1
|
Kougkolos G, Golzio M, Laudebat L, Valdez-Nava Z, Flahaut E. Hydrogels with electrically conductive nanomaterials for biomedical applications. J Mater Chem B 2023; 11:2036-2062. [PMID: 36789648 DOI: 10.1039/d2tb02019j] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogels, soft 3D materials of cross-linked hydrophilic polymer chains with a high water content, have found numerous applications in biomedicine because of their similarity to native tissue, biocompatibility and tuneable properties. In general, hydrogels are poor conductors of electric current, due to the insulating nature of commonly-used hydrophilic polymer chains. A number of biomedical applications require or benefit from an increased electrical conductivity. These include hydrogels used as scaffolds for tissue engineering of electroactive cells, as strain-sensitive sensors and as platforms for controlled drug delivery. The incorporation of conductive nanomaterials in hydrogels results in nanocomposite materials which combine electrical conductivity with the soft nature, flexibility and high water content of hydrogels. Here, we review the state of the art of such materials, describing the theories of current conduction in nanocomposite hydrogels, outlining their limitations and highlighting methods for improving their electrical conductivity.
Collapse
Affiliation(s)
- Georgios Kougkolos
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Muriel Golzio
- IPBS, Université de Toulouse, NRS UMR, UPS, 31077 Toulouse CEDEX 4, France
| | - Lionel Laudebat
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,INU Champollion, Université de Toulouse, 81012 Albi, France
| | - Zarel Valdez-Nava
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| |
Collapse
|
2
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
3
|
Chimala P, Perera MM, Wade A, McKenzie T, Allor J, Ayres N. Hyperbranched polymer hydrogels with large stimuli-responsive changes in storage moduli and peroxide-induced healing. Polym Chem 2021. [DOI: 10.1039/d1py00560j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels prepared using hyperbranched polymers with dynamic disulfide bonds show larger changes in moduli upon exposure to chemical stimuli for both softening and stiffening responses compared to linear polymers.
Collapse
Affiliation(s)
| | - M. Mario Perera
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Aissatou Wade
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Tucker McKenzie
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Joshua Allor
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Neil Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
4
|
Zheng W, Li Y, Xu L, Huang Y, Jiang Z, Li B. Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable sensor. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Yang R, Yao Y, Duan Z, Yuan Z, Tai H, Jiang Y, Zheng Y, Wang D. Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3029-3037. [PMID: 32176511 DOI: 10.1021/acs.langmuir.0c00221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One key limitation of artificial skin-like materials is the shortened service life caused by mechanical damages during practical applications. The ability to self-heal can effectively extend the material service life, reduce the maintenance cost, and ensure safety. Therefore, it is important and necessary to fabricate materials with simultaneously mechanical and electrical self-healing behavior in a facile and convenient way. Herein, we report a stretchable and conductive self-healing elastomer based on intermolecular networks between poly(acrylic acid) (PAA) and reduced graphene oxide (rGO) through a facile and convenient postreduction and one-pot method. The introduction of rGO provides the PAA-GO elastomers with good mechanical stability and electrical properties. Moreover, this material exhibited both electrical and mechanical self-healing properties. After cutting, the elastomers self-healed quickly (∼30 s) and efficiently (∼95%) at room temperature. The elastomers were accurate and reliable in detecting external strain even after healing. The elastomers were further applied for strain sensors, which were attached directly to human skin to monitor external movements, including finger bending and wrist twisting.
Collapse
Affiliation(s)
- Ruiyu Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yujin Yao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yonghao Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Dongsheng Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| |
Collapse
|
6
|
Gheybi H, Sattari S, Soleimani K, Adeli M. Graphene-dendritic polymer hybrids: synthesis, properties, and applications. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01817-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Kweon OY, Samanta SK, Won Y, Yoo JH, Oh JH. Stretchable and Self-Healable Conductive Hydrogels for Wearable Multimodal Touch Sensors with Thermoresponsive Behavior. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26134-26143. [PMID: 31283164 DOI: 10.1021/acsami.9b04440] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional hydrogels with properties including transparency, flexibility, self-healing, and high electrical conductivity have attracted great attention for their potential application to soft electronic devices. The presence of an ionic species can make hydrogels conductive in nature. However, the conductivity of hydrogels is often influenced by temperature, due to the change of the internal nano/microscopic structure when temperature reaches the sol-gel phase transition temperature. In this regard, by introducing a novel surface-capacitive sensor device based on polymers with lower critical solution temperature (LCST) behavior, near-perfect stimulus discriminability of touch and temperature may be realized. Here, we demonstrate a multimodal sensor that can monitor the location of touch points and temperature simultaneously, using poly(N-isopropylacrylamide) (PNIPAAm) in hybrid poly(vinyl alcohol) (PVA) and sodium tetraborate decahydrate cross-linked hydrogels doped with poly(sodium acrylate) (SA) [w/w/w = 5:2.7:1-3]. This multimodal sensor exhibits a response time of 0.3 s and a temperature coefficient of resistance of -0.58% K-1 from 20 to 40 °C. In addition, the LCST behavior of PNIPAAm-incorporated PVA/SA gels is investigated. Incorporation of LCST polymers into high-end hydrogel systems may contribute to the development of temperature-dependent soft electronics that can be applied in smart windows.
Collapse
Affiliation(s)
- O Young Kweon
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Suman Kalyan Samanta
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur 721302 , West Bengal , India
| | - Yousang Won
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jong Heun Yoo
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
8
|
Wang M, Chen Y, Khan R, Liu H, Chen C, Chen T, Zhang R, Li H. A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Dannert C, Stokke BT, Dias RS. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers (Basel) 2019; 11:E275. [PMID: 30960260 PMCID: PMC6419045 DOI: 10.3390/polym11020275] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/21/2022] Open
Abstract
Hydrogels are materials used in a variety of applications, ranging from tissue engineering to drug delivery. The incorporation of nanoparticles to yield composite hydrogels has gained substantial momentum over the years since these afford tailor-making and extend material mechanical properties far beyond those achievable through molecular design of the network component. Here, we review different procedures that have been used to integrate nanoparticles into hydrogels; the types of interactions acting between polymers and nanoparticles; and how these underpin the improved mechanical and optical properties of the gels, including the self-healing ability of these composite gels, as well as serving as the basis for future development. In a less explored approach, hydrogels have been used as dispersants of nanomaterials, allowing a larger exposure of the surface of the nanomaterial and thus a better performance in catalytic and sensor applications. Furthermore, the reporting capacity of integrated nanoparticles in hydrogels to assess hydrogel properties, such as equilibrium swelling and elasticity, is highlighted.
Collapse
Affiliation(s)
- Corinna Dannert
- Department of Physics, NTNU- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bjørn Torger Stokke
- Department of Physics, NTNU- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Rita S Dias
- Department of Physics, NTNU- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
10
|
Yue L, Zhang X, Li W, Tang Y, Bai Y. Quickly self-healing hydrogel at room temperature with high conductivity synthesized through simple free radical polymerization. J Appl Polym Sci 2019. [DOI: 10.1002/app.47379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lipei Yue
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150000 People's Republic of China
| | - Xiaoyong Zhang
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150000 People's Republic of China
| | - Weidong Li
- Wuxi HIT New Material Research Institute; Wuxi 214000 People's Republic of China
| | - Ying Tang
- Institute of Chemical Materials; China Academy of Engineering Physics; Mianyang 621900 People's Republic of China
| | - Yongping Bai
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150000 People's Republic of China
- Wuxi HIT New Material Research Institute; Wuxi 214000 People's Republic of China
| |
Collapse
|
11
|
Du Y, Li D, Liu L, Gai G. Recent Achievements of Self-Healing Graphene/Polymer Composites. Polymers (Basel) 2018; 10:E114. [PMID: 30966150 PMCID: PMC6415098 DOI: 10.3390/polym10020114] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Self-healing materials have attracted much attention because that they possess the ability to increase the lifetime of materials and reduce the total cost of systems during the process of long-term use; incorporation of functional material enlarges their applications. Graphene, as a promising additive, has received great attention due to its large specific surface area, ultrahigh conductivity, strong antioxidant characteristics, thermal stability, high thermal conductivity, and good mechanical properties. In this brief review, graphene-containing polymer composites with self-healing properties are summarized including their preparations, self-healing conditions, properties, and applications. In addition, future perspectives of graphene/polymer composites are briefly discussed.
Collapse
Affiliation(s)
- Yongxu Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Dong Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Libin Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guangjie Gai
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
12
|
Tavakoli J, Tang Y. Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers (Basel) 2017; 9:E364. [PMID: 30971040 PMCID: PMC6418953 DOI: 10.3390/polym9080364] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
Biosensors that detect and convert biological reactions to a measurable signal have gained much attention in recent years. Between 1950 and 2017, more than 150,000 papers have been published addressing the applications of biosensors in different industries, but to the best of our knowledge and through careful screening, critical reviews that describe hydrogel based biosensors for biomedical applications are rare. This review discusses the biomedical application of hydrogel based biosensors, based on a search performed through Web of Science Core, PubMed (NLM), and Science Direct online databases for the years 2000⁻2017. In this review, we consider bioreceptors to be immobilized on hydrogel based biosensors, their advantages and disadvantages, and immobilization techniques. We identify the hydrogels that are most favored for this type of biosensor, as well as the predominant transduction strategies. We explain biomedical applications of hydrogel based biosensors including cell metabolite and pathogen detection, tissue engineering, wound healing, and cancer monitoring, and strategies for small biomolecules such as glucose, lactate, urea, and cholesterol detection are identified.
Collapse
Affiliation(s)
- Javad Tavakoli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5042, SA, Australia.
| | - Youhong Tang
- Institute for Nano Scale Science & Technology, College of Science and Engineering, Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
13
|
Liu S, Li L. Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26429-26437. [PMID: 28707465 DOI: 10.1021/acsami.7b07445] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an ionically cross-linked κ-carrageenan network with a covalently cross-linked polyacrylamide (PAAm) network. The κ-carrageenan/PAAm DN hydrogel demonstrated an excellent recoverability and significant self-healing capability (even when notched). More importantly, the warm pregel solution of κ-carrageenan/AAm can be used as an ink of a three-dimensional (3D) printer to print complex 3D structures with remarkable mechanical strength after UV exposure. Furthermore, the κ-carrageenan/PAAm DN hydrogel exhibited a great strain sensitivity with a gauge factor of 0.63 at the strain of 1000%, and thus, the hydrogel can be used as sensitive strain sensors for applications in robotics and human motion detection.
Collapse
Affiliation(s)
- Sijun Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lin Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
14
|
Cai G, Wang J, Qian K, Chen J, Li S, Lee PS. Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600190. [PMID: 28251045 PMCID: PMC5323873 DOI: 10.1002/advs.201600190] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/24/2016] [Indexed: 05/04/2023]
Abstract
Extremely stretchable self-healing strain sensors based on conductive hydrogels are successfully fabricated. The strain sensor can achieve autonomic self-heal electrically and mechanically under ambient conditions, and can sustain extreme elastic strain (1000%) with high gauge factor of 1.51. Furthermore, the strain sensors have good response, signal stability, and repeatability under various human motion detections.
Collapse
Affiliation(s)
- Guofa Cai
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798
| | - Jiangxin Wang
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798
| | - Kai Qian
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798
| | - Jingwei Chen
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798
| | - Shaohui Li
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798
| | - Pooi See Lee
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798
| |
Collapse
|
15
|
Yang J, Choe G, Yang S, Jo H, Lee JY. Polypyrrole-incorporated conductive hyaluronic acid hydrogels. Biomater Res 2016; 20:31. [PMID: 27708859 PMCID: PMC5043520 DOI: 10.1186/s40824-016-0078-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023] Open
Abstract
Background Hydrogels that possess hydrophilic and soft characteristics have been widely used in various biomedical applications, such as tissue engineering scaffolds and drug delivery. Conventional hydrogels are not electrically conductive and thus their electrical communication with biological systems is limited. Method To create electrically conductive hydrogels, we fabricated composite hydrogels of hyaluronic acid and polypyrrole. In particular, we synthesized and used pyrrole-hyaluronic acid-conjugates and further chemically polymerized polypyrrole with the conjugates for the production of conductive hydrogels that can display suitable mechanical and structural properties. Results Various characterization methods, using a rheometer, a scanning electron microscope, and an electrochemical analyzer, revealed that the PPy/HA hydrogels were soft and conductive with ~ 3 kPa Young’s modulus and ~ 7.3 mS/cm conductivity. Our preliminary in vitro culture studies showed that fibroblasts were well attached and grew on the conductive hydrogels. Conclusion These new conductive hydrogels will be greatly beneficial in fields of biomaterials in which electrical properties are important such as tissue engineering scaffolds and prosthetic devices.
Collapse
Affiliation(s)
- Jongcheol Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Engineering (GIST), Gwangju, 500-712 Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Engineering (GIST), Gwangju, 500-712 Republic of Korea
| | - Sumi Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Engineering (GIST), Gwangju, 500-712 Republic of Korea
| | - Hyerim Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Engineering (GIST), Gwangju, 500-712 Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Engineering (GIST), Gwangju, 500-712 Republic of Korea
| |
Collapse
|
16
|
Wu T, Chen B. Synthesis of Multiwalled Carbon Nanotube-Reinforced Polyborosiloxane Nanocomposites with Mechanically Adaptive and Self-Healing Capabilities for Flexible Conductors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24071-24078. [PMID: 27530233 DOI: 10.1021/acsami.6b06137] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Intrinsic self-healing polyborosiloxane (PBS) and its multiwalled carbon nanotube (MWCNT)-reinforced nanocomposites were synthesized from hydroxyl terminated poly(dimethylsiloxane) (PDMS) and boric acid at room temperature. The formation of Si-O-B moiety in PBS was confirmed by Fourier transform infrared spectroscopy. PBS and its MWCNT-reinforced nanocomposites were found possessing water- or methanol-activated mechanically adaptive behaviors; the compressive modulus decreased substantially when exposed to water or methanol vapor and recovered their high value after the stimulus was removed. The compressive modulus was reduced by 76%, 86%, 90%, and 83% for neat PBS and its nanocomposites containing 3.0, 6.2, and 13.3 wt % MWCNTs, respectively, in water vapor, and the modulus reduction activated by methanol vapor was greater than by water vapor. MWCNTs at higher contents acted as a continuous electrical channel in PBS offering electrical conductivity, which was up to 1.21 S/cm for the nanocomposite containing 13.3 wt % MWCNTs. The MWCNT-reinforced PBS nanocomposites also showed excellent mechanically and electrically self-healing properties, moldability, and adhesion to PDMS elastomer substrate. These properties enabled a straightforward fabrication of self-repairing MWCNT/PBS electronic circuits on PDMS elastomer substrates.
Collapse
Affiliation(s)
- Tongfei Wu
- Department of Materials Science and Engineering, University of Sheffield , Mappin Street, Sheffield S1 3JD, U.K
| | - Biqiong Chen
- Department of Materials Science and Engineering, University of Sheffield , Mappin Street, Sheffield S1 3JD, U.K
| |
Collapse
|
17
|
Morris E, Chavez M, Tan C. Dynamic biomaterials: toward engineering autonomous feedback. Curr Opin Biotechnol 2016; 39:97-104. [PMID: 26974245 DOI: 10.1016/j.copbio.2016.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
Dynamic biomaterials are biocompatible engineered systems capable of sensing and actively responding to their surrounding environment. They are of growing interest, both as models in basic research to understand complex cellular systems and in medical applications. Here, we review recent advances in nano-scale and micro-scale biomaterials, specifically artificial cells consisting of compartmentalized biochemical reactions and biologically compatible hydrogels. These dynamic biomaterials respond to stimuli through triggered reactions, reaction cascades, logic gates, and autonomous feedback loops. We outline the advances and remaining challenges in implementing such 'smart' biomaterials capable of autonomously responding to environmental stimuli.
Collapse
Affiliation(s)
- Eliza Morris
- Department of Biomedical Engineering, University of California Davis, Davis, USA
| | - Michael Chavez
- Department of Biomedical Engineering, University of California Davis, Davis, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, USA.
| |
Collapse
|
18
|
Wang X, Zhou Z, Guo X, He Q, Hao C, Ge C. Ultrasonic-assisted synthesis of sodium lignosulfonate-grafted poly(acrylic acid-co-poly(vinyl pyrrolidone)) hydrogel for drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra03398a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ultrasonic-assisted synthesis of sodium lignosulfonate-grafted hydrogel and the sustained release performance of the drug.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Zilong Zhou
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Xiaowei Guo
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Qiang He
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Chen Hao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Cunwang Ge
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- China
| |
Collapse
|
19
|
Yang W, Wu X, Liu F, Dou Y, Hu Z, Hao W. A fluorescent, self-healing and pH sensitive hydrogel rapidly fabricated from HPAMAM and oxidized alginate with injectability. RSC Adv 2016. [DOI: 10.1039/c6ra02366e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multifunctional hydrogels were fabricated from HPAMAM and oxidized Alginate via electrostatic force, hydrogen bonds and acylhydrazone bonds. They are injectable, fluorescent, pH sensitive, biodegradable, and also able to release drug and self-heal.
Collapse
Affiliation(s)
- Wen Yang
- Department of Polymer Materials and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China 230009
| | - Xiaotian Wu
- Department of Polymer Materials and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China 230009
| | - Fangbing Liu
- Department of Polymer Materials and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China 230009
| | - Yan Dou
- Department of Polymer Materials and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China 230009
| | - Zhenhu Hu
- Department of Municipal Engineering
- School of Civil Engineering
- Hefei University of Technology
- Hefei
- P. R. China 230009
| | - Wentao Hao
- Department of Polymer Materials and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China 230009
| |
Collapse
|
20
|
Biswas S, Rasale DB, Das AK. Blue light emitting self-healable graphene quantum dot embedded hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra06587b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Graphene quantum dot (GQD) embedded Amoc (N-anthracenemethyloxycarbonyl) amino acid based hydrogels show self-healing properties and emit blue light.
Collapse
Affiliation(s)
- Sagar Biswas
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 452020
- India
| | | | - Apurba K. Das
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 452020
- India
| |
Collapse
|
21
|
Spizzirri UG, Curcio M, Cirillo G, Spataro T, Vittorio O, Picci N, Hampel S, Iemma F, Nicoletta FP. Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels. Pharmaceutics 2015; 7:413-37. [PMID: 26473915 PMCID: PMC4695827 DOI: 10.3390/pharmaceutics7040413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/07/2015] [Accepted: 09/30/2015] [Indexed: 12/05/2022] Open
Abstract
Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide) was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour), it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed.
Collapse
Affiliation(s)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Tania Spataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, 2052, Australia.
| | - Nevio Picci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Silke Hampel
- Leibniz Institute for Solid State and Materials Research, PF 270116, D-01171 Dresden, Germany.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| |
Collapse
|
22
|
|