1
|
Chung TW, Cheng CL, Liu YH, Huang YC, Chen WP, Panda AK, Chen WL. Dopamine-dependent functions of hyaluronic acid/dopamine/silk fibroin hydrogels that highly enhance N-acetyl-L-cysteine (NAC) delivered from nasal cavity to brain tissue through a near-infrared photothermal effect on the NAC-loaded hydrogels. BIOMATERIALS ADVANCES 2023; 154:213615. [PMID: 37716334 DOI: 10.1016/j.bioadv.2023.213615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated. An in-vitro study shows that the HDS/NAC hydrogels could open tight junctions in the RPMI 2650 cell line, a model cell of the nasal mucosa, as demonstrated by the decreased values of transepithelial electrical resistance (TEER) and more discrete ZO-1 staining than those for the control group. This effect was markedly enhanced by NIR irradiation of the HDS/NAC-NIR hydrogels. Compared to the results obtained using NAC solution, an in-vivo imaging study (IVIS) in rats showed an approximately nine-fold increase in the quantity of NAC delivered from the nasal cavity to the brain tissue in the span of 2 h through the PTR effect generated by the NIR irradiation of the nasal tissue and administration of the HDS/NAC hydrogels. Herein, dopamine-dependent multifunctional HDS hydrogels were studied, and the nasal administration of HDS/NAC-NIR hydrogels with PTR effects generated by NIR irradiation was found to have significantly enhanced NAC delivery to brain tissues.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan.
| | - Ching-Lin Cheng
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yun-Huan Liu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Asit Kumar Panda
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Ling Chen
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| |
Collapse
|
2
|
Wu YN, Zhu LL, Zhao Y, Xu SY, Huang PW, Chen BC, Huang ZY, Huang XY, Chen J, Du KZ. Mussel-Inspired Two-Dimensional Halide Perovskite Facilitated Dopamine Polymerization and Self-Adhesive Photoelectric Coating. Inorg Chem 2023; 62:1062-1068. [PMID: 36594447 DOI: 10.1021/acs.inorgchem.2c04076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polydopamine (PDA) is a good adhesion agent for lots of gels inspired by the mussel, whereas hybrid organic-inorganic perovskites (HOIPs) usually exhibit extraordinary optoelectronic performance. Herein, mussel-inspired chemistry has been integrated with two-dimensional HOIPs first, leading to the preparation of new crystal (HDA)2PbBr4 (1) (DA = dopamine). The organic cation dopamine can be introduced into PDA resulting in a thin film of (HPDA)2PbBr4 (PDA-1). The dissolved inorganic components of layered perovskite in DMF solution together with H2O2 addition can facilitate DA polymerization greatly. More importantly, PDA-1 can inherit an excellent semiconductor property of HOIPs and robust adhesion of the PDA hydrogel resulting in a self-adhesive photoelectric coating on various interfaces.
Collapse
Affiliation(s)
- Ya-Nan Wu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Li-Li Zhu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yi Zhao
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Si-Yu Xu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Pei-Wen Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Bi-Cui Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zi-Yang Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jin Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ke-Zhao Du
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
A Generalized Method for the Synthesis of Carbon-Encapsulated Fe3O4 Composites and Its Application in Water Treatment. Molecules 2022; 27:molecules27206812. [PMID: 36296405 PMCID: PMC9607371 DOI: 10.3390/molecules27206812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
In this paper, a simple and environmentally friendly method was developed for the preparation of highly stable C@Fe3O4 composites with controllable morphologies using sodium alginate as the carbon source and the easily obtained α-Fe2O3 as the precursors. The morphologies of the as-prepared C@Fe3O4 composites, inherited from their corresponding precursors of α-Fe2O3, survived from the annealing treatments, were characterized by the field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The C@Fe3O4 composites resisted to oxidation, acidification and aggregation, exhibiting porous structures and ferromagnetic properties at room temperature. Moreover, the adsorption performance of the C@Fe3O4 composites was evaluated by absorbing MB (methylene blue) in liquid environment. Experiments indicated that the C@Fe3O4 composites exhibited highly enhanced adsorption capacities and efficiencies as compared with their corresponding precursors of α-Fe2O3. This generalized method for the synthesis of C@Fe3O4 composites provides promising applications for the highly efficient removal of MB from industrial effluents.
Collapse
|
4
|
Fluorescent Single-Core and Multi-Core Nanoprobes as Cell Trackers and Magnetic Nanoheaters. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8080083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Iron oxide magnetic nanoparticles (MNPs) have been widely studied due to their versatility for diagnosis, tracking (magnetic resonance imaging (MRI)) and therapeutic (magnetic hyperthermia and drug delivery) applications. In this work, iron oxide MNPs with different single-core (8–40 nm) and multi-core (140–200 nm) structures were synthesized and functionalized by organic and inorganic coating materials, highlighting their ability as magnetic nanotools to boost cell biotechnological procedures. Single core Fe3O4@PDA, Fe3O4@SiO2-FITC-SiO2 and Fe3O4@SiO2-RITC-SiO2 MNPs were functionalized with fluorescent components with emission at different wavelengths, 424 nm (polydopamine), 515 (fluorescein) and 583 nm (rhodamine), and their ability as transfection and imaging agents was explored with HeLa cells. Moreover, different multi-core iron oxide MNPs (Fe3O4@CS, Fe3O4@SiO2 and Fe3O4@Citrate) coated with organic (citrate and chitosan, CS) and inorganic (silica, SiO2) shells were tested as efficient nanoheaters for magnetic hyperthermia applications for mild thermal heating procedures as an alternative to simple structures based on single-core MNPs. This work highlights the multiple abilities offered by the synergy of the use of external magnetic fields applied on MNPs and their application in different biomedical approaches.
Collapse
|
5
|
Mayadevi TS, Goo BH, Paek SY, Choi O, Kim Y, Kwon OJ, Lee SY, Kim HJ, Kim TH. Nafion Composite Membranes Impregnated with Polydopamine and Poly(Sulfonated Dopamine) for High-Performance Proton Exchange Membranes. ACS OMEGA 2022; 7:12956-12970. [PMID: 35474770 PMCID: PMC9026075 DOI: 10.1021/acsomega.2c00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
We prepared Nafion composite membranes by impregnating Nafion-212 with polydopamine, poly(sulfonated dopamine), and poly(dopamine-co-sulfonated dopamine) using the swelling-filling method to generate nanopores in the Nafion framework that were filled with these polymers. Compared to the pristine Nafion-212 membrane, these composite membranes showed improved thermal and mechanical stabilities due to the strong interactions between the catecholamine of the polydopamine derivatives and the Nafion matrix. For the composite membrane filled with poly(sulfonated dopamine) (N-PSDA), further interactions were induced between the Nafion and the sulfonic acid side chain, resulting in enhanced water uptake and ion conductivity. In addition, filling the nanopores in the Nafion matrix with polymer fillers containing aromatic hydrocarbon-based dopamine units led to an increase in the degree of crystallinity and resulted in a significant decrease in the hydrogen permeability of the composite membranes compared to Nafion-212. Hydrogen crossovers 26.8% lower than Nafion-212 at 95% relative humidity (RH) (fuel cell operating conditions) and 27.3% lower at 100% RH (water electrolysis operating conditions) were obtained. When applied to proton exchange membrane-based fuel cells, N-PSDA exhibited a peak power density of 966 mW cm-2, whereas N-PSDA showed a current density of 4785 mA cm-2, which is 12.4% higher than Nafion-212 at 2.0 V and 80 °C.
Collapse
Affiliation(s)
- T. S. Mayadevi
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Bon-Hyuk Goo
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Sae Yane Paek
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Ook Choi
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Youngkwang Kim
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Oh Joong Kwon
- Department
of Energy and Chemical Engineering, Incheon
National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Innovation
Center for Chemical Engineering, Incheon
National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - So Young Lee
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Hyoung-Juhn Kim
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
- Hydrogen
Energy Technology Laboratory, Korea Institute
of Energy Technology (KENTECH), Ujeong-ro, Naju-si, Jeollanam-do 58217, Republic of Korea
| | - Tae-Hyun Kim
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| |
Collapse
|
6
|
TFC solvent-resistant nanofiltration membrane prepared via a gyroid-like PE support coated with polydopamine/Tannic acid-Fe(III). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Cervantes O, Lopez ZDR, Casillas N, Knauth P, Checa N, Cholico FA, Hernandez-Gutiérrez R, Quintero LH, Paz JA, Cano ME. A Ferrofluid with Surface Modified Nanoparticles for Magnetic Hyperthermia and High ROS Production. Molecules 2022; 27:544. [PMID: 35056860 PMCID: PMC8781673 DOI: 10.3390/molecules27020544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.
Collapse
Affiliation(s)
- Oscar Cervantes
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara C.P. 44430, Jalisco, Mexico; (O.C.); (N.C.)
| | - Zaira del Rocio Lopez
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Norberto Casillas
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Col. Olímpica, Guadalajara C.P. 44430, Jalisco, Mexico; (O.C.); (N.C.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Nayeli Checa
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Francisco Apolinar Cholico
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Rodolfo Hernandez-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800 Colinas de La Normal, Guadalajara C.P. 44270, Jalisco, Mexico;
| | - Luis Hector Quintero
- Centro Universitario de Ciencias Económico Administrativas, Universidad de Guadalajara, Periférico Norte 799, Col. Los Belenes, Zapopan C.P. 45100, Jalisco, Mexico;
| | - Jose Avila Paz
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| | - Mario Eduardo Cano
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Linda Vista, Ocotlan C.P. 47810, Jalisco, Mexico; (Z.d.R.L.); (P.K.); (N.C.); (F.A.C.); (J.A.P.)
| |
Collapse
|
8
|
Miri Z, Elhami S, Zare-Shahabadi V, Jalali Jahromi H. Fe 3O 4@PDA@PANI core-shell nanocomposites as a new adsorbent for simultaneous preconcentration of Tartrazine and Sunset Yellow by ultrasonic-assisted dispersive micro solid-phase extraction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120130. [PMID: 34265733 DOI: 10.1016/j.saa.2021.120130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
In this research, novel magnetic Fe3O4@PDA@PANI core-shell nanoparticles were designed and fabricated as an efficient adsorbent in the service of ultrasound-assisted dispersive micro-solid phase extraction for simultaneous preconcentration of Sunset Yellow (SY) and Tartrazine (Tar) before UV-Vis spectrophotometric detection. This adsorbent was fully characterized by Fourier Transform Infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX) analysis. To overcome the spectral overlapping of SY and Tar dyes, the derivative spectrophotometric method was successfully used for the simultaneous detection of dyes in their binary solutions. The operating parameters affecting preconcentration efficiency and spectrophotometric determination were optimized. Under optimal conditions, the limit of detections (LOD) was obtained 0.2 and 0.5 ng mL-1 for SY and Tar, respectively. The adsorption capacity and reusability of core-shell nanoparticles were significant. The satisfactory results of analysis of a few real samples indicate that the method is very favored in the analysis of various complex matrices.
Collapse
Affiliation(s)
- Zahra Miri
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| | - Shahla Elhami
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Vahid Zare-Shahabadi
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| | | |
Collapse
|
9
|
Bio-inspired polydopamine incorporated titania nanotube arrays for biomedical applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Xie W, Allioux FM, Namivandi-Zangeneh R, Ghasemian MB, Han J, Rahim MA, Tang J, Yang J, Mousavi M, Mayyas M, Cao Z, Centurion F, Christoe MJ, Zhang C, Wang Y, Merhebi S, Baharfar M, Ng G, Esrafilzadeh D, Boyer C, Kalantar-Zadeh K. Polydopamine Shell as a Ga 3+ Reservoir for Triggering Gallium-Indium Phase Separation in Eutectic Gallium-Indium Nanoalloys. ACS NANO 2021; 15:16839-16850. [PMID: 34613693 DOI: 10.1021/acsnano.1c07278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low melting point eutectic systems, such as the eutectic gallium-indium (EGaIn) alloy, offer great potential in the domain of nanometallurgy; however, many of their interfacial behaviors remain to be explored. Here, a compositional change of EGaIn nanoalloys triggered by polydopamine (PDA) coating is demonstrated. Incorporating PDA on the surface of EGaIn nanoalloys renders core-shell nanostructures that accompany Ga-In phase separation within the nanoalloys. The PDA shell keeps depleting the Ga3+ from the EGaIn nanoalloys when the synthesis proceeds, leading to a Ga3+-coordinated PDA coating and a smaller nanoalloy. During this process, the eutectic nanoalloys turn into non-eutectic systems that ultimately result in the solidification of In when Ga is fully depleted. The reaction of Ga3+-coordinated PDA-coated nanoalloys with nitrogen dioxide gas is presented as an example for demonstrating the functionality of such hybrid composites. The concept of phase-separating systems, with polymeric reservoirs, may lead to tailored materials and can be explored on a variety of post-transition metals.
Collapse
Affiliation(s)
- Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jialuo Han
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zhenbang Cao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Michael J Christoe
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Gervase Ng
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Chaule S, Hwang J, Ha SJ, Kang J, Yoon JC, Jang JH. Rational Design of a High Performance and Robust Solar Evaporator via 3D-Printing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102649. [PMID: 34350633 DOI: 10.1002/adma.202102649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Utilizing the broad-band solar spectrum for sea water desalination is a promising method that can provide fresh water without sophisticated infrastructures. However, the solar-to-vapour efficiency has been limited due to the lack of a proper design for the evaporator to deal with either a large amount of heat loss or salt accumulation. Here, these issues are addressed via two cost-effective approaches: I) a rational design of a concave shaped supporter by 3D-printing that can promote the light harvesting capacity via multiple reflections on the surface; II) the use of a double layered photoabsorber composed of a hydrophilic bottom layer of a polydopamine (PDA) coated glass fiber (GF/C) and a hydrophobic upper layer of a carbonized poly(vinyl alcohol)/polyvinylpyrrolidone (PVA/PVP) hydrogel on the supporter, which provides competitive benefit for preventing deposition of salt while quickly pumping the water. The 3D-printed solar evaporator can efficiently utilize solar energy (99%) with an evaporation rate of 1.60 kg m-2 h-1 and efficiency of 89% under 1 sun irradiation. The underlying reason for the high efficiency obtained is supported by the heat transfer mechanism. The 3D-printed solar evaporator could provide cheap drinking water in remote areas, while maintaining stable performance for a long term.
Collapse
Affiliation(s)
- Sourav Chaule
- School of Energy and Chemical Engineering, Ulsan National Institute of Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jongha Hwang
- School of Energy and Chemical Engineering, Ulsan National Institute of Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seong-Ji Ha
- School of Energy and Chemical Engineering, Ulsan National Institute of Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jihun Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Chul Yoon
- School of Energy and Chemical Engineering, Ulsan National Institute of Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
12
|
Developing photothermal-responsive and anti-oxidative silk/dopamine nanoparticles decorated with drugs which were incorporated into silk films as a depot-based drug delivery. Int J Biol Macromol 2021; 185:122-133. [PMID: 34147523 DOI: 10.1016/j.ijbiomac.2021.06.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/22/2022]
Abstract
Photothermal-responsive (PTR) and anti-oxidative silk fibroin/dopamine nanoparticles (SD NPs) mediated by tyrosinase were produced, and decorated either by curcumin or albumin (BSA) to produce SD/curcumin or SD/BSA NPs as drug delivery vehicles, respectively. Both drug loaded NPs were further blended into SF solutions to produce SD films, as a depot-based drug delivery. The reaction mechanisms for producing new SD NPs were proposed. Anti-oxidative activities for SD NPs were examined by H2O2 scavenge capacities of NPs. NPs were not cytotoxic at concentration of 1000μg/mL. Moreover, heparin was coated to SD films to produce SDH films for temporary implants. Cumulative release profiles for drugs loaded SDH films showed fast releases and then sustained releases stages. Furthermore, the releases of curcumin in sustained stages for varying SD/curcumin NPs loaded into SDH films were dependent on amounts of NPs. BSA releases profiles for SD/BSA NPs loaded into SDH films were similar to those profiles for the films carried with SD/curcumin NPs but release periods of BSA were short. Degrees of PTR effects with irradiation of near infrared on the releases of two drugs loaded films were different. Blood clot at wound areas of rats with SDH films implantations was not found for 24 h study.
Collapse
|
13
|
Mercy JSI, Maruthupandi M, Mamat MHB, Vasimalai N. Facile In-Situ Synthesis of Biopolymer Capped Nano Sized Silver Particles: Smartphone Aided Paper-Based Selective Detection of CYS and TC Drugs in Biological and Drug Samples. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02035-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Fulaz S, Scachetti C, Tasic L. Enzyme-functionalised, core/shell magnetic nanoparticles for selective pH-triggered sucrose capture. RSC Adv 2021; 11:4701-4712. [PMID: 35424388 PMCID: PMC8694497 DOI: 10.1039/d0ra09259b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes is a chronic metabolic disease which leads to high glucose levels in the blood, with severe consequences for human health. Due to the worldwide appeal for the reduction in calorie intake, this study presents the development of a nanomaterial able to capture sucrose selectively, thus providing a tool to remove naturally occurring sucrose from food, such as fruit juices, producing low-calorie juices for consumption. Magnetite nanoparticles (Fe3O4 NPs) coated with an inert material (SiO2) and functionalised with the enzyme invertase were designed to remove sucrose from solutions. Fe3O4 NPs were synthesised using the co-precipitation method, whereas the coating with a silica shell was done by the Stöber method. Its physicochemical characteristics were determined, with excellent stability over time. On the other hand, the invertase enzyme was extracted from dry Baker's yeast, purified and immobilised on the surface of the silica-coated Fe3O4 NPs. pH-triggered sucrose capture occurred at pH 3.0 once invertase with protonated catalytic residues was able just to bind with sucrose in a highly selective way. After a short, 1 min interaction, approximately 13.5 mmol L-1 of sucrose was captured per gram of nanomaterial and removed with the use of an external permanent magnet. The complex sucrose/nanomaterial was washed, and the released sucrose was put into buffered solution (pH = 4.8), where it underwent hydrolysis to yield inverted sugar. On the other side, sucrose-free nanomaterial was reused with no loss of enzymatic capability to capture sucrose at pH = 3.0 and maintained the invertase activity at pH 4.8 in ten consecutive rounds of re-use. As sucrose was recovered in the form of inverted sugar, not just low sugar beverage could be obtained, but also a high valued market product. Thus, the developed technology allows for the commercialisation of low-calorie food, offering healthier options to consumers and helping to fight diabetes and obesity.
Collapse
Affiliation(s)
- Stephanie Fulaz
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas Campinas 13083-970 Brazil
| | - Carolina Scachetti
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas Campinas 13083-970 Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas Campinas 13083-970 Brazil
| |
Collapse
|
15
|
Sun Y, Wang C, Sun M, Fan Z. Bioinspired polymeric pigments to mimic natural hair coloring. RSC Adv 2021; 11:1694-1699. [PMID: 35424122 PMCID: PMC8693533 DOI: 10.1039/d0ra09539g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Due to an increasingly aging population, hair dyeing has become more necessary in daily life; however synthetic hair dyes often have the disadvantages of harsh dyeing conditions, a slow dyeing process and biological toxicity. Herein, we developed a bioinspired approach to mimic the natural hair dyeing process under mild conditions. Compared to the existing polydopamine deposition approach with harsh conditions, mild conditions and effective deposition were achieved here. First, in the presence of tyrosine hydroxylase and metal ions, dopamine could be oxidized into polydopamine, a mimic of human eumelanin, and then self-assembled into nanometer-scale pigments. Through optimizing the experimental parameters, various colors and the desired darkness could be achieved within less than 1 minute. In addition, significant durability was observed after continuous washing with polydopamine assemblies as hair dyes. Morphological analysis was applied to verify the deposition of polydopamine assemblies onto the hair surface, which induces the hair color change. Also, animal studies were conducted to evaluate the efficiency and biological toxicity of this approach. Overall, this bioinspired approach could provide a new avenue for biocompatible and effective nanomaterial-based hair dyes for at-home use.
Collapse
Affiliation(s)
- Yu Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Congyu Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Min Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
- Institute for Advanced Study, Tongji University Shanghai 200092 China
| |
Collapse
|
16
|
Metallic Nanoparticle-Decorated Polydopamine Thin Films and Their Cell Proliferation Characteristics. COATINGS 2020. [DOI: 10.3390/coatings10090802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic metal nanoparticle (NP)-decorated thin films of biobased and biocompatible polymers provide significant opportunities in various biomedical applications. Inspired from the adhesive proteins of the marine mussels, polydopamine (PDA) serves as a versatile, biocompatible, and simple thin-film material and enhances cell growth and proliferation. Herein, we report the fabrication of the gold NPs (AuNPs) or silver NPs (AgNPs)-deposited thin films of PDA and their employment in cell growth and proliferation. PDA thin film with its numerous functional groups enabled well-controlled adsorption of NPs. The number density of NPs was manipulated simply by tuning the deposition time. Cell viability test for human lung cancer (A549) and human colon cancer (CaCO2) cell lines indicated that a thin layer of PDA film remarkably enhanced the cell growth and proliferation. The lower number density of NPs for the 24 h of the culture time resulted in a higher proliferation rate. However, the increase in both the number density of NPs and culture time led to a decrease in cell growth.
Collapse
|
17
|
Patel K, Kumar R. Vancomycin Grafted Polydopamine Coated Silver Nanoparticles for Enhanced Antibacterial Action Against Vancomycin‐Resistant Bacteria E. Faecalis. ChemistrySelect 2020. [DOI: 10.1002/slct.202000200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Khushbu Patel
- Department of Applied ChemistryS.V. National Institute of Technology Surat 395007 India
| | - Rajender Kumar
- Department of Applied ChemistryS.V. National Institute of Technology Surat 395007 India
- Department of Chemistry and Chemical SciencesSchool of Physical and Material SciencesCentral University of Himachal Pradesh Kangra, Himachal Pradesh 176215 India
| |
Collapse
|
18
|
Affiliation(s)
- Jürgen Liebscher
- Institute of Chemistry; Humboldt-University Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
19
|
Rana D, Colombani T, Mohammed HS, Eggermont LJ, Johnson S, Annabi N, Bencherif SA. Strategies to prevent dopamine oxidation and related cytotoxicity using various antioxidants and nitrogenation. EMERGENT MATERIALS 2019; 2:209-217. [PMID: 39526219 PMCID: PMC11548841 DOI: 10.1007/s42247-019-00037-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2024]
Abstract
Dopamine (DA) plays several important roles in the brain and body and has recently been used as a bioadhesive precursor for medical applications. However, DA oxidizes immediately when exposed to oxygen and rapidly polymerizes into polydopamine (PDA), leading to oxidative stress, cytotoxicity, and loss of DA functionalities. As a result, preventing rapid oxidation of DA is of paramount importance but still remains a major challenge. Here, we report several strategies to impede DA oxidation in relevant aqueous solutions (i.e., water, PBS, and cell culture media). One strategy is based on using reducing agents or antioxidants such as glutathione in its reduced state (GSH) and sodium tetraborate (commonly known as borax). Another strategy is based on nitrogenation, a method used to preserve DA in its reduced form by creating an oxygen-free environment. Our data suggest that the antioxidant properties of GSH and borax substantially decreased DA oxidation for up to 2 months. Nitrogenation or oxygen removal further prevented DA oxidation, enhancing its shelf life for longer periods of time. When tested with mammalian cells, preventing DA oxidation with GSH dramatically improved viability of 3T3 fibroblasts and T cells. These results demonstrate that the use of antioxidants, alone or in combination with nitrogenation, can help prevent DA oxidation and improve its stability for cell-based studies or for the design and development of biomaterials.
Collapse
Affiliation(s)
- Devyesh Rana
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Loek J. Eggermont
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Samantha Johnson
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
20
|
Nakatsuka N, Hasani-Sadrabadi MM, Cheung KM, Young TD, Bahlakeh G, Moshaverinia A, Weiss PS, Andrews AM. Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS NANO 2018; 12:4761-4774. [PMID: 29664607 PMCID: PMC6087466 DOI: 10.1021/acsnano.8b01470] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Serotonin-based nanoparticles represent a class of previously unexplored multifunctional nanoplatforms with potential biomedical applications. Serotonin, under basic conditions, self-assembles into monodisperse nanoparticles via autoxidation of serotonin monomers. To demonstrate potential applications of polyserotonin nanoparticles for cancer therapeutics, we show that these particles are biocompatible, exhibit photothermal effects when exposed to near-infrared radiation, and load the chemotherapeutic drug doxorubicin, releasing it contextually and responsively in specific microenvironments. Quantum mechanical and molecular dynamics simulations were performed to interrogate the interactions between surface-adsorbed drug molecules and polyserotonin nanoparticles. To investigate the potential of polyserotonin nanoparticles for in vivo targeting, we explored their nano-bio interfaces by conducting protein corona experiments. Polyserotonin nanoparticles had reduced surface-protein interactions under biological conditions compared to polydopamine nanoparticles, a similar polymer material widely investigated for related applications. These findings suggest that serotonin-based nanoparticles have advantages as drug-delivery platforms for synergistic chemo- and photothermal therapy associated with limited nonspecific interactions.
Collapse
Affiliation(s)
- Nako Nakatsuka
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Mohammad Mahdi Hasani-Sadrabadi
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kevin M. Cheung
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Thomas D. Young
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Ghasem Bahlakeh
- Department of Engineering and Technology, Golestan University, Aliabad Katool, Iran
| | - Alireza Moshaverinia
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Anne M. Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Semel Institute for Neuroscience & Human Behavior and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
21
|
Orishchin N, Crane CC, Brownell M, Wang T, Jenkins S, Zou M, Nair A, Chen J. Rapid Deposition of Uniform Polydopamine Coatings on Nanoparticle Surfaces with Controllable Thickness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6046-6053. [PMID: 28548835 DOI: 10.1021/acs.langmuir.7b00671] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polydopamine is a bioinspired, versatile material that can adhere to bulk and nanoscale surfaces made of disparate materials to improve their physical and chemical properties in many applications. The typical methods to coat polydopamine on the nanoparticle substrates usually take several hours to a day. This work successfully applies a dispersion method to form a controllable, uniform coating on a nanoparticle surface within minutes. Using plasmonic Ag nanoparticles as a substrate, the coating thickness can be monitored using a spectroscopic method based on the extinction peak shifts of the Ag nanoparticles. The deposition rate increases with dopamine concentration; however, too much excess dopamine leads to the formation of free dopamine particles. The optimized concentration of dopamine (i.e., ∼6 mM) can be applied to other nanoparticles by normalizing the number of particles to maintain a constant concentration of dopamine per unit surface area (i.e., 1.70 × 104 dopamine/nm2). The molecular dynamics simulation reveals that the amount of hydrogen bonding increases with water content, suggesting that sufficient mixing using the dispersion tool facilitates the formation of hydrogen bonding, thus rapidly depositing PDA on the nanoparticle surface. The physical and chemical properties (e.g., pH response and thermal stability) can be tailored by varying the coating thickness due to the changes in the number of hydrogen bonds and the conformation of π-π interactions. This dispersion method provides a facile means to control the PDA coating thickness on nanoparticle surfaces and thus the surface properties of nanoparticles toward various applications.
Collapse
Affiliation(s)
- Nazar Orishchin
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Cameron C Crane
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Matthew Brownell
- Department of Mechanical Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Tengjiao Wang
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Samuel Jenkins
- Department of Mechanical Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Min Zou
- Department of Mechanical Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Arun Nair
- Department of Mechanical Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
22
|
Preparation of the Sm3+-Doped Magnetic Nanoparticles via Microwave-Assisted Polyol Synthesis. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0385-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Wu W, Jiang CZ, Roy VAL. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. NANOSCALE 2016; 8:19421-19474. [PMID: 27812592 DOI: 10.1039/c6nr07542h] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron oxide nanoparticles (NPs) hold great promise for future biomedical applications because of their magnetic properties as well as other intrinsic properties such as low toxicity, colloidal stability, and surface engineering capability. Numerous related studies on iron oxide NPs have been conducted. Recent progress in nanochemistry has enabled fine control over the size, crystallinity, uniformity, and surface properties of iron oxide NPs. This review examines various synthetic approaches and surface engineering strategies for preparing naked and functional iron oxide NPs with different physicochemical properties. Growing interest in designed and surface-engineered iron oxide NPs with multifunctionalities was explored in in vitro/in vivo biomedical applications, focusing on their combined roles in bioseparation, as a biosensor, targeted-drug delivery, MR contrast agents, and magnetic fluid hyperthermia. This review outlines the limitations of extant surface engineering strategies and several developing strategies that may overcome these limitations. This study also details the promising future directions of this active research field.
Collapse
Affiliation(s)
- Wei Wu
- Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China. and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Chang Zhong Jiang
- School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Vellaisamy A L Roy
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China.
| |
Collapse
|
24
|
Ang JM, Du Y, Tay BY, Zhao C, Kong J, Stubbs LP, Lu X. One-Pot Synthesis of Fe(III)-Polydopamine Complex Nanospheres: Morphological Evolution, Mechanism, and Application of the Carbonized Hybrid Nanospheres in Catalysis and Zn-Air Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9265-75. [PMID: 27550631 DOI: 10.1021/acs.langmuir.6b02331] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report one-pot synthesis of Fe(III)-polydopamine (PDA) complex nanospheres, their structures, morphology evolution, and underlying mechanism. The complex nanospheres were synthesized by introducing ferric ions into the reaction mixture used for polymerization of dopamine. It is verified that both the oxidative polymerization of dopamine and Fe(III)-PDA complexation contribute to the "polymerization" process, in which the ferric ions form coordination bonds with both oxygen and nitrogen, as indicated by X-ray absorption fine-structure spectroscopy. In the "polymerization" process, the morphology of the complex nanostructures is gradually transformed from sheetlike to spherical at the feed Fe(III)/dopamine molar ratio of 1/3. The final size of the complex spheres is much smaller than its neat PDA counterpart. At higher feed Fe(III)/dopamine molar ratios, the final morphology of the "polymerization" products is sheetlike. The results suggest that the formation of spherical morphology is likely to be driven by covalent polymerization-induced decrease of hydrophilic functional groups, which causes reself-assembly of the PDA oligomers to reduce surface area. We also demonstrate that this one-pot synthesis route for hybrid nanospheres enables the facile construction of carbonized PDA (C-PDA) nanospheres uniformly embedded with Fe3O4 nanoparticles of only 3-5 nm in size. The C-PDA/Fe3O4 nanospheres exhibit catalytic activity toward oxygen reduction reaction and deliver a stable discharge voltage for over 200 h when utilized as the cathode in a primary Zn-air battery and are also good recyclable catalyst supports.
Collapse
Affiliation(s)
- Jia Ming Ang
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research) , 1 Pesek Road, Jurong Island, Singapore 627833
| | - Boon Ying Tay
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research) , 1 Pesek Road, Jurong Island, Singapore 627833
| | - Chenyang Zhao
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Junhua Kong
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Ludger Paul Stubbs
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research) , 1 Pesek Road, Jurong Island, Singapore 627833
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
25
|
Nair BG, Hagiwara K, Ueda M, Yu HH, Tseng HR, Ito Y. High Density of Aligned Nanowire Treated with Polydopamine for Efficient Gene Silencing by siRNA According to Cell Membrane Perturbation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18693-18700. [PMID: 27420034 DOI: 10.1021/acsami.6b04913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High aspect ratio nanomaterials, such as vertically aligned silicon nanowire (SiNW) substrates, are three-dimensional topological features for cell manipulations. A high density of SiNWs significantly affects not only cell adhesion and proliferation but also the delivery of biomolecules to cells. Here, we used polydopamine (PD) that simply formed a thin coating on various material surfaces by the action of dopamine as a bioinspired approach. The PD coating not only enhanced cell adhesion, spreading, and growth but also anchored more siRNA by adsorption and provided more surface concentration for substrate-mediated delivery. By comparing plain and SiNW surfaces with the same amount of loaded siRNA, we quantitatively found that PD coating efficiently anchored siRNA on the surface, which knocked down the expression of a specific gene by RNA interference. It was also found that the interaction of SiNWs with the cell membrane perturbed the lateral diffusion of lipids in the membrane by fluorescence recovery after photobleaching. The perturbation was considered to induce the effective delivery of siRNA into cells and allow the cells to carry out their biological functions. These results suggest promising applications of PD-coated, high-density SiNWs as simple, fast, and versatile platforms for transmembrane delivery of biomolecules.
Collapse
Affiliation(s)
- Baiju G Nair
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Kyoji Hagiwara
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Laboratory of Human Science and Engineering , 1-3-1 Minaminagasaki, Toshima-ku, Tokyo 1710052, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Hsiao-Hua Yu
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Institute of Chemistry, Academia Sinica , 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California , Los Angeles CNSI, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Emergent Bioengineering Material Research Team, RIKEN Centre for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
26
|
Ganguly S, Das TK, Mondal S, Das NC. Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. RSC Adv 2016. [DOI: 10.1039/c6ra24153k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A stimuli-triggered drug delivery vehicle has been synthesized by self-polymerization of dopamine (DA) on the outer surface of halloysite nanotubes (HNT) followed by gelationviaalginate.
Collapse
Affiliation(s)
- Sayan Ganguly
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur 721301
- India
| | - Tushar Kanti Das
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur 721301
- India
| | - Subhadip Mondal
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur 721301
- India
| | - N. C. Das
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur 721301
- India
| |
Collapse
|
27
|
Huang N, Zhang S, Yang L, Liu M, Li H, Zhang Y, Yao S. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application. ACS APPLIED MATERIALS & INTERFACES 2015. [PMID: 26222894 DOI: 10.1021/acsami.5b04597] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, a new strategy for the construction of multifunctional electrochemical detection platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide was first proposed. Inspired by the mussel adhesion proteins, 3,4-dihydroxyphenylalanine (DA) was selected as a reducing agent to simultaneously reduce graphene oxide and self-polymerize to obtain the polydopamine-reduced graphene oxide (PDA-rGO). The PDA-rGO was then functionalized with thiols and amines by the reaction of thiol/amino groups with quinine groups of PDA-rGO via the Michael addition/Schiff base reaction. Several typical compounds containing thiol and/or amino groups such as 1-[(4-amino)phenylethynyl] ferrocene (Fc-NH2), cysteine (cys), and glucose oxidase (GOx) were selected as the model molecules to anchor on the surface of PDA-rGO using the strategy for construction of multifunctional electrochemical platforms. The experiments revealed that the composite grafted with ferrocene derivative shows excellent catalysis activity toward many electroactive molecules and could be used for individual or simultaneous detection of dopamine hydrochloride (DA) and uric acid (UA), or hydroquinone (HQ) and catechol (CC), while, after grafting of cysteine on PDA-rGO, simultaneous discrimination detection of Pb(2+) and Cd(2+) was realized on the composite modified electrode. In addition, direct electron transfer of GOx can be observed when GOx-PDA-rGO was immobilized on glassy carbon electrode (GCE). When glucose was added into the system, the modified electrode showed excellent electric current response toward glucose. These results inferred that the proposed multifunctional electrochemical platforms could be simply, conveniently, and effectively regulated through changing the anchored recognition or reaction groups. This study would provide a versatile method to design more detection or biosensing platforms through a chemical reaction strategy in the future.
Collapse
Affiliation(s)
- Na Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Si Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Liuqing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
28
|
Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2938-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Sun H, Ai M, Zhu S, Jia X, Cai Q, Yang X. Polylactide–hydroxyapatite nanocomposites with highly improved interfacial adhesion via mussel-inspired polydopamine surface modification. RSC Adv 2015. [DOI: 10.1039/c5ra21010k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interfacial bonding between inorganic hydroxyapatite and organic polylactide could be significantly improved by introducing polydopamine surface coating on hydroxyapatite.
Collapse
Affiliation(s)
- Hongyang Sun
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Miao Ai
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Siqi Zhu
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing Laboratory of Biomedical Materials
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing Laboratory of Biomedical Materials
| |
Collapse
|