AFM allows to decipher at multiple scales the morphology and the molecular interactions taking place at the cell surface. Applied to microbiology, these approaches have been used to elucidate biophysical properties of biomolecules and to directly link the molecular structures to their function. In this review, we describe the main methods developed for AFM-based microbial surface analysis that we illustrate with examples of molecular mechanisms unravelled with unprecedented resolution.
Collapse
|
4
|
Pigaleva MA, Bulat MV, Gromovykh TI, Gavryushina IA, Lutsenko SV, Gallyamov MO, Novikov IV, Buyanovskaya AG, Kiselyova OI. A new approach to purification of bacterial cellulose membranes: What happens to bacteria in supercritical media? J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Characterization of Pseudomonas aeruginosa Films on Different Inorganic Surfaces before and after UV Light Exposure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10806-10815. [PMID: 30122052 DOI: 10.1021/acs.langmuir.8b02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The changes of the surface properties of Au, GaN, and SiO x after UV light irradiation were used to actively influence the process of formation of Pseudomonas aeruginosa films. The interfacial properties of the substrates were characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The changes in the P. aeruginosa film properties were accessed by analyzing adhesion force maps and quantifying the intracellular Ca2+ concentration. The collected analysis indicates that the alteration of the inorganic materials' surface chemistry can lead to differences in biofilm formation and variable response from P. aeruginosa cells.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Dennis R LaJeunesse
- Joint School of Nanoscience and Nanoengineering , University of North Carolina-Greensboro and North Carolina A&T State University , Greensboro , North Carolina 27401 , United States
| | - Ramon Collazo
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Albena Ivanisevic
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
6
|
Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins. PLoS One 2016; 11:e0156785. [PMID: 27285458 PMCID: PMC4902306 DOI: 10.1371/journal.pone.0156785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/19/2016] [Indexed: 12/04/2022] Open
Abstract
Genomic analyses of Viridibacillus arvi JG-B58 that was previously isolated from heavy metal contaminated environment identified three different putative surface layer (S-layer) protein genes namely slp1, slp2, and slp3. All three genes are expressed during cultivation. At least two of the V. arvi JG-B58 S-layer proteins were visualized on the surface of living cells via atomic force microscopy (AFM). These S-layer proteins form a double layer with p4 symmetry. The S-layer proteins were isolated from the cells using two different methods. Purified S-layer proteins were recrystallized on SiO2 substrates in order to study the structure of the arrays and self-assembling properties. The primary structure of all examined S-layer proteins lack some features that are typical for Bacillus or Lysinibacillus S-layers. For example, they possess no SLH domains that are usually responsible for the anchoring of the proteins to the cell wall. Further, the pI values are relatively high ranging from 7.84 to 9.25 for the matured proteins. Such features are typical for S-layer proteins of Lactobacillus species although sequence comparisons indicate a close relationship to S-layer proteins of Lysinibacillus and Bacillus strains. In comparison to the numerous descriptions of S-layers, there are only a few studies reporting the concomitant existence of two different S-layer proteins on cell surfaces. Together with the genomic data, this is the first description of a novel type of S-layer proteins showing features of Lactobacillus as well as of Bacillus-type S-layer proteins and the first study of the cell envelope of Viridibacillus arvi.
Collapse
|
7
|
Arnfinnsdottir NB, Bjørkøy AV, Lale R, Sletmoen M. Heterogeneity in GFP expression in isogenic populations of P. putida KT2440 investigated using flow cytometry and bacterial microarrays. RSC Adv 2016. [DOI: 10.1039/c5ra23757b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorescence intensities were determined using both flow cytometry and bacterial microarrays for Pseudomonas putida expressing GFP upon addition of an inducer. Fluorescence micrographs revealed static inter-cell differences in fluorescence emission.
Collapse
Affiliation(s)
- N. B. Arnfinnsdottir
- Biophysics and Medical Technology
- Department of Physics
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - A. V. Bjørkøy
- Biophysics and Medical Technology
- Department of Physics
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - R. Lale
- Department of Biotechnology
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - M. Sletmoen
- Department of Biotechnology
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| |
Collapse
|
8
|
Raff J, Matys S, Suhr M, Vogel M, Günther T, Pollmann K. S-Layer-Based Nanocomposites for Industrial Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:245-279. [PMID: 27677516 DOI: 10.1007/978-3-319-39196-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This chapter covers the fundamental aspects of bacterial S-layers: what are S-layers, what is known about them, and what are their main features that makes them so interesting for the production of nanostructures. After a detailed introduction of the paracrystalline protein lattices formed by S-layer systems in nature the chapter explores the engineering of S-layer-based materials. How can S-layers be used to produce "industry-ready" nanoscale bio-composite materials, and which kinds of nanomaterials are possible (e.g., nanoparticle synthesis, nanoparticle immobilization, and multifunctional coatings)? What are the advantages and disadvantages of S-layer-based composite materials? Finally, the chapter highlights the potential of these innovative bacterial biomolecules for future technologies in the fields of metal filtration, catalysis, and bio-functionalization.
Collapse
Affiliation(s)
- Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany.
| | - Sabine Matys
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Matthias Suhr
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Manja Vogel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Tobias Günther
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Katrin Pollmann
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| |
Collapse
|
9
|
Synthesis of S-layer conjugates and evaluation of their modifiability as a tool for the functionalization and patterning of technical surfaces. Molecules 2015; 20:9847-61. [PMID: 26023942 PMCID: PMC6272543 DOI: 10.3390/molecules20069847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/20/2015] [Indexed: 12/03/2022] Open
Abstract
Chemical functional groups of surface layer (S-layer) proteins were chemically modified in order to evaluate the potential of S-layer proteins for the introduction of functional molecules. S-layer proteins are structure proteins that self-assemble into regular arrays on surfaces. One general feature of S-layer proteins is their high amount of carboxylic and amino groups. These groups are potential targets for linking functional molecules, thus producing reactive surfaces. In this work, these groups were conjugated with the amino acid tryptophan. In another approach, SH-groups were chemically inserted in order to extend the spectrum of modifiable groups. The amount of modifiable carboxylic groups was further evaluated by potentiometric titration in order to evaluate the potential efficiency of S-layer proteins to work as matrix for bioconjugations. The results proved that S-layer proteins can work as effective matrices for the conjugation of different molecules. The advantage of using chemical modification methods over genetic methods lies in its versatile usage enabling the attachment of biomolecules, as well as fluorescent dyes and inorganic molecules. Together with their self-assembling properties, S-layer proteins are suitable as targets for bioconjugates, thus enabling a nanostructuring and bio-functionalization of surfaces, which can be used for different applications like biosensors, filter materials, or (bio)catalytic surfaces.
Collapse
|
10
|
Investigation of metal sorption behavior of Slp1 from Lysinibacillus sphaericus JG-B53: a combined study using QCM-D, ICP-MS and AFM. Biometals 2014; 27:1337-49. [DOI: 10.1007/s10534-014-9794-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|